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Abstract
We show that the following class of two-dimensional hyperbolic-cotangent-type
systems of difference equations

xn+1 =
un–kvn–l + a

un–k + vn–l
, yn+1 =

wn–ksn–l + a

wn–k + sn–l
, n ∈N0,

where k, l ∈ N0, a ∈ C, u–j ,w–j ∈C, j = 1, k, v–j′ , s–j′ , j′ = 1, l, and each of the sequences
un, vn, wn, sn is equal to xn or yn, is theoretically solvable. When k = 0 and l = 1, we
show that the systems are practically solvable by presenting closed-form formulas for
their solutions. To do this, we employ a constructive method, which is possible to use
on the complex domain, presenting in this way a new and elegant solution to the
problem in this case, and giving a hint how such type of systems can be solved.

MSC: 39A45

Keywords: System of difference equations; Product-type system; General solution;
Closed-form formula

1 Introduction
Let N = {1, 2, 3, . . .}, N0 = N∪ {0}, Z be the set of whole numbers, R be the set of reals, and
C of complex numbers. If we write j = n1, n2, where n1, n2 ∈ Z, it means that j takes the
whole numbers such that n1 ≤ j ≤ n2.

1.1 A little history and some useful classical results
Motivated by some concrete problems from combinatorics, probability, economics, and
other branches of mathematics and science, researchers of the eighteenth century started
investigating recurrence relations (the notion coined in [1]), known also as difference
equations. Natural connection between recurrence relations and difference equations has
been noticed long time ago, for example, in [2]. One of the basic natural problems is to
find some (nonrecursive) expressions for solutions to difference equations and systems of
difference equations in as much as simpler forms (the problem is to try to find formulas
for solutions to the equations and systems in closed form).
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Closed-form formulas for solutions to homogeneous linear difference equations with
constant coefficients, that is, for the equations of the form

xn = a1xn–1 + a2xn–2 + · · · + akxn–k , n ∈N0, (1)

where aj ∈ R (or C), j = 1, k, ak �= 0, for small values of k, can be found in old books [3, 4],
whereas a pretty complete theory on the equations was established some time later (see,
e.g., [5–7]).

It was shown that the general solution to difference equation (1) has the following form:

xn =
m∑

j=1

Qj(n)λn
j , (2)

where λj, j = 1, m, are the roots of the polynomial

Pk(λ) = λk – a1λ
k–1 – a2λ

k–2 – · · · – ak–1λ – ak , (3)

associated with equation (1) (characteristic polynomial), whereas Qj(n), j = 1, m, are poly-
nomials of degrees dj = rj – 1, j = 1, m, respectively, where rj is the multiplicity of the root
λj.

Bearing in mind the literature from the mid of the previous century (see, for example,
[8–12]), it seems there had not been much novelties in solvability theory of difference
equations for a long time.

1.2 On recent topics of interest and general motivations
Recent progress in computer science has had some impact on the research area. It has
increased interest in recurrent relations; on the other hand, it has caused also some, a bit
problematic, non-theoretical ways for investigating the relations. Namely, many recent
papers on solvability of difference equations and systems consider some equations and
systems which are close cousins to well-known solvable ones. Some comments related
to it, as well as theoretical explanations, can be found, for example, in [13–18]. We have
noticed the problem yet in 2004 on the example of the equation

xn+2 =
xn

cxn+1xn + d
, n ∈N0. (4)

Nevertheless, it motivated some further investigations on extensions of equation (4) (see,
e.g., [19–24]; see also [25] which treats equation (4) in another way).

The systems of difference equations studied in some of these papers are usually sym-
metric, that is, of the following form:

un = f (un–s1 , . . . , un–sk , vn–t1 , . . . , vn–tl ),

vn = f (vn–s1 , . . . , vn–sk , un–t1 , . . . , un–tl ),

for n ∈N0, or close to symmetric ones, which is an area that attracted some attention since
the end of the previous century (see, e.g., [26–42]). In some of these papers invariants, a
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topic close to solvability, were studied (see papers [27–29, 31, 33, 34] by Papaschinopoulos
and Schinas). For a recent, quite unexpected, use of invariants in solvability of a class of
difference equations, see [43].

As we have already mentioned, difference equations, as well as systems of difference
equations, appear in many practical problems as discrete models. Many of them are solv-
able (see, for example, some of them in [2, 5, 8, 9, 11, 44–55]).

1.3 Previous investigations leading to the one in this paper
One of the difference equations whose special cases attracted some attention in the last
few decades is the following:

xn+1 =
xn–kxn–l + a
xn–k + xn–l

, n ∈N0, (5)

where k, l ∈N0, a ∈R.
Employing a result from [56], in [57] we proved a global stability result for positive so-

lutions to a generalization of equation (5), showing that a previously obtained result in
the case k = 0, l = 1 is essentially known. Motivated by the same result from [56], Pa-
paschinopoulos and Schinas in [58] presented a related global stability result for systems
of difference equations, which was improved in [59]. Equation (5) with a �= 0 is easily re-
duced to the case a = 1, which looks like a familiar formula for trigonometric functions.
That difference equations obtained by using known trigonometric relations could be solv-
able has been known for a long time (see, e.g., [6]). It has been our impression, for some
time, that the solvability of equation (5) in the case k = 0, l = 1, had been known for a long
time and that it could be found easily in the literature. The fact that we could not find an
expected natural solution to the problem in the literature, and that we have only found a
recent solution to the problem of different type [60], motivated us to present the natural
solution recently in [61].

Following one of the usual ways for generalizing results on scalar difference equations
to close-to-symmetric systems of difference equations, quite recently in [62] and [63] we
have considered solvability problem for the following systems of difference equations:

xn+1 =
unvn–1 + a
un + vn–1

, yn+1 =
wnsn–1 + a
wn + sn–1

, n ∈N0, (6)

where a and uj, vj, wj, sj, j = –1, 0, are complex numbers, whereas un, vn, wn, sn are equal to
xn or yn. In fact, our original aim in [62] and [63] was essentially to study real solutions to
some of the systems in (6), which is the main reason why some methods for dealing with
real functions have been predominately used therein, while the solvability results for the
case of complex parameters and initial values have been obtained indirectly.

The motivation for the study of the systems in (6) stemmed from the systems in our
previous papers [20] and [64], where the solvability of the following systems:

xn+1 =
un

1 + vn
, yn+1 =

wn

1 + sn
, n ∈N0, (7)

where un, vn, wn, sn are some of the sequences xn or yn, was studied. We have shown
an interesting result therein, namely that fourteen systems out of these sixteen ones are
solvable and presented closed-form formulas for their solutions. It is also interesting to
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mention that our motivation for the study of the systems in (7) stemmed from our previous
investigations on the long-term behavior of solutions to the general difference equation

xn = f (xn–1, xn–2, . . . , xn–k), n ∈N0,

where the function f satisfies the following condition: f (t, t, . . . , t) ∼ t, as t → 0. When
f (t) = t

1+bt , we have f (t) ∼ t, as t → 0, and a simple solvable difference equation is obtained
(see, e.g, [6, 65]), which suggested us that some of the systems in (7) could be also solvable.

Bearing in mind that there is a method for solving equation (5) which directly deals
with the case of complex parameters and initial values [60], it is a natural problem to try
to solve some of the corresponding close-to-symmetric systems of difference equations in
a related way.

1.4 The Fibonacci sequence
Here we say a few words on the sequence that will be frequently used in the rest of the
paper.

The sequence satisfying the following recurrence relation:

an+2 = an+1 + an, n ∈ N, (8)

and such that a1 = a2 = 1, is called the Fibonacci sequence (see, e.g., [45, 48, 66, 67]). Here,
as usual, we denote the sequence as fn.

From the de Moivre formula for solutions to linear homogeneous difference equations
with constant coefficients [3, 4], we have

fn =
λn

1 – λn
2

λ1 – λ2
=

( 1+
√

5
2 )n – ( 1–

√
5

2 )n
√

5
, n ∈N, (9)

where

λ1,2 =
1 ± √

5
2

. (10)

It should be easily checked that formula (9) holds for every n ∈ Z (see, e.g., [66]).

1.5 Aim of this paper, types of solvabilities, and main methods
One of our aims here is to show that the following class of nonlinear two-dimensional
systems of difference equations:

xn+1 =
un–kvn–l + a
un–k + vn–l

, yn+1 =
wn–ksn–l + a
wn–k + sn–l

, n ∈N0, (11)

where k, l ∈ N0, a, u–j, w–j, j = 1, k, v–j′ , s–j′ , j′ = 1, l, are complex numbers, and each of the
sequences un, vn, wn, sn is equal to xn or yn, is theoretically solvable.

As we have already mentioned, to each difference equation of the form in (1) is associ-
ated the polynomial (3). It is known that if the order of a polynomial is greater or equal
to five, it need not be solvable by radicals [68]. Since general solution to equation (1) is
given by formula (2), in this case we might not be able to find all the roots of polynomial
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(3) by radicals. Hence, in such cases we say that equation (1) is theoretically solvable. If the
order is strictly less than five, then by using known formulas/methods for solving polyno-
mials by radicals we can find all the roots, from which along with formula (2) we have an
explicit closed-form formula for solutions to equation (1), and we say that the equation
is practically solvable in this case. Hence, for each difference equation or system which
can be solved by using equation (1) with order greater or equal to five, we say that it is
theoretically solvable, whereas if the order of the polynomial is strictly less than five, we
say that such an equation or system is practically solvable. Note that if a polynomial of
order strictly bigger than four is of a specific type, then it can be solvable by radicals, so
in such special cases a specific equation or system can be practically solvable. Hence, for
theoretical solvability it is important that the polynomial (3) has general form.

Since a system of difference equations can have initial values for which solutions are not
defined, but they usually do not affect the solvability, we regard that a system of difference
equations is solvable in closed form if there is a finite number of closed-form formulas from
which any well-defined solution to the system can be obtained.

As a concrete example, we study here system (11) in the case k = 0 and l = 1 in detail,
and show that it is practically solvable, presenting a new constructive and straightforward
solution to the solvability problem unlike the solutions given in [62] and [63].

