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Abstract

We show that the following class of two-dimensional hyperbolic-cotangent-type
systems of difference equations

Un-kVp-1 +a Whn-kSp-1 + 4
Xpy1 = —————, Vo1 = —————, neNp,
Up—k + Vi Wik + Sn-i

where k,/ € Ng,ae C,uj,w, €C,j=1k v, sp,j =11 andeach of the sequences
Un, Vn, Wy, Sp is equal to x,, or vy, is theoretically solvable. When k=0and /=1, we
show that the systems are practically solvable by presenting closed-form formulas for
their solutions. To do this, we employ a constructive method, which is possible to use
on the complex domain, presenting in this way a new and elegant solution to the
problem in this case, and giving a hint how such type of systems can be solved.

MSC: 39A45

Keywords: System of difference equations; Product-type system; General solution;
Closed-form formula

1 Introduction
Let N ={1,2,3,...}, Ny = NU {0}, Z be the set of whole numbers, R be the set of reals, and
C of complex numbers. If we write j = 11, 11y, where ny, 1, € Z, it means that j takes the

whole numbers such that n; <j < n,.

1.1 Alittle history and some useful classical results

Motivated by some concrete problems from combinatorics, probability, economics, and
other branches of mathematics and science, researchers of the eighteenth century started
investigating recurrence relations (the notion coined in [1]), known also as difference
equations. Natural connection between recurrence relations and difference equations has
been noticed long time ago, for example, in [2]. One of the basic natural problems is to
find some (nonrecursive) expressions for solutions to difference equations and systems of
difference equations in as much as simpler forms (the problem is to try to find formulas
for solutions to the equations and systems in closed form).
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Closed-form formulas for solutions to homogeneous linear difference equations with
constant coefficients, that is, for the equations of the form

Ky = A1Xp_1 + AoXyp + -+ + AXn_k, 1 € Ny, (1)

where a; € R (or C), j = 1,k, ai #0, for small values of k, can be found in old books [3, 4],
whereas a pretty complete theory on the equations was established some time later (see,
eg. [5-7)).

It was shown that the general solution to difference equation (1) has the following form:

Xy = Z Qi(mrl, (2)

j=1
where A, j = 1, m, are the roots of the polynomial
Ped) =2k —agaF Tt —apd g —ay, 3)

associated with equation (1) (characteristic polynomial), whereas Q;(n), j = 1,m, are poly-
nomials of degrees d; = r; — 1, j = 1, m, respectively, where r; is the multiplicity of the root
A

Bearing in mind the literature from the mid of the previous century (see, for example,
[8-12]), it seems there had not been much novelties in solvability theory of difference
equations for a long time.

1.2 On recent topics of interest and general motivations

Recent progress in computer science has had some impact on the research area. It has
increased interest in recurrent relations; on the other hand, it has caused also some, a bit
problematic, non-theoretical ways for investigating the relations. Namely, many recent
papers on solvability of difference equations and systems consider some equations and
systems which are close cousins to well-known solvable ones. Some comments related
to it, as well as theoretical explanations, can be found, for example, in [13-18]. We have
noticed the problem yet in 2004 on the example of the equation

Xn

KXns2 = ne I\IO- (4)

-
CXpi1Xy +d

Nevertheless, it motivated some further investigations on extensions of equation (4) (see,
e.g., [19-24]; see also [25] which treats equation (4) in another way).
The systems of difference equations studied in some of these papers are usually sym-

metric, that is, of the following form:

Uy :f(un—sly e un—skx Vﬂ—tl) e Vn—tl);

Vn :f(vn—slx e Voo Un—tyse ey un—tl):

for n € Ny, or close to symmetric ones, which is an area that attracted some attention since
the end of the previous century (see, e.g., [26—42]). In some of these papers invariants, a
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topic close to solvability, were studied (see papers [27-29, 31, 33, 34] by Papaschinopoulos
and Schinas). For a recent, quite unexpected, use of invariants in solvability of a class of
difference equations, see [43].

As we have already mentioned, difference equations, as well as systems of difference
equations, appear in many practical problems as discrete models. Many of them are solv-
able (see, for example, some of them in [2, 5, 8, 9, 11, 44-55]).

1.3 Previous investigations leading to the one in this paper
One of the difference equations whose special cases attracted some attention in the last
few decades is the following:
Xps1 = Ikl 28 e No, (5)
Kn—k +Xn-1
where &,/ € Ny, a € R.

Employing a result from [56], in [57] we proved a global stability result for positive so-
lutions to a generalization of equation (5), showing that a previously obtained result in
the case k = 0, [ = 1 is essentially known. Motivated by the same result from [56], Pa-
paschinopoulos and Schinas in [58] presented a related global stability result for systems
of difference equations, which was improved in [59]. Equation (5) with a # 0 is easily re-
duced to the case 4 = 1, which looks like a familiar formula for trigonometric functions.
That difference equations obtained by using known trigonometric relations could be solv-
able has been known for a long time (see, e.g., [6]). It has been our impression, for some
time, that the solvability of equation (5) in the case k = 0, / = 1, had been known for a long
time and that it could be found easily in the literature. The fact that we could not find an
expected natural solution to the problem in the literature, and that we have only found a
recent solution to the problem of different type [60], motivated us to present the natural
solution recently in [61].

Following one of the usual ways for generalizing results on scalar difference equations
to close-to-symmetric systems of difference equations, quite recently in [62] and [63] we
have considered solvability problem for the following systems of difference equations:

Kps1 = %, Ynel = %, n € No, (6)
where a and u;, vj, w;, s, j = —1,0, are complex numbers, whereas u,, v,, w,, s, are equal to
%y or ¥,. In fact, our original aim in [62] and [63] was essentially to study real solutions to
some of the systems in (6), which is the main reason why some methods for dealing with
real functions have been predominately used therein, while the solvability results for the
case of complex parameters and initial values have been obtained indirectly.

The motivation for the study of the systems in (6) stemmed from the systems in our
previous papers [20] and [64], where the solvability of the following systems:

Uy

Wy
Xnel = T Insr =0 € Ny, (7)
n n

where u,, v,, w,, s, are some of the sequences x, or y,, was studied. We have shown
an interesting result therein, namely that fourteen systems out of these sixteen ones are
solvable and presented closed-form formulas for their solutions. It is also interesting to
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mention that our motivation for the study of the systems in (7) stemmed from our previous
investigations on the long-term behavior of solutions to the general difference equation

Xn :f(xn—lyxn—Z"-wxn—k)’ ne NO;

where the function f satisfies the following condition: f(t,¢,...,£) ~ ¢, as t — 0. When
f(®) = 15, we have f(t) ~ t,as t — 0, and a simple solvable difference equation is obtained
(see, e.g, [6, 65]), which suggested us that some of the systems in (7) could be also solvable.

Bearing in mind that there is a method for solving equation (5) which directly deals
with the case of complex parameters and initial values [60], it is a natural problem to try
to solve some of the corresponding close-to-symmetric systems of difference equations in

a related way.

1.4 The Fibonacci sequence
Here we say a few words on the sequence that will be frequently used in the rest of the
paper.

The sequence satisfying the following recurrence relation:

Aps2 = Aui1 + Ay, HNEN, (8)

and such that a; = a, = 1, is called the Fibonacci sequence (see, e.g., [45, 48, 66, 67]). Here,
as usual, we denote the sequence as f;,.

From the de Moivre formula for solutions to linear homogeneous difference equations
with constant coefficients [3, 4], we have

o (B - (55

n - - ’ ne Ny 9
S i NG )
where
1+45
Ao = T (10)

It should be easily checked that formula (9) holds for every n € Z (see, e.g., [66]).

1.5 Aim of this paper, types of solvabilities, and main methods
One of our aims here is to show that the following class of nonlinear two-dimensional
systems of difference equations:

Un_kVn-1+a Wn—kSn-1 + a4

Xpel = ————— Vel = —————— ne NO¢ (11)
Up—k + Vn-| Wy—k + Sp-1

where k,1 € No, a, u_j, w_j,j = 1,k, v_, s, j = 1,1, are complex numbers, and each of the
sequences Uy, vy, Wy, S, is equal to x,, or y,, is theoretically solvable.