To do this, the methods from papers on product-type difference equations and systems
of difference equations will be considerably used (see, e.g., [35–42, 69] and the references
therein).

2 Case a = 0
This section is devoted to studying solvability of system (11) in the case a = 0. In this case
system (11) becomes

xn+1 =
un–kvn–l

un–k + vn–l
, yn+1 =

wn–ksn–l

wn–k + sn–l
, n ∈N0, (12)

where k, l ∈N0.
By using the changes of variables

x̂n =
1
xn

, ŷn =
1
yn

, ûn =
1

un
, v̂n =

1
vn

, ŵn =
1

wn
, ŝn =

1
sn

, (13)

system (12) can be written in the following form:

x̂n+1 = ûn–k + v̂n–l, ŷn+1 = ŵn–k + ŝn–l, n ∈ N0. (14)

Depending on which values sequences un, vn, wn, sn have (xn or yn), there are sixteen
possible systems. They are the following:

x̂n+1 = x̂n–k + x̂n–l, ŷn+1 = x̂n–k + x̂n–l; (15)

x̂n+1 = x̂n–k + x̂n–l, ŷn+1 = ŷn–k + x̂n–l; (16)

x̂n+1 = x̂n–k + x̂n–l, ŷn+1 = x̂n–k + ŷn–l; (17)

x̂n+1 = x̂n–k + x̂n–l, ŷn+1 = ŷn–k + ŷn–l; (18)
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x̂n+1 = x̂n–k + ŷn–l, ŷn+1 = x̂n–k + x̂n–l; (19)

x̂n+1 = x̂n–k + ŷn–l, ŷn+1 = ŷn–k + x̂n–l; (20)

x̂n+1 = x̂n–k + ŷn–l, ŷn+1 = x̂n–k + ŷn–l; (21)

x̂n+1 = x̂n–k + ŷn–l, ŷn+1 = ŷn–k + ŷn–l; (22)

x̂n+1 = ŷn–k + x̂n–l, ŷn+1 = x̂n–k + x̂n–l; (23)

x̂n+1 = ŷn–k + x̂n–l, ŷn+1 = ŷn–k + x̂n–l; (24)

x̂n+1 = ŷn–k + x̂n–l, ŷn+1 = x̂n–k + ŷn–l; (25)

x̂n+1 = ŷn–k + x̂n–l, ŷn+1 = ŷn–k + ŷn–l; (26)

x̂n+1 = ŷn–k + ŷn–l, ŷn+1 = x̂n–k + x̂n–l; (27)

x̂n+1 = ŷn–k + ŷn–l, ŷn+1 = ŷn–k + x̂n–l; (28)

x̂n+1 = ŷn–k + ŷn–l, ŷn+1 = x̂n–k + ŷn–l; (29)

x̂n+1 = ŷn–k + ŷn–l, ŷn+1 = ŷn–k + ŷn–l (30)

for n ∈N0.
Our first theorem deals with the theoretical solvability of system (11) in the case a = 0,

that is, of system (12).

Theorem 1 Assume that a = 0. Then system (11) is (theoretically) solvable.

Proof To do this, we need to prove the theoretical solvability of systems (15)–(30).
Case 1, system (15). The first equation in system (15) is linear with constant coefficients,

so it is theoretically solvable. Since from (15) it immediately follows that yn = xn, n ∈ N,
the solvability of the system follows.

Case 2, system (16). Recall that the first equation in system (16) is solvable. Moreover, we
know that its general solution has the form in (2), where λj, j = 1, m, are the characteristic
roots of the characteristic polynomial associated with the equation, while Qj, j = 1, m, are
some polynomials of degrees dj = rj – 1, j = 1, m, respectively, where rj is the multiplicity
of the characteristic root λj.

From this and the second equation we have

ŷn+1 – ŷn–k =
m∑

j=1

Qj(n – l)λn–l
1 , (31)

which is a nonhomogeneous linear difference equation with constant coefficients whose
nonhomogeneous part has the polynomial-exponential form. It is well known that such
difference equations are solvable (see, e.g., [8–11]). Hence, system (16) is solvable.

Case 3, system (17). This case is essentially the same as Case 2, with the only difference
that the letters k and l are interchanged in the second equation. Hence, the system is also
solvable.

Case 4, system (18). This system consists of two copies of the same linear difference
equation with constant coefficients, so it is obviously solvable.
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Case 5, system (19). Using the second equation in (19) into the first one, we get

x̂n+1 – x̂n–k – x̂n–k–l–1 – x̂n–2l–1 = 0, (32)

which is a linear difference equation with constant coefficients, hence solvable. Using the
general solution to equation (32) in the second equation in (19) it is obtained a closed-form
formula for yn. Hence, system (19) is solvable.

Case 6, system (20). From the first equation in (20) we have

ŷn = x̂n+l+1 – x̂n+l–k . (33)

Using (33) into the second equation in (20) we obtain

x̂n+l+2 – 2x̂n+l–k+1 + x̂n+l–2k – x̂n–l = 0, (34)

which is a linear difference equation with constant coefficients. Hence, its general solution
can be found. Using the general solution to equation (34) in (33), a closed-form formula
for yn is obtained, from which the solvability of system (20) follows.

Case 7, system (21). This case is essentially the same as Case 6, with the only difference
that the letters k and l are interchanged in the second equation. Hence, the system is also
solvable.

Case 8, system (22). This system is obtained from (16) when the letters x and y are inter-
changed, from which its solvability follows.

Case 9, system (23). This case is essentially the same as Case 5, with the only difference
that the letters k and l are interchanged in the first equation. Hence, the system is also
solvable.

Case 10, system (24). This case is essentially the same as Case 6, with the only difference
that the letters k and l are interchanged in the first equation. Hence, the system is also
solvable.

Case 11, system (25). This case is essentially the same as Case 7, with the only difference
that the letters k and l are interchanged in the first equation. Hence, the system is also
solvable.

Case 12, system (26). This case is essentially the same as Case 8, with the only difference
that the letters k and l are interchanged in the first equation. Hence, the system is also
solvable.

Case 13, system (27). Using the first equation in (27) into the second one, we obtain

ŷn+1 – ŷn–2k–1 – 2ŷn–k–l–1 – ŷn–2l–1, (35)

which is a linear difference equation with constant coefficients. Hence, its general solution
can be found. Using the general solution to equation (35) in the first equation in (27), a
closed-form formula for xn is obtained, from which the solvability of system (27) follows.

Case 14, system (28). This system is obtained from (19) when the letters x and y are
interchanged, from which its solvability follows.

Case 15, system (29). This system is obtained from system (23) when the letters x and y
are interchanged, from which its solvability follows.
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Case 16, system (30). This system is obtained from system (15) when the letters x and y
are interchanged, from which its solvability follows. �

Remark 1 It should be pointed out that all the linear transformations used in the proof
of Theorem 1 transform original systems of difference equations to equivalent ones, from
which it follows that there is no possibility of getting new or loosing some existing solu-
tions. The changes of variables (13) do not transform the systems in (12) to equivalent
ones. Nevertheless, since, by the definition, we take into consideration only well-defined
solutions to the systems, by using the changes all such solutions are obtained.

3 Case a �= 0
In this section we consider system of difference equations (11) in the case a ∈C \ {0}.

First, note that from (11) it follows that

xn+1 +
√

a =
(un–k +

√
a)(vn–l +

√
a)

un–k + vn–l
,

yn+1 +
√

a =
(wn–k +

√
a)(sn–l +

√
a)

wn–k + sn–l

(36)

for n ∈N0, and

xn+1 –
√

a =
(un–k –

√
a)(vn–l –

√
a)

un–k + vn–l
,

yn+1 –
√

a =
(wn–k –

√
a)(sn–l –

√
a)

wn–k + sn–l

(37)

for every n ∈N0, where
√

a is one of the two roots of the polynomial equation z2 + a = 0.
From (36) and (37) it follows that

xn+1 +
√

a
xn+1 –

√
a

=
un–k +

√
a

un–k –
√

a
· vn–l +

√
a

vn–l –
√

a
, (38)

yn+1 +
√

a
yn+1 –

√
a

=
wn–k +

√
a

wn–k –
√

a
· sn–l +

√
a

sn–l –
√

a
(39)

for n ∈N0.
Depending on which values sequences un, vn, wn, sn have (xn or yn), there are the follow-

ing sixteen cases:

xn+1 +
√

a
xn+1 –

√
a

=
xn–k +

√
a

xn–k –
√

a
· xn–l +

√
a

xn–l –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
xn–k +

√
a

xn–k –
√

a
· xn–l +

√
a

xn–l –
√

a
;

(40)

xn+1 +
√

a
xn+1 –

√
a

=
xn–k +

√
a

xn–k –
√

a
· xn–l +

√
a

xn–l –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
yn–k +

√
a

yn–k –
√

a
· xn–l +

√
a

xn–l –
√

a
;

(41)
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xn+1 +
√

a
xn+1 –

√
a

=
xn–k +

√
a

xn–k –
√

a
· xn–l +

√
a

xn–l –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
xn–k +

√
a

xn–k –
√

a
· yn–l +

√
a

yn–l –
√

a
;

(42)

xn+1 +
√

a
xn+1 –

√
a

=
xn–k +

√
a

xn–k –
√

a
· xn–l +

√
a

xn–l –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
yn–k +

√
a

yn–k –
√

a
· yn–l +

√
a

yn–l –
√

a
;

(43)

xn+1 +
√

a
xn+1 –

√
a

=
yn–k +

√
a

yn–k –
√

a
· xn–l +

√
a

xn–l –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
xn–k +

√
a

xn–k –
√

a
· xn–l +

√
a

xn–l –
√

a
;

(44)

xn+1 +
√

a
xn+1 –

√
a

=
yn–k +

√
a

yn–k –
√

a
· xn–l +

√
a

xn–l –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
yn–k +

√
a

yn–k –
√

a
· xn–l +

√
a

xn–l –
√

a
;

(45)

xn+1 +
√

a
xn+1 –

√
a

=
yn–k +

√
a

yn–k –
√

a
· xn–l +

√
a

xn–l –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
xn–k +

√
a

xn–k –
√

a
· yn–l +

√
a

yn–l –
√

a
;

(46)

xn+1 +
√

a
xn+1 –

√
a

=
yn–k +

√
a

yn–k –
√

a
· xn–l +

√
a

xn–l –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
yn–k +

√
a

yn–k –
√

a
· yn–l +

√
a

yn–l –
√

a
;

(47)

xn+1 +
√

a
xn+1 –

√
a

=
xn–k +

√
a

xn–k –
√

a
· yn–l +

√
a

yn–l –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
xn–k +

√
a

xn–k –
√

a
· xn–l +

√
a

xn–l –
√

a
;

(48)

xn+1 +
√

a
xn+1 –

√
a

=
xn–k +

√
a

xn–k –
√

a
· yn–l +

√
a

yn–l –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
yn–k +

√
a

yn–k –
√

a
· xn–l +

√
a

xn–l –
√

a
;

(49)

xn+1 +
√

a
xn+1 –

√
a

=
xn–k +

√
a

xn–k –
√

a
· yn–l +

√
a

yn–l –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
xn–k +

√
a

xn–k –
√

a
· yn–l +

√
a

yn–l –
√

a
;

(50)

xn+1 +
√

a
xn+1 –

√
a

=
xn–k +

√
a

xn–k –
√

a
· yn–l +

√
a

yn–l –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
yn–k +

√
a

yn–k –
√

a
· yn–l +

√
a

yn–l –
√

a
;

(51)

xn+1 +
√

a
xn+1 –

√
a

=
yn–k +

√
a

yn–k –
√

a
· yn–l +

√
a

yn–l –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
xn–k +

√
a

xn–k –
√

a
· xn–l +

√
a

xn–l –
√

a
;

(52)
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xn+1 +
√

a
xn+1 –

√
a

=
yn–k +

√
a

yn–k –
√

a
· yn–l +

√
a

yn–l –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
yn–k +

√
a

yn–k –
√

a
· xn–l +

√
a

xn–l –
√

a
;

(53)

xn+1 +
√

a
xn+1 –

√
a

=
yn–k +

√
a

yn–k –
√

a
· yn–l +

√
a

yn–l –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
xn–k +

√
a

xn–k –
√

a
· yn–l +

√
a

yn–l –
√

a
;

(54)

xn+1 +
√

a
xn+1 –

√
a

=
yn–k +

√
a

yn–k –
√

a
· yn–l +

√
a

yn–l –
√

a
,

yn+1 +
√

a
yn+1 –

√
a

=
yn–k +

√
a

yn–k –
√

a
· yn–l +

√
a

yn–l –
√

a

(55)

for n ∈N0.
Using the changes of variables

ζn =
xn +

√
a

xn –
√

a
, ηn =

yn +
√

a
yn –

√
a

, (56)

systems (40)–(55) become

ζn+1 = ζn–kζn–l, ηn+1 = ζn–kζn–l, (57)

ζn+1 = ζn–kζn–l, ηn+1 = ηn–kζn–l, (58)

ζn+1 = ζn–kζn–l, ηn+1 = ζn–kηn–l, (59)

ζn+1 = ζn–kζn–l, ηn+1 = ηn–kηn–l, (60)

ζn+1 = ηn–kζn–l, ηn+1 = ζn–kζn–l, (61)

ζn+1 = ηn–kζn–l, ηn+1 = ηn–kζn–l, (62)

ζn+1 = ηn–kζn–l, ηn+1 = ζn–kηn–l, (63)

ζn+1 = ηn–kζn–l, ηn+1 = ηn–kηn–l, (64)

ζn+1 = ζn–kηn–l, ηn+1 = ζn–kζn–l, (65)

ζn+1 = ζn–kηn–l, ηn+1 = ηn–kζn–l, (66)

ζn+1 = ζn–kηn–l, ηn+1 = ζn–kηn–l, (67)

ζn+1 = ζn–kηn–l, ηn+1 = ηn–kηn–l, (68)

ζn+1 = ηn–kηn–l, ηn+1 = ζn–kζn–l, (69)

ζn+1 = ηn–kηn–l, ηn+1 = ηn–kζn–l, (70)

ζn+1 = ηn–kηn–l, ηn+1 = ζn–kηn–l, (71)

ζn+1 = ηn–kηn–l, ηn+1 = ηn–kηn–l, (72)

for n ∈N0, respectively.
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Systems (57)–(72) are product-type ones. A systematic study of practical solvability of
product-type systems of difference equations has been conducted, for example, in our
recent papers [35–41] (see also the related references therein).

Note that from (56) we have

xn =
√

a
ζn + 1
ζn – 1

, yn =
√

a
ηn + 1
ηn – 1

. (73)

Using the product-type systems (57)–(72), the relations in (73), and the known fact that
the difference equation

ζn = ζ
a1
n–1ζ

a2
n–2 · · · ζ ak

n–k , n ∈N0,

where aj ∈ Z, j = 1, k, ak �= 0, is solvable, similarly as in the proof of Theorem 1 the following
result can be proved. Because of the similarity the proof is omitted and left to the reader
as an exercise. Note that this is not so unexpected since for the case when the initial val-
ues are positive by taking the logarithm, systems (57)–(72) are transformed to (15)–(30)
(of course, it is not the proof in the general case, but instead of that the corresponding
substitutions have to be used).

Theorem 2 Assume that a ∈ C \ {0}. Then system of difference equations (11) is (theoret-
ically) solvable.

4 Case k = 0, l = 1, a �= 0
In this section we consider product-type systems (57)–(72) in the special case k = 0, l = 1,
with a �= 0, as a concrete example. We show that these systems are solvable in closed form,
from which along with (73) will follow the solvability of systems (40)–(55) in the case.

First note that in the case the systems in (57)–(72) become

ζn+1 = ζnζn–1, ηn+1 = ζnζn–1, (74)

ζn+1 = ζnζn–1, ηn+1 = ηnζn–1, (75)

ζn+1 = ζnζn–1, ηn+1 = ζnηn–1, (76)

ζn+1 = ζnζn–1, ηn+1 = ηnηn–1, (77)

ζn+1 = ηnζn–1, ηn+1 = ζnζn–1, (78)

ζn+1 = ηnζn–1, ηn+1 = ηnζn–1, (79)

ζn+1 = ηnζn–1, ηn+1 = ζnηn–1, (80)

ζn+1 = ηnζn–1, ηn+1 = ηnηn–1, (81)

ζn+1 = ζnηn–1, ηn+1 = ζnζn–1, (82)

ζn+1 = ζnηn–1, ηn+1 = ηnζn–1, (83)

ζn+1 = ζnηn–1, ηn+1 = ζnηn–1, (84)

ζn+1 = ζnηn–1, ηn+1 = ηnηn–1, (85)

ζn+1 = ηnηn–1, ηn+1 = ζnζn–1, (86)

ζn+1 = ηnηn–1, ηn+1 = ηnζn–1, (87)
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ζn+1 = ηnηn–1, ηn+1 = ζnηn–1, (88)

ζn+1 = ηnηn–1, ηn+1 = ηnηn–1, (89)

n ∈N0, respectively.
Before we start considering systems (74)–(89), we formulate a known lemma which will

be used in the rest of the paper.

Lemma 1 Let xk , k = 1, m, be the distinct roots of the polynomial pm(x) = cmxm + · · · + c1x +
c0.

Then

m∑

k=1

xj
k

p′
m(xk)

= 0,

when 0 ≤ j ≤ m – 2, and

l∑

k=1

xm–1
k

p′
m(xk)

=
1

cm
.

4.1 Solution to system (74)
First, note that from (74) it follows that

ζn = ηn, n ∈N.

The first equation in (74) is a special case of the difference equation

ζn+1 = ζ α
n ζ

β
n–1, n ∈ N0.

A solution to the equation can be found in [69] (see also [35, 40] or some of the methods
used in the cases which follow), and its general solution is given by

ζn = ζ
fn+1
0 ζ

fn
–1, n ∈N0, (90)

where (fn)n∈N0 is the Fibonacci sequence.
Hence, we have

ηn = ζ
fn+1
0 ζ

fn
–1, n ∈N. (91)

Note also that formula (90) holds also for n = –1.

Corollary 1 Assume that k = 0, l = 1, and a ∈ C \ {0}. Then the general solution to system
(40) is given by

xn =
√

a
( x0+

√
a

x0–
√

a )fn+1 ( x–1+
√

a
x–1–

√
a )fn + 1

( x0+
√

a
x0–

√
a )fn+1 ( x–1+

√
a

x–1–
√

a )fn – 1
, n ≥ –1,

yn =
√

a
( x0+

√
a

x0–
√

a )fn+1 ( x–1+
√

a
x–1–

√
a )fn + 1

( x0+
√

a
x0–

√
a )fn+1 ( x–1+

√
a

x–1–
√

a )fn – 1
, n ∈N.
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4.2 Solution to system (75)
First, note that from the previous case we have that formula (90) holds. Using the formula
in the second equation in (75), it follows that

ηn+1 = ηnζn–1 = ηnζ
fn
0 ζ

fn–1
–1 , n ∈N0, (92)

from which it follows that

ηn = η1ζ

∑n–1
j=1 fj

0 ζ

∑n–2
j=0 fj

–1

= η0ζ–1ζ

∑n–1
j=1 (fj+1–fj–1)

0 ζ

∑n–2
j=0 (fj+1–fj–1)

–1

= η0ζ–1ζ
fn+fn–1–f1–f0
0 ζ

fn–1+fn–2–f0–f–1
–1

= η0ζ
fn+1–1
0 ζ

fn
–1 (93)

for n ∈N0.
Formulas (90) and (93) are the closed-form formulas for general solution to system (75).

Corollary 2 Assume that k = 0, l = 1, and a ∈ C \ {0}. Then the general solution to system
(41) is given by

xn =
√

a
( x0+

√
a

x0–
√

a )fn+1 ( x–1+
√

a
x–1–

√
a )fn + 1

( x0+
√

a
x0–

√
a )fn+1 ( x–1+

√
a

x–1–
√

a )fn – 1
, n ≥ –1,

yn =
√

a
( y0+

√
a

y0–
√

a )( x0+
√

a
x0–

√
a )fn+1–1( x–1+

√
a

x–1–
√

a )fn + 1

( y0+
√

a
y0–

√
a )( x0+

√
a

x0–
√

a )fn+1–1( x–1+
√

a
x–1–

√
a )fn – 1

, n ∈N0.