As we have already mentioned, to each difference equation of the form in (1) is associ-
ated the polynomial (3). It is known that if the order of a polynomial is greater or equal
to five, it need not be solvable by radicals [68]. Since general solution to equation (1) is
given by formula (2), in this case we might not be able to find all the roots of polynomial
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(3) by radicals. Hence, in such cases we say that equation (1) is theoretically solvable. If the
order is strictly less than five, then by using known formulas/methods for solving polyno-
mials by radicals we can find all the roots, from which along with formula (2) we have an
explicit closed-form formula for solutions to equation (1), and we say that the equation
is practically solvable in this case. Hence, for each difference equation or system which
can be solved by using equation (1) with order greater or equal to five, we say that it is
theoretically solvable, whereas if the order of the polynomial is strictly less than five, we
say that such an equation or system is practically solvable. Note that if a polynomial of
order strictly bigger than four is of a specific type, then it can be solvable by radicals, so
in such special cases a specific equation or system can be practically solvable. Hence, for
theoretical solvability it is important that the polynomial (3) has general form.

Since a system of difference equations can have initial values for which solutions are not
defined, but they usually do not affect the solvability, we regard that a system of difference
equations is solvable in closed form if there is a finite number of closed-form formulas from
which any well-defined solution to the system can be obtained.

As a concrete example, we study here system (11) in the case k = 0 and / = 1 in detail,
and show that it is practically solvable, presenting a new constructive and straightforward
solution to the solvability problem unlike the solutions given in [62] and [63].

To do this, the methods from papers on product-type difference equations and systems
of difference equations will be considerably used (see, e.g., [35-42, 69] and the references
therein).

2 Casea=0
This section is devoted to studying solvability of system (11) in the case a = 0. In this case
system (11) becomes

Un—kVn-1 Wn—kSn-1

1= ————, n €Ny, (12)

Xn+l = ’
Up—k + V| Whn—k + Su-1

where &, € N.
By using the changes of variables

R 1 R 1 R 1 . 1 R 1 o
Xp = —) Yn= "> Uy, =—, Vp=—H Wyp=—") Sp=—»H (13)
Xy Vn Uy Vi Wiy n
system (12) can be written in the following form:
;CVH—I = i‘n—k + 1’);1—17 5’;’1+1 = ﬁ’n—k + §n—l: ne I\IO- (14')

Depending on which values sequences u,, v, Wy, s, have (x, or y,), there are sixteen

possible systems. They are the following:

Xn+l = Xp—k + Xn-I, Yn+1 = Xn-k + Xn-1; (15)
X+l = Xn—k + Xu—|» Y+l = Yn—k + Xu—15 (16)
Xn+l = Xp—k + Xn-I, Yu+1 = Xn-k t Yu-15 (17)

&VH—I = &n—k + J’en—l’ 5/Vl+l = 5’;1—/( + 5/n—l; (18)
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&:Vl+1 = &n—k + 5’n—l» 5/n+1 = &n—k + &n—l; (19)
QACVH-I = &n—k + 5’;’1—1: 5’n+1 = 5/n—k + &n—l; (20)
&nﬂ = &n—k + &n—l» 5/n+1 = &n—k + 5/n—l§ (21)
K1 = Xncke + Yuty V1 = Vnk + In-ts (22)
5&71+1 = 5’n—k + &n—l» 5/n+1 = &n—k + &n—l; (23)
K1 = Yok + Znty V1 = Vnk + Xuis (24)
;CVHI = 5’n—k + &n—b 5/n+1 = &n—k + 5’;4—[; (25)
K1 = Yok + Znty V1 = Vnk + n-is (26)
;CVHI = 5’n—k + 5/;'1—[, 5/n+1 = jcn—k + &:n—l; (27)
K1 = Yok + n-ts V1 = Ik + Xnis (28)
'%Vl+1 = 5’n—k + 5/;'1—[, 5/n+1 = jcn—k + 5’;1—13 (29)
Knel =5’n—k +5/n—l: 5’n+1 =5’n—k +5/n—l (30)

Page 6 of 34

for n e Ny.
Our first theorem deals with the theoretical solvability of system (11) in the case a =0,
that is, of system (12).

Theorem 1 Assume that a = 0. Then system (11) is (theoretically) solvable.

Proof To do this, we need to prove the theoretical solvability of systems (15)—(30).

Case 1, system (15). The first equation in system (15) is linear with constant coefficients,
so it is theoretically solvable. Since from (15) it immediately follows that y, = x,, n € N,
the solvability of the system follows.

Case 2, system (16). Recall that the first equation in system (16) is solvable. Moreover, we
know that its general solution has the form in (2), where 1, j = 1, m, are the characteristic
roots of the characteristic polynomial associated with the equation, while Q;, j = 1,m, are
some polynomials of degrees d; = r; — 1, j = 1, m, respectively, where r; is the multiplicity
of the characteristic root ;.

From this and the second equation we have

Iuer = Pnok = Y Qiln =AY, (31)

j=1

which is a nonhomogeneous linear difference equation with constant coefficients whose
nonhomogeneous part has the polynomial-exponential form. It is well known that such
difference equations are solvable (see, e.g., [8—11]). Hence, system (16) is solvable.

Case 3, system (17). This case is essentially the same as Case 2, with the only difference
that the letters k and / are interchanged in the second equation. Hence, the system is also
solvable.

Case 4, system (18). This system consists of two copies of the same linear difference

equation with constant coefficients, so it is obviously solvable.
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Case 5, system (19). Using the second equation in (19) into the first one, we get
;CVHI - &n—k - &n—k—l—l - 52;4—21—1 = 0» (32)

which is a linear difference equation with constant coefficients, hence solvable. Using the
general solution to equation (32) in the second equation in (19) it is obtained a closed-form
formula for y,. Hence, system (19) is solvable.

Case 6, system (20). From the first equation in (20) we have

A

Yn = 5\5;’1+l+1 - ‘%VH-I—/(‘ (33)
Using (33) into the second equation in (20) we obtain
&n+l+2 - 255n+l—k+1 + &n+l—2k - &n—l =0, (34‘)

which is a linear difference equation with constant coefficients. Hence, its general solution
can be found. Using the general solution to equation (34) in (33), a closed-form formula
for y, is obtained, from which the solvability of system (20) follows.

Case 7, system (21). This case is essentially the same as Case 6, with the only difference
that the letters k and / are interchanged in the second equation. Hence, the system is also
solvable.

Case 8, system (22). This system is obtained from (16) when the letters x and y are inter-
changed, from which its solvability follows.

Case 9, system (23). This case is essentially the same as Case 5, with the only difference
that the letters k and / are interchanged in the first equation. Hence, the system is also
solvable.

Case 10, system (24). This case is essentially the same as Case 6, with the only difference
that the letters k and [ are interchanged in the first equation. Hence, the system is also
solvable.

Case 11, system (25). This case is essentially the same as Case 7, with the only difference
that the letters k and [ are interchanged in the first equation. Hence, the system is also
solvable.

Case 12, system (26). This case is essentially the same as Case 8, with the only difference
that the letters k and / are interchanged in the first equation. Hence, the system is also
solvable.

Case 13, system (27). Using the first equation in (27) into the second one, we obtain

5’n+1 _&n—Zk—l - 25}71—1(—[—1 _5’;4—21—1; (35)

which is a linear difference equation with constant coefficients. Hence, its general solution
can be found. Using the general solution to equation (35) in the first equation in (27), a
closed-form formula for x,, is obtained, from which the solvability of system (27) follows.
Case 14, system (28). This system is obtained from (19) when the letters x and y are
interchanged, from which its solvability follows.
Case 15, system (29). This system is obtained from system (23) when the letters x and y
are interchanged, from which its solvability follows.
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Case 16, system (30). This system is obtained from system (15) when the letters x and y

are interchanged, from which its solvability follows. 0

Remark 1 It should be pointed out that all the linear transformations used in the proof
of Theorem 1 transform original systems of difference equations to equivalent ones, from
which it follows that there is no possibility of getting new or loosing some existing solu-
tions. The changes of variables (13) do not transform the systems in (12) to equivalent
ones. Nevertheless, since, by the definition, we take into consideration only well-defined

solutions to the systems, by using the changes all such solutions are obtained.