4.3 Solution to system (76)
Clearly, formula (90) holds. Using the formula in the second equation in (76), we get

ηn+1 = ζnηn–1 = ηn–1ζ
fn+1
0 ζ

fn
–1, n ∈ N0, (94)

which is an equation with interlacing indices.
Hence, we have

η2n+i = η2(n–1)+iζ
f2n+i
0 ζ

f2n+i–1
–1 (95)

for n ∈N, i = –1, 0, from which it follows that

η2n = η0ζ

∑n
j=1 f2j

0 ζ

∑n
j=1 f2j–1

–1

= η0ζ

∑n
j=1(f2j+1–f2j–1)

0 ζ

∑n
j=1(f2j–f2j–2)

–1

= η0ζ
f2n+1–1
0 ζ

f2n
–1 (96)
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for n ∈N0, and

η2n+1 = η–1ζ

∑n
j=0 f2j+1

0 ζ

∑n
j=0 f2j

–1

= η–1ζ

∑n
j=0(f2j+2–f2j)

0 ζ

∑n
j=0(f2j+1–f2j–1)

–1

= η–1ζ
f2n+2
0 ζ

f2n+1–1
–1 (97)

for n ≥ –1.
Formulas (90), (96), and (97) are the closed-form formulas for general solution to system

(76).

Corollary 3 Assume that k = 0, l = 1, and a ∈ C \ {0}. Then the general solution to system
(42) is given by

xn =
√

a
( x0+

√
a

x0–
√

a )fn+1 ( x–1+
√

a
x–1–

√
a )fn + 1

( x0+
√

a
x0–

√
a )fn+1 ( x–1+

√
a

x–1–
√

a )fn – 1
, n ≥ –1,

y2n =
√

a
( y0+

√
a

y0–
√

a )( x0+
√

a
x0–

√
a )f2n+1–1( x–1+

√
a

x–1–
√

a )f2n + 1

( y0+
√

a
y0–

√
a )( x0+

√
a

x0–
√

a )f2n+1–1( x–1+
√

a
x–1–

√
a )f2n – 1

, n ∈N0,

y2n+1 =
√

a
( y–1+

√
a

y–1–
√

a )( x0+
√

a
x0–

√
a )f2n+2 ( x–1+

√
a

x–1–
√

a )f2n+1–1 + 1

( y–1+
√

a
y–1–

√
a )( x0+

√
a

x0–
√

a )f2n+2 ( x–1+
√

a
x–1–

√
a )f2n+1–1 – 1

, n ≥ –1.

4.4 Solution to system (77)
Clearly, formula (90) holds, but since the second equation in (77) has the same form, it is
clear that the solutions to the second equation in system (77) are obtained by replacing
each letter ζ by η in (90), that is, we have

ηn = η
fn+1
0 η

fn
–1, n ≥ –1. (98)

Hence, formulas (90) and (98) are the closed-form formulas for general solution to system
(77).

Corollary 4 Assume that k = 0, l = 1, and a ∈ C \ {0}. Then the general solution to system
(43) is given by

xn =
√

a
( x0+

√
a

x0–
√

a )fn+1 ( x–1+
√

a
x–1–

√
a )fn + 1

( x0+
√

a
x0–

√
a )fn+1 ( x–1+

√
a

x–1–
√

a )fn – 1
, n ≥ –1,

yn =
√

a
( y0+

√
a

y0–
√

a )fn+1 ( y–1+
√

a
y–1–

√
a )fn + 1

( y0+
√

a
y0–

√
a )fn+1 ( y–1+

√
a

y–1–
√

a )fn – 1
, n ≥ –1.

4.5 Solution to system (78)
If we use the first equation in (78) into the second one, we get

ζn+1 = ζ 2
n–1ζn–2 (99)

for n ∈N.
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Let

b0 = 2, c0 = 1, d0 = 0. (100)

Then equation (99) can be written as

ζn+1 = ζ
b0
n–1ζ

c0
n–2ζ

d0
n–3 = ζ

b0
n–1ζ

c0
n–2 (101)

for n ∈N.
Using (101), where n is replaced by n – 2 into (101), we obtain

ζn+1 = ζ
b0
n–1ζ

c0
n–2ζ

d0
n–3

=
(
ζ

b0
n–3ζ

c0
n–4

)b0
ζ

c0
n–2ζ

d0
n–3

= ζ
c0
n–2ζ

b0b0+d0
n–3 ζ

c0b0
n–4

= ζ
b1
n–2ζ

c1
n–3ζ

d1
n–4, (102)

where

b1 := c0, c1 := b0b0 + d0, d1 := c0b0. (103)

Assume that we have proved

ζn+1 = ζ
bk–1
n–k ζ

ck–1
n–k–1ζ

dk–1
n–k–2, (104)

where

bk–1 := ck–2, ck–1 := b0bk–2 + dk–2, dk–1 := c0bk–2, (105)

for k ≥ 2 and every n ≥ k + 1.
Using (101), where n is replaced by n – k – 1 into (104), we obtain

ζn+1 = ζ
bk–1
n–k ζ

ck–1
n–k–1ζ

dk–1
n–k–2

=
(
ζ

b0
n–k–2ζ

c0
n–k–3

)bk–1ζ
ck–1
n–k–1ζ

dk–1
n–k–2

= ζ
ck–1
n–k–1ζ

b0bk–1+dk–1
n–k–2 ζ

c0bk–1
n–k–3

= ζ
bk
n–k–1ζ

ck
n–k–2ζ

dk
n–k–3, (106)

where

bk := ck–1, ck := b0bk–1 + dk–1, dk := c0bk–1. (107)

From (102), (103), (106), (107), and the induction it follows that (104) and (105) hold for
every 2 ≤ k ≤ n – 1.
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From (100) and (107), we have

bk := ck–1, ck := 2bk–1 + dk–1, dk := bk–1. (108)

If in (104) we replace n by n – 1, take k = n – 2, and use (108), we have

ζn = ζ
bn–3
1 ζ

cn–3
0 ζ

dn–3
–1

= (η0ζ–1)bn–3ζ
cn–3
0 ζ

dn–3
–1

= η
bn–3
0 ζ

bn–3+dn–3
–1 ζ

cn–3
0

= η
bn–3
0 ζ

bn–3+bn–4
–1 ζ

bn–2
0 (109)

for n ≥ 4.
From (108) it follows that

bk = 2bk–2 + bk–3, k ≥ 3,

from which along with the first and third equation in (107) it follows that the sequences
(bk)k∈N0 , (ck)k∈N0 , (dk)k∈N0 are solutions to the difference equation

zk+3 – 2zk+1 – zk = 0, k ∈N0. (110)

The associated characteristic polynomial to equation (110) is

P3(λ) = λ3 – 2λ – 1 = (λ + 1)
(
λ2 – λ – 1

)
,

from which it follows that –1, λ1, and λ2 are the characteristic zeros.
Hence, the general solution to (110) is given by

bn = α1(–1)n + α2λ
n
1 + α3λ

n
2. (111)

Now note that from (108) it follows that b1 = c0 = 1, c1 = 2b0 + d0 = 4, b2 = c1 = 4.
Hence, we should find the solution to equation (110) satisfying the following initial con-

ditions:

b0 = 2, b1 = 1, b2 = 4, (112)

that is, to find the constants αj, j = 1, 3, such that

α1 + α2 + α3 = 2,

–α1 + α2λ1 + α3λ2 = 1, (113)

α1 + α2λ
2
1 + α3λ

2
2 = 4.

We have

α1 =

∣∣∣
2 1 1
1 λ1 λ2
4 λ2

1 λ2
2

∣∣∣

�
=

λ2 – λ1

λ2 – λ1
= 1,
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α2 =

∣∣∣
1 2 1

–1 1 λ2
1 4 λ2

2

∣∣∣

�
=

3 +
√

5
2
√

5
=

λ2
1√
5

=
λ2

1
λ1 – λ2

,

α3 =

∣∣∣
1 1 2

–1 λ1 1
1 λ2

1 4

∣∣∣

�
=

√
5 – 3

2
√

5
= –

λ2
2√
5

= – =
λ2

2
λ2 – λ1

,

where

� =

∣∣∣∣∣∣∣

1 1 1
–1 λ1 λ2

1 λ2
1 λ2

2

∣∣∣∣∣∣∣
= λ2 – λ1 = –

√
5.

Using these formulas in (111), we obtain

bn = (–1)n +
λn+2

1 – λn+2
2√

5
= (–1)n + fn+2. (114)

Employing (114) in (109), it follows that

ζn = η
(–1)n–1+fn–1
0 ζ

(–1)n+fn
0 ζ

fn
–1, n ≥ –1. (115)

Using (115) in the second equation in (78), we obtain

ηn = ζn–1ζn–2

= η
(–1)n+fn–2
0 ζ

(–1)n–1+fn–1
0 ζ

fn–1
–1 η

(–1)n–1+fn–3
0 ζ

(–1)n+fn–2
0 ζ

fn–2
–1

= η
fn–1
0 ζ

fn
0 ζ

fn
–1, n ∈ N0. (116)

Formulas (115) and (116) are the closed-form formulas for general solution to system
(78).

Corollary 5 Assume that k = 0, l = 1, and a ∈ C \ {0}. Then the general solution to system
(44) is given by

xn =
√

a
( y0+

√
a

y0–
√

a )(–1)n–1+fn–1 ( x0+
√

a
x0–

√
a )(–1)n+fn ( x–1+

√
a

x–1–
√

a )fn + 1

( y0+
√

a
y0–

√
a )(–1)n–1+fn–1 ( x0+

√
a

x0–
√

a )(–1)n+fn ( x–1+
√

a
x–1–

√
a )fn – 1

, n ≥ –1,

yn =
√

a
( y0+

√
a

y0–
√

a )fn–1 ( x0+
√

a
x0–

√
a )fn ( x–1+

√
a

x–1–
√

a )fn + 1

( y0+
√

a
y0–

√
a )fn–1 ( x0+

√
a

x0–
√

a )fn ( x–1+
√

a
x–1–

√
a )fn – 1

, n ∈N0.