3 Casea+#0
In this section we consider system of difference equations (11) in the case a € C \ {0}.
First, note that from (11) it follows that

Xp1 +/a = Wt + /D) Vs + \/‘_l)’

Up—k + Vn-|
(36)
_ (Wpt + \/"_l)(sn—l + «/‘_l)
Yn+1 t \/5_{ =
Wy—k + Sp-1
for n € Ny, and
Kot — «/6_1 _ (tn-k — ﬁ)(Vn,[ - \/‘_z),
Up—k + Vn-i
(37)
(Wt~ )51 ~ V)
Yn+1 — \/Z =
Wh—k t Sn-1

for every n € Ny, where /a is one of the two roots of the polynomial equation z? + a = 0.
From (36) and (37) it follows that

Xns1 + /A uy,k+ﬁ Vol + A/a
xn+1_\/a Uy — \/E V- [—\/E
yn+1+\/zzwn—k+\/6_llsn—l+\/z
yn+1_\/5_l Wn—k_«/a sn—l_\/‘_Z

(38)

(39)

for n € Ny.
Depending on which values sequences u,, v,,, w,, s, have (x, or y,), there are the follow-

ing sixteen cases:

Xurl + /4 _ Ep /A xp1+a
xn+1_\/5 xnk_\/z xnl_\/a

(40)
Yt ¥ Na _ Eni+Na xu+a
J’;'Hl_\/a xnk_\/— xnl_\/‘_l
Xl + /A Xp A xpi+a
xn+1_\/6_l Xn— k_\/a xnl_\/Z (41)

yn+1+«/5:yn—k+«/— Xn i+ /A
Yus1 = VA Yuk— A Fui—Ja
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xn+1+ﬂ:xn_k+\/ﬁ’xn_l+\/ﬁ
Xl =A@ Xpk—~/a xnfl—«/;l’

Vel + Aa Xkt Ja .+ «/E' (42)
yn+1_\/a - xn—k—«/lf_l ' ynfl—«/ﬁ’
Xni1 +A/a _ Xn-k +/a Xnp_i++Ja
N TSN (43)
Yuel + /@ B J’n—k+«/6_l’yn_1+«/a.
Yl = VA Yk = A Yui—a
X1+ /@ Yk +AJa Xe+ia
%usl =AYk~ Xni—a )
Yusl + A Xngx+AJa xpi+a
Yne1 — 4 B Xnk —~/a ' xn—l_\/‘_z’
Xl + /@ Y +AJa Xei+ia
Xns1 =A@ Ynk—AJa Xyt )
Yurl ¥ A Yk + /A Xy + /A,
Yl =A@ Yok =@ xui—Na
Xl + /@ YuxtJa xe+ia
Xps1 — /A Yuk—AJa Xy —Ja o)
Yusl + /@ Xk +4/a . Yut + /@
Yot nk @ Yot
xn+1+\/t_l_yn_k+\/a_z-xn_l+ﬁ
Xpel = A Yuk — A Xp—Jad w)
Yurt ¥ A Yuk+ /4 yu1+a
yn+1_\/a_yn—k_\/a yn—l_\/a’
Xns1 +4/a _ Xnk+ /4 YuitA/a
Xut = /A Xnk—Na Yoi—~a us)
Yusl + A Xng+A/a - Xut+/a
Yus1 — /@ Xk — Va xn —\/E,
Xns1 + /4 _ Xnk + VA YuitA/a
Xni1 — /@ Xk — Ja . Vol — Ja' )
Yusl + /@ Yuk+/a . Xni+ /A
yn+1_\/z_yn—k_\/z X1 —~/a
xn+1+\/ﬁ_xn—k+«/a.yn—l+\/a
e (50)
Yo+ VA _ it a purt i
Ynel — 4 B Xnk —~/a ynfz—«/ﬁ’
Xns1 +4/a _ Xnk+ /@ YuatA/a
Xns1 —Aa B Xnk =@ . Yn—1 —\/E’ 51)
Vnel + /4 _ yn—k+«/6_l.}’n_l+«/a'
3’}’1+1_\/E_)’n—k—\/Z yn_z—ﬁ’
Xud /A _ Ynk + A Yno1+/a
Xns1 = /@ _J’n—k—«/ﬁ yn—l_ﬁ, (52)

Yn+1 +«/E _ xn,k+\/c_z ) x,,,l+«/ﬁ.
yn+1_\/a Knk — /@ xn—l—\/ﬁ,
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Xl + /A Yk +a Yuat+a
: )

Xn+l — «/E - Yn-k — «/E yn—l_«/a

Yn+1 +«/E _ yn—k"'\/ﬁ . xn—l"’\/('_l,
yn+l_\/a _yn—k_\/Z xn—l_\/;l’

Xl VA _Ynok+ A Yp1+a
Xn+l — \/"_Z Y-k — \/t,_l Vn-1 — «/"_Z’
Yurl ¥ /@  Xnk+/a Yo+ a

yn+1_\/a_xn—k_\/a.yn—l_\/a

xn+1+\/f'_l_yn—k+\/f'_l'yn—l+\/f'_l
Xn+l — \/6_1 Yn-k — \/6_1 Yn-1— \/6_1’
Yur1 +/@ Yk +a yui++/a

ym—l_\/a_yn—k_\/a'yn—l_\/a

for n € Ny.

_xn+ﬁ
- =

=

Cns1 = Enkn-t>
Cnr1 = SnicSn-1y
Cne1 = Cn-k8u-ts
Cni1 = Snkn-1
Cne1 = Nn-kCn-1»
Cne1 = Nn-kGn-1s
Cnel = Nu-kn-1s
Cne1 = Nu—kn-ts
Snr1 = SukMn-1s
Cni1 = Cu—kMn-1s
Cne1 = CnkMn-ts
Cns1 = EnkMn-1>
Cnel = Nu—kn-1s
Cne1 = Nu—kMn-1»
Cnel = Nu—kMn—ls

Cn1 = Nu-kNn-1>

for n € Ny, respectively.

Mn =

Using the changes of variables

yn"’\/a
In —

’

B

systems (40)—(55) become

N1 = CnkCn-1s
Nn+1 = Nn—kCn-1s
Nne1 = CukMn-i>
Nn+l = Nn—kNn-1>
Nns1 = Sn-kSn-1»
Nn+1 = Nn-kSn-1s
Nn+1 = Sk Mn-ts
Nn+1 = Nn—kNn-1>
Nnsl = SnkSn-1s
Nn+1 = Nn—kSn-ts
Nnel = SnkMn-1»
NMn+1 = Nn-kMn-1>
Nn+1 = En—kSn-1s
Nn+l = Nu-kSn-1»
Nn+1 = Cn-kMn-1s

Nn+l = Nu—-kMNn-1>

(53)

(54)

(55)

(56)

(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67)
(68)
(69)
(70)
(71)

(72)

Page 10 of 34
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Systems (57)—(72) are product-type ones. A systematic study of practical solvability of
product-type systems of difference equations has been conducted, for example, in our
recent papers [35-41] (see also the related references therein).

Note that from (56) we have

tn+1 Ny +1
xn:\/;l , yn:\/ﬂ_l . (73)
Cn—1 Nn—1

Using the product-type systems (57)—(72), the relations in (73), and the known fact that
the difference equation

ay .ay aj
Sn=8,18, ¢, p NE No,

wherea; € Z,j = 1,k, ax #0, is solvable, similarly as in the proof of Theorem 1 the following
result can be proved. Because of the similarity the proof is omitted and left to the reader
as an exercise. Note that this is not so unexpected since for the case when the initial val-
ues are positive by taking the logarithm, systems (57)—(72) are transformed to (15)—(30)
(of course, it is not the proof in the general case, but instead of that the corresponding
substitutions have to be used).

Theorem 2 Assume that a € C\ {0}. Then system of difference equations (11) is (theoret-
ically) solvable.

4 Casek=0,I=1,a#0

In this section we consider product-type systems (57)—(72) in the special case k=0, [ =1,

with a #0, as a concrete example. We show that these systems are solvable in closed form,

from which along with (73) will follow the solvability of systems (40)—(55) in the case.
First note that in the case the systems in (57)—(72) become

Cus1 = Enlu-1, Nns1 = Enln-15 (74)
Cn1 = Enln-1, Nne1 = Nubn-1, (75)
Cne1 = Cnln-15 Nn+1l = Cnlln-15 (76)
Cne1 = Enlu-1, Nnel = Nulln-15 (77)
Cnr1 = Nnlu-1, N1 = Enln-15 (78)
Snet = Mnbn-1s Nt = Nun-1s (79)
Sl = Mnbnts Nl = Enlln-1s (80)
Cus1 = Nnln-1, N+l = Nulln-1, (81)
Cnr1 = EuMn-1, M1 = En8n-1, (82)
Cne1 = Culln-1, Nn+1 = Mnln-15 (83)
Cus1 = Culln-1, Mns1 = Enlln-1, (84)
Cnr1 = EuMn-1, Nns1 = Nulln-1, (85)
Cnsl = Nulln-15 Nn+1 = Enln-1, (86)
Cusl = NMnln-15 Nusl = NMnln-15 (87)
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Cn1 = MuMn-1, Nn+1 = EuMn-1» (88)
Cne1 = NuMn-1, Nn+l = NMulln-1, (89)

n € Ny, respectively.
Before we start considering systems (74)—(89), we formulate a known lemma which will
be used in the rest of the paper.

Lemma 1 Let xy, k = 1, m, be the distinct roots of the polynomial p,,(x) = ¢,y x™ + - - + 1 +
Co.
Then

>

' Pin (v0)

when0<j<m-2,and

/ m—1

2 @) cm

o1 Pm

4.1 Solution to system (74)
First, note that from (74) it follows that

Cn=ny neN.

The first equation in (74) is a special case of the difference equation

Cne1 = Cnaé‘f_p ne I\IO-

A solution to the equation can be found in [69] (see also [35, 40] or some of the methods
used in the cases which follow), and its general solution is given by

L=, neN, (90)

where (f},).en, is the Fibonacci sequence.
Hence, we have

ne=Ceh, meN. (91)

Note also that formula (90) holds also for n = —1.

Corollary 1 Assume that k =0, =1, and a € C\ {0}. Then the general solution to system
(40) is given by

X0+VANf, 1 (X-1t/a
ﬂxof)fl(xl«/_)f+1

Xy =

yn:\/—

xo+f
xo x0—/a

x0+f
xo x0—/a

)fn+1(; itj—a)fn — 1 — )

n+ x1+\/_
)flxlf

)f+1

x0+f
xo xo—/a

CTREREN.]

eV —

Page 12 of 34
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4.2 Solution to system (75)
First, note that from the previous case we have that formula (90) holds. Using the formula

in the second equation in (75), it follows that

NMn+1 = Muln-1 = UnCO" j_(nfl: n € Ny, (92)
from which it follows that
Zn lf Zn 2f
m=mé
T o) S e —fi1)
=770§—1§-o/1 i ]15_1/0 e
— nogilg_gn+fn—l—fl—f0 {nl—lJrfn—Z—fO—f—l
— n C(f)-nﬂ lé.{n (93)
for n € Ny.

Formulas (90) and (93) are the closed-form formulas for general solution to system (75).

Corollary 2 Assume that k =0,1=1, and a € C\ {0}. Then the general solution to system
(41) is given by

g

Co-va .
*n=Na xo+«/—)f 1(x 1+f)/ z-1,

xo Va

y0+f x0+f e1-1(%-14/a
y:ﬁ(yo‘f Goa ) 1 neN
" RN NV Y E RNV 1 o

yo—f xo -Ja x_1-va

4.3 Solution to system (76)
Clearly, formula (90) holds. Using the formula in the second equation in (76), we get

N+l = Culln-1 = M- 15{;’“1 {np n € Ny, (94')
which is an equation with interlacing indices.
Hence, we have
Mon+i = N2(n-1 +t§£2n+l {ZHH ! (95)
forn e N, i = -1,0, from which it follows that
fj Yifia
N2n = No&y = lf 1]1 a
_ 770(02;1:1 (fz,‘+1—f2,>1)§_§7:1(fz,'—fzjfz)
n+1—1 n
= nog e (96)

Page 13 of 34
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for n € Ny, and

Z/ ()f2/+1 Z/ ()fZ]

Nan+1 = N-18p ¢
. (027:0(7(2/42—}’2/ o L olhje1fi1)
gl .
for n > 1.
Formulas (90), (96), and (97) are the closed-form formulas for general solution to system

(76).

Corollary 3 Assume that k =0,1=1, and a € C\ {0}. Then the general solution to system
(42) is given by

x0+‘/7)fn+l i iJrﬁ)fn + 1

x Ja

xn=\/6_l 0= 1’1>—1,
x0+f . x1+f -
xo f)f l(xl f)f

(J’O*‘[ xO*[)fz,Hl -1 x—l*f)fzn +1

yo—f x0—va
Yon = \/6_1 , nE NO;
y0+f x0+f a-1(Es 1+«/— o
(J'o—«/— x0—-va ﬂ)fz . _1-va a)fz 1
y 1+f xo+«/— ne2 (A= 1+V/a V-1
Yonsl = f<y1fx0f)f22xl_a)f21 n>-1.
R e

4.4 Solution to system (77)

Clearly, formula (90) holds, but since the second equation in (77) has the same form, it is
clear that the solutions to the second equation in system (77) are obtained by replacing
each letter ¢ by 5 in (90), that is, we have

NMn = 7Tf()wrl 77?1, n>-1 (98)

Hence, formulas (90) and (98) are the closed-form formulas for general solution to system
(77).

Corollary 4 Assume that k =0,1=1, and a € C\ {0}. Then the general solution to system
(43) is given by

x0+‘/_)fn+l X 1+\/E)fn + 1

x N xlf
Xy = NS a— -1,
x+f . x+f -
(O (122
m+f - y1+«/5n
y_fyofylylfy+1 > -1
" yo+f)fn+1 - 1+f)f -
;Vo—ﬂ ylf

4.5 Solution to system (78)
If we use the first equation in (78) into the second one, we get

§n+1 = (;371{}1—2 (99)

for m e N.
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Let
by =2, co =1, do=0.
Then equation (99) can be written as
Gut = 6016l = 60 6

for n e N.

Using (101), where # is replaced by n — 2 into (101), we obtain

_ #+bo nco .do
Cnr1 = 8,218,798, 73
_ (#bo ,co \bo,co do
= (6a%38,24) " Catus
b0b0+d() Cobo

= 42325;1-3 Cu-a

_ b opa i
- gn—Zgn—Sé’n—AL’

where

b1 = Cp, Cy = bobo + d(), dl = Cobo.

Assume that we have proved
Gurt = §E L0
where
br-1 = ck-a, Ck—1:= bobi_s + di_s,

for k >2and everyn >k + 1.

Using (101), where # is replaced by n — k — 1 into (104), we obtain

_ obko1 k1 ndkr

Cn+1 = 8tk Cuim1 Snti—2
_ (#bo <o b1 ekl Ak
- (Cn—k—Zgn—k—?)) é-w—k—lé-n—k—Z

_ #Ck-1 bobr_1+di-1 . cobx1
- é-n—k—l gn—k—Z é‘n—k—’a’

_ obk ck dy
- é‘n—k—l é‘n—l<—2§n—k—3’
where

by = ck1, Ck = bobr_y + dy_,

di-1 = coby_a,

dk = CObk—l-

(100)

(101)

(102)

(103)

(104)

(105)

(106)

(107)

From (102), (103), (106), (107), and the induction it follows that (104) and (105) hold for

every2<k<mn-1.