4.6 Solution to system (79)
From the equations in (79) we see that ζn = ηn, n ∈N. Hence, ζn+1 = ζnζn–1, n ≥ 2.

From this and (90), we have

ζn = ζ
fn–1
2 ζ

fn–2
1

= (η0ζ–1ζ0)fn–1 (η0ζ–1)fn–2

= η
fn
0 ζ

fn
–1ζ

fn–1
0 , n ∈N0, (117)
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and consequently

ηn = η
fn
0 ζ

fn
–1ζ

fn–1
0 , n ∈ N. (118)

Formulas (117) and (118) are the closed-form formulas for general solution to system
(79).

Corollary 6 Assume that k = 0, l = 1, and a ∈ C \ {0}. Then the general solution to system
(45) is given by

xn =
√

a
( y0+

√
a

y0–
√

a )fn ( x0+
√

a
x0–

√
a )fn–1 ( x–1+

√
a

x–1–
√

a )fn + 1

( y0+
√

a
y0–

√
a )fn ( x0+

√
a

x0–
√

a )fn–1 ( x–1+
√

a
x–1–

√
a )fn – 1

, n ∈N0,

yn =
√

a
( y0+

√
a

y0–
√

a )fn ( x0+
√

a
x0–

√
a )fn–1 ( x–1+

√
a

x–1–
√

a )fn + 1

( y0+
√

a
y0–

√
a )fn ( x0+

√
a

x0–
√

a )fn–1 ( x–1+
√

a
x–1–

√
a )fn – 1

, n ∈N.

4.7 Solution to system (80)
Using the first equation in (80) into the second one, we get

ζn+2 = ζ 3
n ζ –1

n–2, n ∈N, (119)

from which it follows that the sequences (ζ2n–1)n∈N0 and (ζ2n)n∈N0 satisfy the difference
equation

zn = z3
n–1z–1

n–2, n ≥ 2 (120)

(equation (119) is with interlacing indices; for the notion, see, e.g., [15]).
Let

a0 = 3 and b0 = –1. (121)

Then

zn = za0
n–1zb0

n–2

=
(
za0

n–2zb0
n–3

)a0 zb0
n–2

= za0a0+b0
n–2 zb0a0

n–3

= za1
n–2zb1

n–3 (122)

for n ≥ 3, where

a1 := a0a0 + b0, b1 := b0a0. (123)

Assume that we have proved

zn = zak
n–k–1zbk

n–k–2 (124)
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for some k ∈N and every n ≥ k + 2, and that

ak = a0ak–1 + bk–1, bk = b0ak–1. (125)

Then we have

zn = zak
n–k–1zbk

n–k–2

=
(
za0

n–k–2zb0
n–k–3

)ak zbk
n–k–2

= za0ak +bk
n–k–2 zb0ak

n–k–3

= zak+1
n–k–2zbk+1

n–k–3 (126)

for n ≥ k + 3, where

ak+1 := a0ak + bk , bk+1 := b0ak . (127)

From (122), (123), (126), (127), and the induction it follows that (124) and (125) hold for
every k, n ∈N such that 1 ≤ k ≤ n – 2.

If in (124) we take k = n – 2, we get

zn = zan–2
1 zbn–2

0 , n ≥ 2. (128)

From (121) and (127) we see that the sequences (ak)k∈N0 and (bk)k∈N0 are solutions of
the following difference equation:

wk – 3wk–1 + wk–2 = 0, k ≥ 2. (129)

The roots of the characteristic polynomial P2(t) = t2 – 3t + 1 associated with equation
(129) are

t1 =
3 +

√
5

2
= λ2

1 and t2 =
3 –

√
5

2
= λ2

2, (130)

where λ1,2 are defined in (10).
The solution to equation (129) with initial values w0 and w1 is directly obtained from

the de Moivre formula

wk =
(w1 – t1w0)tk

2 – (w1 – t2w0)tk
1

t2 – t1
(131)

for k ∈N0 [3].
From (130) and (131), we have

an =
(a1 – t1a0)tn

2 – (a1 – t2a0)tn
1

t2 – t1

=
(a1 – λ2

1a0)λ2n
2 – (a1 – λ2

2a0)λ2n
1

λ2 – λ1

= a1f2n – a0f2n–2 (132)
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for every n ∈N0, from which along with the second equation in (125) it follows that

bn = b0an–1 = b0(a1f2n–2 – a0f2n–4) (133)

for n ∈N0.
From (132), (133), and since a0 = 3 and a1 = a2

0 + b0 = 8, it follows that

an = 8f2n – 3f2n–2, n ∈N0, (134)

and

bn = –8f2n–2 + 3f2n–4, n ∈N0. (135)

Using formulas (134) and (135) in relation (128), we obtain

zn = z8f2n–4–3f2n–6
1 z–8f2n–6+3f2n–8

0 (136)

for n ∈N0.
From (136) it follows that

ζ2n–1 = ζ
8f2n–4–3f2n–6
1 ζ

–8f2n–6+3f2n–8
–1

= (η0ζ–1)8f2n–4–3f2n–6ζ
–8f2n–6+3f2n–8
–1

= η
8f2n–4–3f2n–6
0 ζ

8(f2n–4–f2n–6)–3(f2n–6–f2n–8)
–1

= η
8f2n–4–3f2n–6
0 ζ

8f2n–5–3f2n–7
–1 , n ∈N0, (137)

and

ζ2n = ζ
8f2n–4–3f2n–6
2 ζ

–8f2n–6+3f2n–8
0

=
(
ζ 2

0 η–1
)8f2n–4–3f2n–6ζ

–8f2n–6+3f2n–8
0

= ζ
8(2f2n–4–f2n–6)–3(2f2n–6–f2n–8)
0 η

8f2n–4–3f2n–6
–1

= ζ
8f2n–3–3f2n–5
0 η

8f2n–4–3f2n–6
–1 , n ∈ N0. (138)

Further, we have

8fk – 3fk–2 = 5fk + 3(fk – fk–2) = 5fk + 3fk–1

= 2fk + 3(fk + fk–1) = 2fk + 3fk+1

= 2(fk + fk+1) + fk+1 = 2fk+2 + fk+1

= fk+2 + (fk+2 + fk+1) = fk+2 + fk+3

= fk+4. (139)

By using (139) in (137) and (138), we obtain

ζ2n–1 = η
f2n
0 ζ

f2n–1
–1 , n ∈N0, (140)
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and

ζ2n = ζ
f2n+1
0 η

f2n
–1 , n ∈N0. (141)

Using (140) and (141) in the relation ηn = ζn+1/ζn–1, we obtain

η2n–1 = ζ2n/ζ2n–2 = ζ
f2n+1–f2n–1
0 η

f2n–f2n–2
–1 = ζ

f2n
0 η

f2n–1
–1 , n ∈N, (142)

(the last equality holds also for n = 0) and

η2n = ζ2n+1/ζ2n–1 = η
f2n+2–f2n
0 ζ

f2n+1–f2n–1
–1 = η

f2n+1
0 ζ

f2n
–1 , n ∈N0. (143)

Formulas (140)–(143) are the closed-form formulas for general solution to system (80).

Corollary 7 Assume that k = 0, l = 1, and a ∈ C \ {0}. Then the general solution to system
(46) is given by

x2n–1 =
√

a
( y0+

√
a

y0–
√

a )f2n ( x–1+
√

a
x–1–

√
a )f2n–1 + 1

( y0+
√

a
y0–

√
a )f2n ( x–1+

√
a

x–1–
√

a )f2n–1 – 1
, n ∈N0,

x2n =
√

a
( x0+

√
a

x0–
√

a )f2n+1 ( y–1+
√

a
y–1–

√
a )f2n + 1

( x0+
√

a
x0–

√
a )f2n+1 ( y–1+

√
a

y–1–
√

a )f2n – 1
, n ∈N0,

y2n–1 =
√

a
( x0+

√
a

x0–
√

a )f2n ( y–1+
√

a
y–1–

√
a )f2n–1 + 1

( x0+
√

a
x0–

√
a )f2n ( y–1+

√
a

y–1–
√

a )f2n–1 – 1
, n ∈N0,

y2n =
√

a
( y0+

√
a

y0–
√

a )f2n+1 ( x–1+
√

a
x–1–

√
a )f2n + 1

( y0+
√

a
y0–

√
a )f2n+1 ( x–1+

√
a

x–1–
√

a )f2n – 1
, n ∈ N0.

4.8 Solution to system (81)
This system is obtained from system (76) by interchanging letters ζ and η. Hence, its gen-
eral solution is given by

ηn = η
fn+1
0 η

fn
–1, n ≥ –1, (144)

ζ2n = ζ0η
f2n+1–1
0 η

f2n
–1 , n ∈N0, (145)

and

ζ2n+1 = ζ–1η
f2n+2
0 η

f2n+1–1
–1 , n ≥ –1. (146)

Corollary 8 Assume that k = 0, l = 1, and a ∈ C \ {0}. Then the general solution to system
(47) is given by

x2n =
√

a
( x0+

√
a

x0–
√

a )( y0+
√

a
y0–

√
a )f2n+1–1( y–1+

√
a

y–1–
√

a )f2n + 1

( x0+
√

a
x0–

√
a )( y0+

√
a

y0–
√

a )f2n+1–1( y–1+
√

a
y–1–

√
a )f2n – 1

, n ∈ N0,
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x2n+1 =
√

a
( x–1+

√
a

x–1–
√

a )( y0+
√

a
y0–

√
a )f2n+2 ( y–1+

√
a

y–1–
√

a )f2n+1–1 + 1

( x–1+
√

a
x–1–

√
a )( y0+

√
a

y0–
√

a )f2n+2 ( y–1+
√

a
y–1–

√
a )f2n+1–1 – 1

, n ≥ –1,

yn =
√

a
( y0+

√
a

y0–
√

a )fn+1 ( y–1+
√

a
y–1–

√
a )fn + 1

( y0+
√

a
y0–

√
a )fn+1 ( y–1+

√
a

y–1–
√

a )fn – 1
, n ≥ –1.