Page 15 of 34
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From (100) and (107), we have
by := ck_1, Cr = 2by_1 +di_1, di .= bi_1. (108)
If in (104) we replace n by n — 1, take k = n — 2, and use (108), we have

b_3 Cn-3 d_3
fn:ﬁ" fo” f_f

= (no¢_1)Pn-3 CS"_3§fif_3

by-3  by_3+dy_3 . cp_3
— non f_f n é-orl

— ngn—3 f’f—S*bn—4 é-é’rz—Z (109)

for n > 4.
From (108) it follows that

by =2by_o+br3, k=3,

from which along with the first and third equation in (107) it follows that the sequences
(bi)keny» (Ck)keny> (di)ken, are solutions to the difference equation

Zj+3 — 2Zk+1 —Zk = 0, ke I\IO' (110)
The associated characteristic polynomial to equation (110) is
Ps(\)=2*-24-1=+1)(A* -1 -1),

from which it follows that —1, A1, and A, are the characteristic zeros.
Hence, the general solution to (110) is given by

bn 2061(—1)” +O(2)\;14 +063)\.g. (111)
Now note that from (108) it follows that b; = cg =1, ¢; =2bg +dy =4, by = ¢1 = 4.
Hence, we should find the solution to equation (110) satisfying the following initial con-

ditions:

bo=2,  bi=1,  by=4, (112)

that is, to find the constants oj, j = 1,3, such that

o + 0y + a3 =2,
-1 + Olz)\l + (13)\2 = 1, (113)

o] + 052)\,% + 053)\,2 =4.

We have
21 1
‘l)ul Ao
42230 Ay—-A
o1 = = =1

Page 16 of 34
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121

‘—11A2

14221 3445 a2 22
azz = = — = N

A 275 B A—h

112

‘-ull‘

1224 /5-3 A2 23
o3 = = == = _ = ,

A 24/5 NG Ay — A

where

1 1 1
A=|-1 A Ayl=Ay—A;=-+5.

1 A A2

Using these formulas in (111), we obtain
)\n+2 _ )»’HZ
NG

Employing (114) in (109), it follows that

by=(-1)"+ = (=1)" + fur2.

g- n(() +fn é— *fn é.fnl’ n Z 1.

Using (115) in the second equation in (78), we obtain

Mn = Cn-18n-2

_1)" - _1)n-1 - - _1)n-1 - _1)" - -
_77( ) 4, 2§(§ )+ 1§’{117)(() )+ 3§(§ )i+, 24.{12

-0

- ﬂfn 1§0n _nl: ne I\IO-

(114)

(115)

(116)

Formulas (115) and (116) are the closed-form formulas for general solution to system

(78).

Corollary 5 Assume that k =0,1=1, and a € C\ {0}. Then the general solution to system

(44) is given by

(L0 (1) i fy g (R0t /) (1) 4fy (2oLt N,

x 720" Va x0—va "1 x_1-a

" Y0+/aN(—1)n-14f,_y (*o+/ay(—1)n nx,+fn
(yg f) + ‘(h) Vs m)’(—l
YO+ ANf 1 (X0+/ANf, (X_1+:/a
yof)f l(xof)f(xlf)f+1

In=~a J'0+\/_ x0+f x_1+v/a ’ n € No.
yof)fnlxofy(xlf)f

4.6 Solution to system (79)

From the equations in (79) we see that ¢, = n,,, n € N. Hence, ¢,41 = ,8y-1, 1 > 2.

From this and (90), we have

§n = §2n71C1n72
= (No¢-150Y™ (1og_1 )2
77/ fn 11 ne NO)

117)

Page 17 of 34
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and consequently

na=mychel, neN (118)

Formulas (117) and (118) are the closed-form formulas for general solution to system
(79).

Corollary 6 Assume thatk =0,1=1, and a € C\ {0}. Then the general solution to system
(45) is given by

J’O‘*’\/_ x0+/a\f, x1+f
)f(xof)flxlf)f+1

xVI:\/— J’O -Ja ’ I’IGN(),
y0+«/_ x0+y/a x1+/a
yo«/_)f(xof)f l(xl\/_)f
yo+f X0+V/ANf,_1 (¥_1+/a

y_fyofy(xofyl(xlfy+1 neN

ne J’o+\/_ x0++/a x_1+Ja ’
Gova" Gy 1 CAm@) -

4.7 Solution to system (80)
Using the first equation in (80) into the second one, we get

L =00, meN, (119)

from which it follows that the sequences ({24-1)nen, and (Z2.)uen, satisfy the difference
equation

Z,=20 2}, n>2 (120)

(equation (119) is with interlacing indices; for the notion, see, e.g., [15]).
Let

ap=3 and by=-1. (121)
Then

ao ,bo
Zp = Zn—lzn—Z

= (Zio 2Z20 B)HO Zﬁgz

apag+bg _boag
=2y Zy-3

=z, 2251 3 (122)

for n > 3, where
a) = aopdp + bo, bl = b()ﬂ(). (123)
Assume that we have proved

b
Zn = Zzlik—lznlik—z (124)



Stevi¢ Advances in Difference Equations (2019) 2019:294 Page 19 of 34

for some k € N and every n > k + 2, and that
ay = aodr-1 + bi_1, by = boay_1. (125)

Then we have

_ 0k bk
Zn =2y k1%n—k-2

_ (90 bo ay bk
- (Zn—k—ZZn—k—S) Zy—k—2

_ tloﬂk+bk boak

=Zy k-2 “n-k-3

_ SPk+1 b1

=2y k-2%n—k-3 (126)
for n > k + 3, where

Axs1 = dodx + by, b1 = boag. (127)

From (122), (123), (126), (127), and the induction it follows that (124) and (125) hold for
every k,nme Nsuchthatl <k <mn-2.
If in (124) we take k = n — 2, we get

Zy = z‘f”‘zz(b)”‘z, n=>2. (128)

From (121) and (127) we see that the sequences (ax)ren, and (by)ken, are solutions of
the following difference equation:

Wk —3Wpe1 + Wia =0, k> 2. (129)

The roots of the characteristic polynomial P,(¢) = > — 3¢ + 1 associated with equation
(129) are

_3+«/§_
=

3-+5
A3 and tzz—f

t
! 2

=3, (130)

where A; 5 are defined in (10).
The solution to equation (129) with initial values wy and w; is directly obtained from
the de Moivre formula
3 (wy — flwo)flz( — (w1 - l‘z"i’o)l‘ll<

- 131
Wk P— (131)

for k € Ny [3].
From (130) and (131), we have

(a1 — tiao)ty — (a1 — taao)t]
a, =

th—11
(a1 = Mag)r3" — (ay — Aao)ry"
Ay —Aq

= aifon — Aofon— (132)
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for every n € Ny, from which along with the second equation in (125) it follows that
by = boay-1 = bo(arfan-> — dofon-a) (133)

for n € Ny.
From (132), (133), and since ao = 3 and a; = aj + by = 8, it follows that

ay = 8f2n - 3f2n—2) ne NO; (134')
and
bn = —8f2n_2 + 3f2n—4¢ ne N(). (135)

Using formulas (134) and (135) in relation (128), we obtain

Zn = z?f2n74’3f2n—6 ZSSon—6+3f2n78 (136)

for n € Ny.
From (136) it follows that

Con1 = é'lgfz”_4_3f2”*6 —8f21-6+3fon-8
= (’70411)8]( 2n-4=fn-6 ;_‘fon—6+3fzn_s

_ 8fn-4-3fn-6 .. 8(fan-4-frn-6)-3(fan-6—f2n-8)
=M -1

_ ngfzn%%fzms _8]1(271—5*3](27177’ ne N, (137)

and
8f21-4-3f2n-6 »—8f2n-6+3f2n-
8fan-4-3f2n-6 . ~8fan_6+3fon-

8(2f2n-4~f21-6)-3(2f2n-6~fon-8) _8f2an-4—3f2n-6
o n-y

é-()8f2n—3’3f2n—5 n?j;Zn—‘L*'?’on—é, ne NO' (138)

Further, we have

8fk — 3fx-2 = 5k + 3fk = fe-2) = 5 + 3k
=2 + 3(fx + fi-1) = 2fx + 3fkn1
= 2(fk + fas1) + fes1 = 2k + fnr
= firz + (o + fir) = frorz + fras
= ficra- (139)

By using (139) in (137) and (138), we obtain

Cona =P, meN,, (140)
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f2n+1 2n N 141
§2n {0 ~1 n < No. ( )

Using (140) and (141) in the relation 7, = {,+1/¢s-1, we obtain

Non-1 = SonlCon—n = fz”“ - 177/2" P2 fz” HCZ{H, nel, (142)

(the last equality holds also for # = 0) and
N2n = Sans1/G2n-1 = U(f)zmz_fz"{{zl"”_fz”*l = 7762””{{2{’, n € Ny. (143)
Formulas (140)—(143) are the closed-form formulas for general solution to system (80).