4.9 Solution to system (82)
By using the second equation in (82) into the first one, we get

ζn = ζn–1ζn–3ζn–4, n ≥ 3. (147)

To solve equation (147) we use here a method that we have used in some of our previous
papers (see, e.g., [37, 41]).

Let

a0 = 1, b0 = 0, c0 = 1, d0 = 1. (148)

Then equation (147) can be written as follows:

ζn = ζ
a0
n–1ζ

b0
n–2ζ

c0
n–3ζ

d0
n–4, n ≥ 3. (149)

From (149), we get

ζn = ζ
a0
n–1ζ

b0
n–2ζ

c0
n–3ζ

d0
n–4

=
(
ζ

a0
n–2ζ

b0
n–3ζ

c0
n–4ζ

d0
n–5

)a0
ζ

b0
n–2ζ

c0
n–3ζ

d0
n–4

= ζ
a0a0+b0
n–2 ζ

b0a0+c0
n–3 ζ

c0a0+d0
n–4 ζ

d0a0
n–5

= ζ
a1
n–2ζ

b1
n–3ζ

c1
n–4ζ

d1
n–5 (150)

for n ≥ 4, where

a1 := a0a0 + b0, b1 := b0a0 + c0, c1 := c0a0 + d0, d1 := d0a0. (151)

Assume that we have proved

ζn = ζ
ak
n–k–1ζ

bk
n–k–2ζ

ck
n–k–3ζ

dk
n–k–4 (152)

for some k ∈N and every n ≥ k + 3, and that

ak = a0ak–1 + bk–1, bk = b0ak–1 + ck–1,

ck = c0ak–1 + dk–1, dk = d0ak–1.
(153)
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Then we have

ζn = ζ
ak
n–k–1ζ

bk
n–k–2ζ

ck
n–k–3ζ

dk
n–k–4

=
(
ζ

a0
n–k–2ζ

b0
n–k–3ζ

c0
n–k–4ζ

d0
n–k–5

)ak ζ
bk
n–k–2ζ

ck
n–k–3ζ

dk
n–k–4

= ζ
a0ak +bk
n–k–2 ζ

b0ak +ck
n–k–3 ζ

c0ak +dk
n–k–4 ζ

d0ak
n–k–5

= ζ
ak+1
n–k–2ζ

bk+1
n–k–3ζ

ck+1
n–k–4ζ

dk+1
n–k–5 (154)

for n ≥ k + 4, where

ak+1 := a0ak + bk , bk+1 := b0ak + ck , ck+1 := c0ak + dk , dk+1 := d0ak . (155)

From (150), (151), (154), (155), and the induction it follows that (152) and (153) hold for
every k, n ∈N such that 1 ≤ k ≤ n – 3.

From (148) and (155), we have

ak+1 := ak + bk , bk+1 := ck , ck+1 := ak + dk , dk+1 := ak . (156)

If in (152) we take k = n – 3, we get

ζn = ζ
an–3
2 ζ

bn–3
1 ζ

cn–3
0 ζ

dn–3
–1

= (ζ0η–1η0)an–3 (ζ0η–1)bn–3ζ
cn–3
0 ζ

dn–3
–1

= ζ
dn–3
–1 ζ

an–3+bn–3+cn–3
0 η

an–3+bn–3
–1 η

an–3
0

= ζ
an–4
–1 ζ

an–1
0 η

an–2
–1 η

an–3
0 (157)

for n ≥ 3.
Using (157) into the second equation in (82), we obtain

ηn = ζn–1ζn–2 = ζ
an–5
–1 ζ

an–2
0 η

an–3
–1 η

an–4
0 ζ

an–6
–1 ζ

an–3
0 η

an–4
–1 η

an–5
0

= ζ
an–5+an–6
–1 ζ

an–2+an–3
0 η

an–3+an–4
–1 η

an–4+an–5
0 . (158)

From (153) we see that the sequences (ak)k∈N0 , (bk)k∈N0 , (ck)k∈N0 , and (dk)k∈N0 are solu-
tions to the following difference equation:

wk – wk–1 – wk–3 – wk–4 = 0, k ≥ 4. (159)

The roots of the characteristic polynomial

P4(t) = t4 – t3 – t – 1 =
(
t2 – t – 1

)(
t2 + 1

)

associated with equation (159) are

t1 = i, t2 = –i, t3 = λ1, t4 = λ2. (160)
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The general solution to equation (159) is

wk = α1ik + α2(–i)k + α3λ
k
1 + α4λ

k
2, k ∈ N0. (161)

From (148) and (156) with k = 0, –1, –2, –3, by some simple calculations, it follows that
(see, e.g., [36, 39])

a–1 = 1, b–1 = 0, c–1 = 0, d–1 = 0,

a–2 = 0, b–2 = 1, c–2 = 0, d–2 = 0,

a–3 = 0, b–3 = 0, c–3 = 1, d–3 = 0,

a–4 = 0, b–4 = 0, c–4 = 0, d–4 = 1.

(162)

From (148), (162), and Lemma 1, it follows that

an =
in+4

P′
4(i)

+
(–i)n+4

P′
4(–i)

+
λn+4

1
P′

4(λ1)
+

λn+4
2

P′
4(λ2)

, n ≥ –4. (163)

From this and since

P′
4(i) =

(
i – (–i)

)
(i – λ1)(i – λ2) = 2(1 – 2i),

P′
4(–i) = (–i – i)(–i – λ1)(–i – λ2) = 2(1 + 2i),

P′
4(λ1) = (λ1 – i)

(
λ1 – (–i)

)
(λ1 – λ2) =

√
5λ1(λ1 – λ2) = 5λ1,

P′
4(λ2) = (λ2 – i)

(
λ2 – (–i)

)
(λ2 – λ1) =

√
5λ2(λ1 – λ2) = 5λ2,

and after some calculation, we have

an =
(1 + 2i)in

10
+

(1 – 2i)(–i)n

10
+

λn+3
1 + λn+3

2
5

=
Re((1 + 2i)in) + λn+3

1 + λn+3
2

5
, n ≥ –4. (164)

Using (164) in (157), we obtain

ζn = ζ

Re((1+2i)in)+λn–1
1 +λn–1

2
5

–1 ζ

Re((1+2i)in–1)+λn+2
1 +λn+2

2
5

0

× η

Re((1+2i)in–2)+λn+1
1 +λn+1

2
5

–1 η

Re((1+2i)in–3)+λn
1 +λn

2
5

0 , n ≥ –1. (165)

By some simple calculation, we have

an + an–1 =
Re((3 + i)in) + λn+4

1 + λn+4
2

5
, n ≥ –3. (166)

Using (166) into (158), we have

ηn = ζ

Re((3+i)in–1)+λn–1
1 +λn–1

2
5

–1 ζ

Re((3+i)in–2)+λn+2
1 +λn+2

2
5

0

× η

Re((3+i)in–3)+λn+1
1 +λn+1

2
5

–1 η

Re((3+i)in)+λn
1 +λn

2
5

0 . (167)
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Corollary 9 Assume that k = 0, l = 1, and a ∈ C \ {0}. Then the general solution to system
(48) is given by

xn =
√

a
( x–1+

√
a

x–1–
√

a )an–4 ( x0+
√

a
x0–

√
a )an–1 ( y–1+

√
a

y–1–
√

a )an–2 ( y0+
√

a
y0–

√
a )an–3 + 1

( x–1+
√

a
x–1–

√
a )an–4 ( x0+

√
a

x0–
√

a )an–1 ( y–1+
√

a
y–1–

√
a )an–2 ( y0+

√
a

y0–
√

a )an–3 – 1
, n ≥ –1,

yn =
√

a
( x–1+

√
a

x–1–
√

a )̂an–5 ( x0+
√

a
x0–

√
a )̂an–2 ( y–1+

√
a

y–1–
√

a )̂an–3 ( y0+
√

a
y0–

√
a )̂an–4 + 1

( x–1+
√

a
x–1–

√
a )̂an–5 ( x0+

√
a

x0–
√

a )̂an–2 ( y–1+
√

a
y–1–

√
a )̂an–3 ( y0+

√
a

y0–
√

a )̂an–4 – 1
, n ≥ –1,

where the sequence an is given by (164), while the sequence ân := an + an–1 is given by (166).

4.10 Solution to system (83)
By using the first equation in (83) into the second one, we get

ζn = ζ 2
n–1ζ

–1
n–2ζn–4, n ≥ 3. (168)

Let

a0 = 2, b0 = –1, c0 = 0, d0 = 1. (169)

Then equation (168) can be written as follows:

ζn = ζ
a0
n–1ζ

b0
n–2ζ

c0
n–3ζ

d0
n–4, n ≥ 3. (170)

Similar to the previous case it is obtained that (152) and (153) hold for every k, n ∈ N

such that 1 ≤ k ≤ n – 3. From (153) and (169), we have

ak = 2ak–1 + bk–1, bk = –ak–1 + ck–1, ck = dk–1, dk = ak–1. (171)

If in (152) we take k = n – 3 and use (171), we get

ζn = ζ
an–3
2 ζ

bn–3
1 ζ

cn–3
0 ζ

dn–3
–1

= (ζ0η–1η0)an–3 (ζ0η–1)bn–3ζ
cn–3
0 ζ

dn–3
–1

= ζ
dn–3
–1 ζ

an–3+bn–3+cn–3
0 η

an–3+bn–3
–1 η

an–3
0

= ζ
an–4
–1 ζ

an–1–an–2
0 η

an–2–an–3
–1 η

an–3
0 (172)

for n ≥ 2.
Using (172) into the relation ηn = ζn+2/ζn+1, we obtain

ηn = ζ
an–2–an–3
–1 ζ

an+1–2an+an–1
0 η

an–2an–1+an–2
–1 η

an–1–an–2
0 . (173)

From (153) and (169) we see that the sequences (ak)k∈N0 , (bk)k∈N0 , (ck)k∈N0 , and (dk)k∈N0

are solutions to the following difference equation:

wk – 2wk–1 + wk–2 – wk–4 = 0, k ≥ 4. (174)
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The roots of the characteristic polynomial

P4(t) = t4 – 2t3 + t2 – 1 =
(
t2 – t – 1

)(
t2 – t + 1

)

associated with the linear difference equation (174) are

t1 =
1 + i

√
3

2
, t2 =

1 – i
√

3
2

, t3 = λ1, t4 = λ2. (175)

The general solution to equation (174) has the following form:

wk = α1tk
1 + α2tk

2 + α3λ
k
1 + α4λ

k
2, k ∈N0. (176)

From (153) and (176) with k = 0, –1, –2, –3, by some simple calculations, it follows that
the equalities in (162) hold.