Corollary 7 Assume that k =0,1=1, and a € C\ {0}. Then the general solution to system
(46) is given by

J’O*«/_)fzn X 1+f)f2n 14+1

_ yo Va
*2n-1 _\/— }’0+\/—)f2 X_ 1+f)f2n 1 — 1’ HGNO’
J’o -va
x0+{_)f2n+1(y 1+\/—)f2n + 1
X0
xz”_ﬁ xo+f)f2n+1(3’ 1+«/_)f2 _1’ n € No,
xo— a _1-+/a
(Bl yon (LYt 4 ]
Yon-1 :\/l'_l x0+\/7 y1+va +\/> ) VIGNO,
2 Yfon (L1 )fzn 1-1
xo xo—v/a ;V 1-va
(igi\/;)fbﬁ-l(x iJr%)on + 1
Yon = Ja PN , ne No.
Yo+ + " —
(yo_ SV () -1

4.8 Solution to system (81)
This system is obtained from system (76) by interchanging letters ¢ and n. Hence, its gen-

eral solution is given by

Nn = m’,”“nf”l, n>-1, (144)

Con = Sy %, nmeN,, (145)
and

Comer = L2, = -1 (146)

Corollary 8 Assume that k=0,1=1, and a € C\ {0}. Then the general solution to system
(47) is given by

xo+f y0+«/— ne1—1 y1+«/— .
xza(xofyof)&l( )f2+1
2 (%0*—:;)(3’0*«/_),‘2”” 1(}’ 1+f);"2n_

*0 Yo—va

) I’IEN(),

Page 21 of 34



Stevi¢ Advances in Difference Equations (2019) 2019:294

(x,1+\/ﬁ)(y0+\/§ )f2n+2 (J’—l“fﬁ )f2n+]_1 +1

_ x_1-va’ yo—va y-1-va _
Xon+l = ﬁ(x’l+ﬁ)(yo+ﬁy2"+2(y71+ﬁ)f2n+1—l ~ 1) n>-1,
x_1—v/a’ yo—va y-1-va
YO+HVaANf 1 (V=1 ENS,
y =ﬁ(yo—ﬁy l(y—l—\/é_i)f +1 n>-_1
§ RNV RNV
yo—v/a y-1-va

4.9 Solution to system (82)

By using the second equation in (82) into the first one, we get

Cn=8Cn-16n-38n-a, N> 3.

(147)

To solve equation (147) we use here a method that we have used in some of our previous

papers (see, e.g., [37, 41]).
Let

ap =1, by =0, =1, dy=1.
Then equation (147) can be written as follows:
Tn = 0000005000, n> 3,
From (149), we get

_ a0 +bo .co ,do

Cn = gn_lé‘n—Zg-n—Bgn—‘L
_ ay by .co .do \40 by .co ..do
= (gn—2§n73{n—4§n—5) Sn-28n-3%n-4

_ gapag+bg . boag+co . coag+do .. doag
- gn—Z Cn—B Cn—4 CV[—S

= {:_12;“23924{:_15
for n > 4, where
a) = dodg + bo, ]91 = boﬂo + Co, C1 :=Codp + d(),
Assume that we have proved
T S RN S
for some k € N and every n > k + 3, and that

ay = apai-1 + bi-1, by = boaj_1 + cx-1,

Ck = Codg-1 + di-1, di = doay_1.

dl = d()ﬂo.

(148)

(149)

(150)

(151)

(152)

(153)

Page 22 of 34



Stevi¢ Advances in Difference Equations (2019) 2019:294 Page 23 of 34

Then we have

_ Sak by ck dy
Cn = é‘n—k—léﬂn—k—Zé‘n—k—ﬁlgrl—k—él
_ (r% 0 o Tk
- (é‘n—k—Z é-n—k—Sgn—k—él éﬂn—k—5) Cn k-2 é‘n k— 3§n k—4

_ paoag+by Jboagrcg coar+dy doay
= Sn-k-2 é‘n—k—B é‘n—k—4 é‘n—k—S

_ = %k+1 bjs1 Ck+1 dis1
- n—k—2§n—k—3 é-n—k—4§n—k—5 (154')

for n > k + 4, where
Axs1 = aody + by, by = boay + cx, Ck+1 1= Colk + dy, die1 = doag. (155)

From (150), (151), (154), (155), and the induction it follows that (152) and (153) hold for
every k,n e Nsuchthat1 <k <m-3.
From (148) and (155), we have

k+1 '= Ak + Ok, k+l = Chky k+l = Ak + G, k+l '= Ak
drs1:=arp+b bri:=c¢ Cre1i=ag+d dis1:=a (156)

If in (152) we take k = n — 3, we get
dn 3

é—n_é-“n 3§-bn 3;—@1 3

(;077 17]()) - 3(§0n l)bn 3§Cn 3 d,, 3

_g- n—3{ﬂn—3+bn—3+cn—3 ap-3+by-3 a3
55— 0

N1 Mo
_ sp— 4§-ﬂn 1 “n 2 an 3 (157)

for n > 3.
Using (157) into the second equation in (82), we obtain

Ap-5 o Ap-2  Ap-3 _ Ap—4 86 «Ay-3 _ Ap-4 _Ay_5
Mn = Cn18n2 =00 80" 2 M0 6" T "

_ #p-5%tap6 +Ap-2+4p-3 Adp-3+tdp—4 An-4+dy_| 5
=¢ %o -1 Mo (158)

From (153) we see that the sequences (ax)kenys (Pk)kenys (Ck)keny, and (di)ken, are solu-
tions to the following difference equation:

Wi — Wil — Wiz — Wia =0, k>4, (159)
The roots of the characteristic polynomial
Pi)=t" - —t-1=(-t-1)(£ +1)
associated with equation (159) are

ti=i, t=—i, f=A, =k (160)
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The general solution to equation (159) is
wi = a1i* + ap (=i + a3k + gk, keN,. (161)

From (148) and (156) with k = 0,1, -2, -3, by some simple calculations, it follows that
(see, e.g., [36, 39])
a_1 = 1, b_l = 0, Cc_1= 0, d_l = 0,
a_p = 0, b,z = 1, C_p= 0, d,z = 0,
(162)
a_3 = 0, ]9,3 = 0, C_3= 1, d,3 = 0,

a_y4 = 0, b_4 = 0, C_4 = 0, d_4 =1.
From (148), (162), and Lemma 1, it follows that

in+4 (_l')n+4 )"}il+4 )\'g+4

an=7~1t 7= 1t5 + = , n>—4. (163)
P4(l) P4(_l) P4()\1) P4()\2)

From this and since

P(i) = (i — (=) (i = )i — A2) = 2(1 - 2i),

Pl(=i) = (=i — i) (=i — Ay ) (=i = Ag) = 2(1 + 2i),

Py(h1) = (1 = ) (A1 = (=0)) (A1 = 22) = VBA1 (A1 = A2) = 5,
P() = (ko = §) (A2 = (=0)) (A2 = 1) = VBAo (A1 = A2) = 5ha,

and after some calculation, we have

Y (1 + 20)" . (1 =2i)(=i)" N A3 s
" 10 10 5
 Re((1+20)i") + A" + 25+
- 5

. n>-4. (164)

Using (164) in (157), we obtain
Re((1+20)")+2 L oali=l - Re((1+20~1) 2214240 0+2
5 5
=8, o

Re((1420)i"2) 4L+l Re((1420)i"3) 42142
1t )

X1 ° o g , n>-1 (165)

By some simple calculation, we have

R 3 N\ An+4 An+4
. CLDL ); L% s s (166)

Using (166) into (158), we have
Re((3+i)i”'1)+){”l+kg’1 Re((3+i)i”_2)+k’i’+2+kg+2
5 5
Mn=¢ 4 &

Re((3+)i"3) 421+ 1L Re((34+0)if) 421 421
1tk 1%

X7 5 o > . (167)
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Corollary 9 Assume that k =0,1=1, and a € C\ {0}. Then the general solution to system
(48) is given by

(3 +v/a )a,,,4(x0+«/ﬁ yan-1 (=L +v/a )an-2 (y0+«/5 )an-3 4 1

_ x_1-va x0-va y-1-va yo—va _
*n = ﬁ(x-1+ﬁ)an,4(xo+ﬁ)an,1(3'71+«/5)a,,,2(y0+\/5)an,3 _ 1’ nz-l,
x_1-va x0—v/a y-1-va yo—-va
(x-1+ﬁ)an_5(x0+«/71)En,z(y71+\/5)7in,3(3'0+ﬁ)2,,,4 i1
Yy = Ja x-1-va x0—va y-1-va Yo—va . on> -l
(2 +/a Yan-s (xo+«/5)a,,,2 (2L +«/ﬁ)a,,,3 (y0+«/5)ﬁ,,,4 _1
x_1-va x0—va y-1-va yo—va

where the sequence a,, is given by (164), while the sequence d,, := a, + a,_; is given by (166).

4.10 Solution to system (83)

By using the first equation in (83) into the second one, we get

G =0l lnar =3 (168)
Let
ag = 2, b() =-1, Co = 0, d() =1. (169)

Then equation (168) can be written as follows:
ag by .co .do
i =8,"184-980 380y N =3 (170)

Similar to the previous case it is obtained that (152) and (153) hold for every k,n € N
such that 1 <k <#n - 3. From (153) and (169), we have

ar = 2ai_1 + bry, br = —ai_1 + k1, Cr = di_1, di = ar. (171)
If in (152) we take k = n — 3 and use (171), we get

an-3 o by_3 . cp_3 . dy_3
fnzgzn Cln Con Lf

3 d
= (Gon-110)“3 (Gon-1)3 ¢ 2 ¢ 5

dp-3

= C—l

_g“n—llé-“n—l_“n—Z aAp-2—Aap-3, Ap-3
—5-1 0

n-1 Mo (172)

é- ay-3+bp-3+cp-3 an-3+by-3_an-3
0

n_1 No

for n> 2.

Using (172) into the relation 1, = {,12/¢,+1, we obtain

_ ap-2—0p-3 . Apsl—2ap+ap-1 an—2ap-1+ap-2 Ay-1—An-2
M =81 o .

n Mo (173)

From (153) and (169) we see that the sequences (ai)ken,, (bx)keny» (Ck)keng> and (di)ken,
are solutions to the following difference equation:

Wi —2Wie1 + Wgo — W4 =0, k>4. (174)
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The roots of the characteristic polynomial
Pu)=t* -2+ -1=(-t-1)( -£+1)

associated with the linear difference equation (174) are

1+id/3 1-i/3
t = 21«/_ b= 2“/— t3 = A1, ty = Ao (175)

The general solution to equation (174) has the following form:
Wi = O[ltll( + Olzlflg + Olg)x]{ + Ol4)\.l2(, ke N(). (176)
From (153) and (176) with k = 0,—1,-2, -3, by some simple calculations, it follows that

the equalities in (162) hold.
From (162), (176), and Lemma 1, it follows that

t;1'1+4 tg+4 )\;1+4 )Lgl+4 ) (177)

a, = + + + , >
"UPt)  Pyty)  Py(h)  Py(ha)

From this and since

Pi(t1) = (t1 — t2)(t1 — M) (1 — Aa) = —24/3i,
P(ts) = (ts — 1)ty — A1) (ts — A2) = 24/3i,
Py(M1) = (1 — 1) (A1 — £2) (k1 — A) = 2001 — Aa) = 24/5,

Py(hg) = (ko = t1) (Mg — £2) (g — A1) = 2(Aa — A1) = —2+/5,
and after some calculation, we have

i(tiq+4 _ tg+4) )\;14+4 _ }\§+4

a, = +
" 24/3 2(A1 — A2)
1 -2
=———sin (n-2)7 +fn+4, n>—4. (178)
V3 3 2
From (178), we have

1 -2 1 -3
Ay -y g = ——— sin (I’l )7[ +f;1+4 . (I’l )7T _fn+3

+ sin
V3 3 2 /3 3 2

1 2n -5)7 jﬁ

=—ﬁcosT+ 5 (179)
and
ap—20n1+ay_2 = LCOSM @+ico M—f"—“
V3 6 2 /3 6 2
=—i sin 2% +J2. (180)



Stevi¢ Advances in Difference Equations (2019) 2019:294

Using (178) and (179) into (172) and (173), we obtain

1 onx fn @n=-7)7  fusrl (2n- 9)7r fn _ 1 (n 5)71' Juxl

1 1
— SNy g eos el — = cos ﬁsm + 3L
En=2¢_ o /) 770 ’ (181)
and
1 @n-9)7 _ fn 1 o (D furl
=5 008 g~ sin S g
NMn=1¢84 o
—L in o +/% —L cos <2”g7)” +f"£'1
< ny ™ ' (182)

which are closed-form formulas for solutions to system (83).

Corollary 10 Assume thatk =0,1=1,and a € C\ {0}. Then the general solution to system
(49) is given by

x_1+/a ay- xo+/a Aay_ y-1+/a Aay_ J/0+x/— ay—
s e s 1
(s () s (L2 M s(W Jou-s -
*_1+va\Aa,_3 (%0+v/a\A2a,_ y1+«/— A2a,_5 (Yot \Aa,_
a(xlf)ag(xof)al(,mf)az( )a2+1
(= 1+f)Au,, 3(xo+f)A2an (2= 1*\/_)A2an 2()’0*«/_)Au,, 211

x_1-+/a x0—v/a y-1-va yo—va

In =

for n > —1, where the sequence a,, is given by (178), Aa,,_1 by (179), and A%a,_, by (180).

4.11 Solution to system (84)
From the equations in (84) we see that ¢, = n,,, n € N. Hence, ;41 = £,¢-1, 1 > 2.

From this, (90) where ¢_; and ¢ are replaced by ¢; and ¢, respectively and (8), we have
that

;n — ;.Zn—l ;{n—Z
= (Gon-110)" 1 (gon_1 )2
=& n’fﬁ%’“’l, neN, (183)

and consequently
na =G, neN. (184)

It is easy to see that formula (184) holds also for # = 0.

Formulas (183) and (184) are the closed-form formulas for general solution to system
(84).

Corollary 11 Assume thatk =0,1=1,and a € C\ {0}. Then the general solution to system
(50) is given by

x0+f YO+VaANf,_1 (V=14
- Ja Y G G +1

nel,
e G (o -1
xo+f)f J’0+\/_)fn1 y_1+f)f +1
N ESTEETEE e
xo f)f (yo f)f ( )f
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4.12 Solution to system (85)
This system is obtained from system (75) by interchanging letters ¢ and 7. Hence, its so-
lution is given by

ln= éonﬁ”*"lnf’p n € Ny, (185)

and

=y, > -l (186)

Formulas (185) and (186) are the closed-form formulas for general solution to system
(85).

Corollary 12 Assume thatk =0,1 =1, and a € C\ {0}. Then the general solution to system
(51) is given by

x0+\/_ y0+f - 1 y-1+/a
a(xo—f yof)}rl y1f)f+1
xo+«/— yo+f a-1(Y=1tVayg, 1]
Comva) Gomva 1 Gy - 1

YO+VaNfu 1 (V=14
ayof)fl(ylf)f+l

In =
y0+f e ()= 1+f
J’O [)f 1( )f

Xy = n € Ny,

4.13 Solution to system (86)
By using the second equation in (86) into the first one, we get

Cn= Cw—2é—nz_3§n—4’ n>3. (187)
Let
bo =1, Co = 2, d() =1, €y = 0. (188)

Then equation (188) can be written as follows:

En = Eal sty n= 3. (189)

Similar to the case of equation (78) it is obtained that

b d,
gn = gnfk,zfyflik,ggnfk,z;gﬁk% (190)

for n > k + 4, and that
by = ci-1, ¢k = bobr_1 + dia, di = cobi-1 + ex, ex = dobi_1 (191)

for k e N.
Using (188) in (191), we have

by = ¢k, ck = br_1 + di-1, di = 2bj_1 + k-1, ex = br_1. (192)
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If in (190) we take k = n — 4 and calculate ¢; and &, we get

by 4 Cpa dy a4, ey_a
Cn = (2” 51” gon é—_}f
dyg

= (Gog_1mo)4 (non_) ¢ ¢ ot

b, —4+€y_4 b, ,4+d —4_Cp—4 b —4+Cy—4
:f,f n g—on n nnl non n

bpatby s o bpa bns by z+by
=gy (193)

for n > 4.