From (162), (176), and Lemma 1, it follows that

an =
tn+4
1

P′
4(t1)

+
tn+4
2

P′
4(t2)

+
λn+4

1
P′

4(λ1)
+

λn+4
2

P′
4(λ2)

, n ≥ –4. (177)

From this and since

P′
4(t1) = (t1 – t2)(t1 – λ1)(t1 – λ2) = –2

√
3i,

P′
4(t2) = (t2 – t1)(t2 – λ1)(t2 – λ2) = 2

√
3i,

P′
4(λ1) = (λ1 – t1)(λ1 – t2)(λ1 – λ2) = 2(λ1 – λ2) = 2

√
5,

P′
4(λ2) = (λ2 – t1)(λ2 – t2)(λ2 – λ1) = 2(λ2 – λ1) = –2

√
5,

and after some calculation, we have

an =
i(tn+4

1 – tn+4
2 )

2
√

3
+

λn+4
1 – λn+4

2
2(λ1 – λ2)

= –
1√
3

sin
(n – 2)π

3
+

fn+4

2
, n ≥ –4. (178)

From (178), we have

an – an–1 = –
1√
3

sin
(n – 2)π

3
+

fn+4

2
+

1√
3

sin
(n – 3)π

3
–

fn+3

2

= –
1√
3

cos
(2n – 5)π

6
+

fn+2

2
, (179)

and

an – 2an–1 + an–2 = –
1√
3

cos
(2n – 5)π

6
+

fn+2

2
+

1√
3

cos
(2n – 7)π

6
–

fn+1

2

= –
1√
3

sin
nπ

3
+

fn

2
. (180)
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Using (178) and (179) into (172) and (173), we obtain

ζn = ζ
– 1√

3
sin nπ

3 + fn
2

–1 ζ
– 1√

3
cos (2n–7)π

6 + fn+1
2

0 η
– 1√

3
cos (2n–9)π

6 + fn
2

–1 η
– 1√

3
sin (n–5)π

3 + fn+1
2

0 , (181)

and

ηn = ζ
– 1√

3
cos (2n–9)π

6 + fn
2

–1 ζ
– 1√

3
sin (n+1)π

3 + fn+1
2

0

× η
– 1√

3
sin nπ

3 + fn
2

–1 η
– 1√

3
cos (2n–7)π

6 + fn+1
2

0 , (182)

which are closed-form formulas for solutions to system (83).

Corollary 10 Assume that k = 0, l = 1, and a ∈C\ {0}. Then the general solution to system
(49) is given by

xn =
√

a
( x–1+

√
a

x–1–
√

a )an–4 ( x0+
√

a
x0–

√
a )�an–2 ( y–1+

√
a

y–1–
√

a )�an–3 ( y0+
√

a
y0–

√
a )an–3 + 1

( x–1+
√

a
x–1–

√
a )an–4 ( x0+

√
a

x0–
√

a )�an–2 ( y–1+
√

a
y–1–

√
a )�an–3 ( y0+

√
a

y0–
√

a )an–3 – 1
, n ≥ –1,

yn =
√

a
( x–1+

√
a

x–1–
√

a )�an–3 ( x0+
√

a
x0–

√
a )�2an–1 ( y–1+

√
a

y–1–
√

a )�2an–2 ( y0+
√

a
y0–

√
a )�an–2 + 1

( x–1+
√

a
x–1–

√
a )�an–3 ( x0+

√
a

x0–
√

a )�2an–1 ( y–1+
√

a
y–1–

√
a )�2an–2 ( y0+

√
a

y0–
√

a )�an–2 – 1

for n ≥ –1, where the sequence an is given by (178), �an–1 by (179), and �2an–2 by (180).

4.11 Solution to system (84)
From the equations in (84) we see that ζn = ηn, n ∈N. Hence, ζn+1 = ζnζn–1, n ≥ 2.

From this, (90) where ζ–1 and ζ0 are replaced by ζ1 and ζ2 respectively and (8), we have
that

ζn = ζ
fn–1
2 ζ

fn–2
1

= (ζ0η–1η0)fn–1 (ζ0η–1)fn–2

= ζ
fn
0 η

fn
–1η

fn–1
0 , n ∈ N, (183)

and consequently

ηn = ζ
fn
0 η

fn
–1η

fn–1
0 , n ∈N. (184)

It is easy to see that formula (184) holds also for n = 0.
Formulas (183) and (184) are the closed-form formulas for general solution to system

(84).

Corollary 11 Assume that k = 0, l = 1, and a ∈C\ {0}. Then the general solution to system
(50) is given by

xn =
√

a
( x0+

√
a

x0–
√

a )fn ( y0+
√

a
y0–

√
a )fn–1 ( y–1+

√
a

y–1–
√

a )fn + 1

( x0+
√

a
x0–

√
a )fn ( y0+

√
a

y0–
√

a )fn–1 ( y–1+
√

a
y–1–

√
a )fn – 1

, n ∈N,

yn =
√

a
( x0+

√
a

x0–
√

a )fn ( y0+
√

a
y0–

√
a )fn–1 ( y–1+

√
a

y–1–
√

a )fn + 1

( x0+
√

a
x0–

√
a )fn ( y0+

√
a

y0–
√

a )fn–1 ( y–1+
√

a
y–1–

√
a )fn – 1

, n ∈N0.
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4.12 Solution to system (85)
This system is obtained from system (75) by interchanging letters ζ and η. Hence, its so-
lution is given by

ζn = ζ0η
fn+1–1
0 η

fn
–1, n ∈N0, (185)

and

ηn = η
fn+1
0 η

fn
–1, n ≥ –1. (186)

Formulas (185) and (186) are the closed-form formulas for general solution to system
(85).

Corollary 12 Assume that k = 0, l = 1, and a ∈C\ {0}. Then the general solution to system
(51) is given by

xn =
√

a
( x0+

√
a

x0–
√

a )( y0+
√

a
y0–

√
a )fn+1–1( y–1+

√
a

y–1–
√

a )fn + 1

( x0+
√

a
x0–

√
a )( y0+

√
a

y0–
√

a )fn+1–1( y–1+
√

a
y–1–

√
a )fn – 1

, n ∈N0,

yn =
√

a
( y0+

√
a

y0–
√

a )fn+1 ( y–1+
√

a
y–1–

√
a )fn + 1

( y0+
√

a
y0–

√
a )fn+1 ( y–1+

√
a

y–1–
√

a )fn – 1
, n ≥ –1.

4.13 Solution to system (86)
By using the second equation in (86) into the first one, we get

ζn = ζn–2ζ
2
n–3ζn–4, n ≥ 3. (187)

Let

b0 = 1, c0 = 2, d0 = 1, e0 = 0. (188)

Then equation (188) can be written as follows:

ζn = ζ
b0
n–2ζ

c0
n–3ζ

d0
n–4ζ

e0
n–5, n ≥ 3. (189)

Similar to the case of equation (78) it is obtained that

ζn = ζ
bk
n–k–2ζ

ck
n–k–3ζ

dk
n–k–4ζ

ek
n–k–5 (190)

for n ≥ k + 4, and that

bk = ck–1, ck = b0bk–1 + dk–1, dk = c0bk–1 + ek–1, ek = d0bk–1 (191)

for k ∈N.
Using (188) in (191), we have

bk = ck–1, ck = bk–1 + dk–1, dk = 2bk–1 + ek–1, ek = bk–1. (192)
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If in (190) we take k = n – 4 and calculate ζ1 and ζ2, we get

ζn = ζ
bn–4
2 ζ

cn–4
1 ζ

dn–4
0 ζ

en–4
–1

= (ζ0ζ–1η0)bn–4 (η0η–1)cn–4ζ
dn–4
0 ζ

en–4
–1

= ζ
bn–4+en–4
–1 ζ

bn–4+dn–4
0 η

cn–4
–1 η

bn–4+cn–4
0

= ζ
bn–4+bn–5
–1 ζ

bn–2
0 η

bn–3
–1 η

bn–3+bn–4
0 (193)

for n ≥ 4.
Using (193) into the second equation in (86) and employing (192), we obtain

ηn = ζn–1ζn–2 = ζ
bn–3
–1 ζ

bn–3+bn–4
0 η

bn–4+bn–5
–1 η

bn–2
0 . (194)

From (192) we see that the sequences (bk)k∈N0 , (ck)k∈N0 , (dk)k∈N0 , and (ek)k∈N0 are solu-
tions to the following difference equation:

wk – wk–2 – 2wk–3 – wk–4 = 0, k ≥ 4. (195)

From (192) for k = 0, –1, –2, –3, –4, it is obtained b–1 = 0, c–1 = 1, d–1 = 2, e–1 = 1,

b–2 = 1, c–2 = 0, d–2 = 0, e–2 = 0,

b–3 = 0, c–3 = 1, d–3 = 0, e–3 = 0,

b–4 = 0, c–4 = 0, d–4 = 1, e–4 = 0,

b–5 = 0, c–5 = 0, d–5 = 0, e–5 = 1.