Using (193) into the second equation in (86) and employing (192), we obtain

byz  by3+bpa bpa+bys by
M =ECn-18n—2 =01 350 " 47771 " 5770 % (194)

From (192) we see that the sequences (bi)keny (Ci)kenys (di)ken,, and (ex)ken, are solu-

tions to the following difference equation:
Wk — Wiy — 2Wi_3 — Wi =0, k> 4. (195)
From (192) for k =0,-1,-2,-3,—4, it is obtained b_; =0,¢c_1 =1,d_1=2,e_1 =1,

b,z = 1, C_ o= 0, d,2 = O, e_o = 0,

b_g = 0, C_3= 1, d_g =0, e_3 = 0,

(196)
b_4 =0, C_y4 = 0, d_4 =1, e_y = 0,
b_5 =0, C_5= 0, d_s =0, é_5 = 1.
The roots of the characteristic polynomial
Pt)=t - -2t-1=(-t-1)(F+t+1)
associated with equation (195) are
“1+iV/3 ~1-iJ3
t = 71\/_, i = 7l\/_, t3 =11, ty = Aa. (197)
2 2
The general solution to equation (195) is
Wi = O[ltll( + O(2t12< + 013)\]1( + 054)\.15, ke No. (198)
From (196), (198), and Lemma 1, it follows that
tn+5 tn+5 )\'n+5 )\n+5
"= 2 L 2 n>-5. (199)

= + + + , >
Py(t1)  Py(ta)  Py(n1)  Py(ho)
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From this and since

P(t1) = (t1 — t2)(t1 — A1) (1 — A9) = 3 — in/3 = 24/3ity,
Py(ty) = (t2 — t1)(t2 = M1)(t2 = h2) = 3+ in/3 = =24/3ity,
P,(A1) = (A = 1) (A1 — £2) (A1 — Aa) = 5+ 3v/5 = 24/512,
Py(Ag) = (kg — 1) (Ao — £2) (kg — A1) = 5 — 33/5 = =2/522,

and after some calculation, we have

i(thrG _ t¥+6) )‘;lﬂ?’ _ )\5&3

b, = +
g 2./3 2(A1 — X2)
1 4
=——sinﬂ+@, n>—4. (200)
V3 3 2
From (200), we have
~ 1 4 1 4( 1
b,:=b,+ b, - sin X +f"+3 ——sinu Ju2
J3 3 2 3 3 2
1 2(2 1)1
= —=sin 7( " S (201)
V3 3 2
for n > -3.

Using (200) and (201) into (193) and (194), we obtain

é- g- n-a+by_5 é-(i’n—Z nb;i—S nbn—S +by-4
n — 5- —

1 o 22n-97 _ fi 1 4n-2n  fy
~ ﬁsm%Jr% -3 sin e
=& %o
_ L gn n33)7‘r fn LB sin 2(2n3—7)n +f,q%.]
X N, Mo , (202)
and
by_3 . by_3+by_a by_4+by 5 by o
M=8 76" " 2 T "
1o 4m=3) fu 1o 2@n-7) | fuel
B —ﬁsm%+% 3 sin e ]
=&, o
% sin 2(2n3—9)71 +f% _% sin 4(n§2)rr +fn2+1
X1 No ) (203)

which are closed-form formulas for solutions to system (86).

Corollary 13 Assume thatk =0,1=1, and a € C\ {0}. Then the general solution to system
(52) is given by

(= 1+«/—)hn 4(x0+«/5)bn 2(L= 1+f)by, 3(}/0+f)by, 341

¥_1-v/a xo-+/a y-1-v/a yo—va
Xp = AJa—= , neN,
K1+ AND, 4 (0N ANb, o (Y=1tVA D, o (Y0tVAND,
@ G G G -1
K14/ \b,_3 (%0+/A Dy, 3 ( Y=1+/A\by,_g ( YO+/E Vb,
)’n=\/_(x 1- f) 3(xo f) 3(3' 1—ﬁ) 4(yo—ﬁ) P+l neN,

(P P G P e 1

where the sequence by, is given by (200), while 75,, is given by (201).
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4.14 Solution to system (87)
This system is obtained from system (82) by interchanging letters ¢ and 7. Hence, its so-
lution is given by

Re((3+i)i"~ 1)+A'11 1+A§' 1 Re((3+i)i""~ 2)+)L”+2 g+2
— 5 5
=1 Mo
Re((3+i)i”_3)+)»’i’+l+)ug+l Re((3+i)i”)+ki'+hg

X ° o ° ’ (204)

and

Re(1+20))+287 142871 Re((1+20)"~1)+24+2401+2
5

M =14 ’ o
Re((1+20)"2) I Ll Re((14203) 4221424
X ¢ > %o 5 (205)
for n > 2.
Formulas (204) and (205) present the closed-form formulas for general solution to sys-
tem (87).

Corollary 14 Assume thatk =0,1 =1, and a € C\ {0}. Then the general solution to system
(53) is given by

(3’71+«/5)E,,,5(y0+f)an 2 (% 1+«/_)an g,(onr«/—)a,1 441

x y_1-va yo—/a x-_1-va x0-v/a n>_1
(oL G s (AL oo G s =1
VY 1+VaNa, 4 (Y0 ANa, 1 (X1+VE \a,_y (%0t \a,,_

9 _f(y-1— ﬂ) 4(yo f) 1(x-1—ﬁ) Z(xo—ﬁ) P+l n>-1,

y-1+/a Ay Yo+/a ay_ x_1+/a Ay xo++/a an_3 _
(;Vl \/_) 4(310—«/3) l(x—l—ﬁ Z(xo—ﬁ) ’ 1

where the sequence a,, is given by (164), while the sequence d,, := a, + a,_; is given by (166).
4.15 Solution to system (88)

This system is obtained from system (78) by interchanging letters ¢ and 7. Hence, its so-
lution is given by

p = gV I OV e s g (206)
and

Co =t (207)
for n € N.

Corollary 15 Assume thatk =0,1=1,and a € C\ {0}. Then the general solution to system
(54) is given by

xo+f o1 (YONa NS, (y-1+/a
2 l(yo «/_)f(yl «/_)f +1

_ xo -Va
xn = a (o2, l(yo+f)f (y-1+f)f 1 n € No,
xo -Ja yo—va’ ‘y-1-Ja
(io+~/’) - 1+fn_1(yo+_«/’) - +fn(M)fn +1
PR n>_1

In = (z()h?) —1ymLlyf, l(y0+f) +fn(y 1+f)f
0
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4.16 Solution to system (89)
This system of difference equations is obtained from system (74) by interchanging letters
¢ and n only. Hence, its solution is given by

na=mpt, = -1, (208)

and consequently

G =y (209)

forneN.
Formulas (208) and (209) are the closed-form formulas for general solution to system
(89).

Corollary 16 Assumethatk =0,1=1,and a € C\ {0}. Then the general solution to system
(55) is given by

YOHVANf 1 (V=144
_ (ygx/_)fl(yi«/—)qu
*n = a (rvayy, l(y-1+f)f
yo —-Ja
YO+ ANf 1 (V-1+/a
(;Vo— ﬂ)f 1(y1 x/_)f +1

In =
J’o+f - 1+\/—
(L (L,

nel,

Remark 2 As we have seen in Sect. 2, by using the changes of variables (13) the systems in
(12) are transformed to some two-dimensional linear systems of difference equations with
constant coefficients, which are further transformed to some linear difference equations
with constant coefficients, which are solvable. Hence, the systems in (11) when a = 0 are
easier to solve than the ones in the case a # 0. Bearing in mind the fact that the case k =
0, / = 1 was essentially treated in [62] and [63] and that the main aim of the paper is to
present the above method for solving the systems for the case a # 0, we left the case to the

interested reader as an exercise.

Remark 3 The case k=1, [ =2, is treated in [70]. The case k = 0, [ = 2, can be also treated
by using the method presented here.
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