(196)

The roots of the characteristic polynomial

P4(t) = t4 – t2 – 2t – 1 =
(
t2 – t – 1

)(
t2 + t + 1

)

associated with equation (195) are

t1 =
–1 + i

√
3

2
, t2 =

–1 – i
√

3
2

, t3 = λ1, t4 = λ2. (197)

The general solution to equation (195) is

wk = α1tk
1 + α2tk

2 + α3λ
k
1 + α4λ

k
2, k ∈N0. (198)

From (196), (198), and Lemma 1, it follows that

bn =
tn+5
1

P′
4(t1)

+
tn+5
2

P′
4(t2)

+
λn+5

1
P′

4(λ1)
+

λn+5
2

P′
4(λ2)

, n ≥ –5. (199)
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From this and since

P′
4(t1) = (t1 – t2)(t1 – λ1)(t1 – λ2) = 3 – i

√
3 = 2

√
3it2,

P′
4(t2) = (t2 – t1)(t2 – λ1)(t2 – λ2) = 3 + i

√
3 = –2

√
3it1,

P′
4(λ1) = (λ1 – t1)(λ1 – t2)(λ1 – λ2) = 5 + 3

√
5 = 2

√
5λ2

1,

P′
4(λ2) = (λ2 – t1)(λ2 – t2)(λ2 – λ1) = 5 – 3

√
5 = –2

√
5λ2

2,

and after some calculation, we have

bn =
i(tn+6

2 – tn+6
1 )

2
√

3
+

λn+3
1 – λn+3

2
2(λ1 – λ2)

= –
1√
3

sin
4nπ

3
+

fn+3

2
, n ≥ –4. (200)

From (200), we have

b̂n := bn + bn–1 = –
1√
3

sin
4nπ

3
+

fn+3

2
–

1√
3

sin
4(n – 1)π

3
+

fn+2

2

=
1√
3

sin
2(2n – 1)π

3
+

fn+4

2
(201)

for n ≥ –3.
Using (200) and (201) into (193) and (194), we obtain

ζn = ζ
bn–4+bn–5
–1 ζ

bn–2
0 η

bn–3
–1 η

bn–3+bn–4
0

= ζ

1√
3

sin 2(2n–9)π
3 + fn

2
–1 ζ

– 1√
3

sin 4(n–2)π
3 + fn+1

2
0

× η
– 1√

3
sin 4(n–3)π

3 + fn
2

–1 η

1√
3

sin 2(2n–7)π
3 + fn+1

2
0 , (202)

and

ηn = ζ
bn–3
–1 ζ

bn–3+bn–4
0 η

bn–4+bn–5
–1 η

bn–2
0

= ζ
– 1√

3
sin 4(n–3)π

3 + fn
2

–1 ζ

1√
3

sin 2(2n–7)π
3 + fn+1

2
0

× η

1√
3

sin 2(2n–9)π
3 + fn

2
–1 η

– 1√
3

sin 4(n–2)π
3 + fn+1

2
0 , (203)

which are closed-form formulas for solutions to system (86).

Corollary 13 Assume that k = 0, l = 1, and a ∈C\ {0}. Then the general solution to system
(52) is given by

xn =
√

a
( x–1+

√
a

x–1–
√

a )b̂n–4 ( x0+
√

a
x0–

√
a )bn–2 ( y–1+

√
a

y–1–
√

a )bn–3 ( y0+
√

a
y0–

√
a )b̂n–3 + 1

( x–1+
√

a
x–1–

√
a )̂bn–4 ( x0+

√
a

x0–
√

a )bn–2 ( y–1+
√

a
y–1–

√
a )bn–3 ( y0+

√
a

y0–
√

a )̂bn–3 – 1
, n ∈N,

yn =
√

a
( x–1+

√
a

x–1–
√

a )bn–3 ( x0+
√

a
x0–

√
a )b̂n–3 ( y–1+

√
a

y–1–
√

a )b̂n–4 ( y0+
√

a
y0–

√
a )bn–2 + 1

( x–1+
√

a
x–1–

√
a )bn–3 ( x0+

√
a

x0–
√

a )̂bn–3 ( y–1+
√

a
y–1–

√
a )̂bn–4 ( y0+

√
a

y0–
√

a )bn–2 – 1
, n ∈N,

where the sequence bn is given by (200), while b̂n is given by (201).



Stević Advances in Difference Equations        (2019) 2019:294 Page 31 of 34

4.14 Solution to system (87)
This system is obtained from system (82) by interchanging letters ζ and η. Hence, its so-
lution is given by

ζn = η

Re((3+i)in–1)+λn–1
1 +λn–1

2
5

–1 η

Re((3+i)in–2)+λn+2
1 +λn+2

2
5

0

× ζ

Re((3+i)in–3)+λn+1
1 +λn+1

2
5

–1 ζ

Re((3+i)in)+λn
1 +λn

2
5

0 , (204)

and

ηn = η

Re((1+2i)in)+λn–1
1 +λn–1

2
5

–1 η

Re((1+2i)in–1)+λn+2
1 +λn+2

2
5

0

× ζ

Re((1+2i)in–2)+λn+1
1 +λn+1

2
5

–1 ζ

Re((1+2i)in–3)+λn
1 +λn

2
5

0 (205)

for n ≥ 2.
Formulas (204) and (205) present the closed-form formulas for general solution to sys-

tem (87).

Corollary 14 Assume that k = 0, l = 1, and a ∈C\ {0}. Then the general solution to system
(53) is given by

xn =
√

a
( y–1+

√
a

y–1–
√

a )̂an–5 ( y0+
√

a
y0–

√
a )̂an–2 ( x–1+

√
a

x–1–
√

a )̂an–3 ( x0+
√

a
x0–

√
a )̂an–4 + 1

( y–1+
√

a
y–1–

√
a )̂an–5 ( y0+

√
a

y0–
√

a )̂an–2 ( x–1+
√

a
x–1–

√
a )̂an–3 ( x0+

√
a

x0–
√

a )̂an–4 – 1
, n ≥ –1,

yn =
√

a
( y–1+

√
a

y–1–
√

a )an–4 ( y0+
√

a
y0–

√
a )an–1 ( x–1+

√
a

x–1–
√

a )an–2 ( x0+
√

a
x0–

√
a )an–3 + 1

( y–1+
√

a
y–1–

√
a )an–4 ( y0+

√
a

y0–
√

a )an–1 ( x–1+
√

a
x–1–

√
a )an–2 ( x0+

√
a

x0–
√

a )an–3 – 1
, n ≥ –1,

where the sequence an is given by (164), while the sequence ân := an + an–1 is given by (166).

4.15 Solution to system (88)
This system is obtained from system (78) by interchanging letters ζ and η. Hence, its so-
lution is given by

ηn = ζ
(–1)n–1+fn–1
0 η

(–1)n+fn
0 η

fn
–1, n ≥ –1, (206)

and

ζn = ζ
fn–1
0 η

fn
0 η

fn
–1 (207)

for n ∈N0.

Corollary 15 Assume that k = 0, l = 1, and a ∈C\ {0}. Then the general solution to system
(54) is given by

xn =
√

a
( x0+

√
a

x0–
√

a )fn–1 ( y0+
√

a
y0–

√
a )fn ( y–1+

√
a

y–1–
√

a )fn + 1

( x0+
√

a
x0–

√
a )fn–1 ( y0+

√
a

y0–
√

a )fn ( y–1+
√

a
y–1–

√
a )fn – 1

, n ∈N0,

yn =
√

a
( x0+

√
a

x0–
√

a )(–1)n–1+fn–1 ( y0+
√

a
y0–

√
a )(–1)n+fn ( y–1+

√
a

y–1–
√

a )fn + 1

( x0+
√

a
x0–

√
a )(–1)n–1+fn–1 ( y0+

√
a

y0–
√

a )(–1)n+fn ( y–1+
√

a
y–1–

√
a )fn – 1

, n ≥ –1.
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4.16 Solution to system (89)
This system of difference equations is obtained from system (74) by interchanging letters
ζ and η only. Hence, its solution is given by

ηn = η
fn+1
0 η

fn
–1, n ≥ –1, (208)

and consequently

ζn = η
fn+1
0 η

fn
–1 (209)

for n ∈N.
Formulas (208) and (209) are the closed-form formulas for general solution to system

(89).

Corollary 16 Assume that k = 0, l = 1, and a ∈C\ {0}. Then the general solution to system
(55) is given by

xn =
√

a
( y0+

√
a

y0–
√

a )fn+1 ( y–1+
√

a
y–1–

√
a )fn + 1

( y0+
√

a
y0–

√
a )fn+1 ( y–1+

√
a

y–1–
√

a )fn – 1
, n ∈ N,

yn =
√

a
( y0+

√
a

y0–
√

a )fn+1 ( y–1+
√

a
y–1–

√
a )fn + 1

( y0+
√

a
y0–

√
a )fn+1 ( y–1+

√
a

y–1–
√

a )fn – 1
, n ≥ –1.

Remark 2 As we have seen in Sect. 2, by using the changes of variables (13) the systems in
(12) are transformed to some two-dimensional linear systems of difference equations with
constant coefficients, which are further transformed to some linear difference equations
with constant coefficients, which are solvable. Hence, the systems in (11) when a = 0 are
easier to solve than the ones in the case a �= 0. Bearing in mind the fact that the case k =
0, l = 1 was essentially treated in [62] and [63] and that the main aim of the paper is to
present the above method for solving the systems for the case a �= 0, we left the case to the
interested reader as an exercise.

Remark 3 The case k = 1, l = 2, is treated in [70]. The case k = 0, l = 2, can be also treated
by using the method presented here.
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18. Stević, S., Iričanin, B., Šmarda, Z.: On a symmetric bilinear system of difference equations. Appl. Math. Lett. 89, 15–21

(2019)
19. Papaschinopoulos, G., Stefanidou, G.: Asymptotic behavior of the solutions of a class of rational difference equations.

Int. J. Difference Equ. 5(2), 233–249 (2010)
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49. Proskuryakov, I.V.: Problems in Linear Algebra. Nauka, Moscow (1984) (in Russian)
50. Riordan, J.: Combinatorial Identities. Wiley, New York (1968)
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65. Adamović, D.: Solution to problem 194. Mat. Vesn. 23, 236–242 (1971)
66. Alfred, B.U.: An Introduction to Fibonacci Discovery. The Fibonacci Association (1965)
67. Vorobiev, N.N.: Fibonacci Numbers. Birkhäuser, Basel (2002) (Russian original 1950)
68. Abel, N.H.: Mémoire sur les équations algébriques, ou l’on démontre l’impossibilité de la résolution de l’équation

générale du cinquième degré. In: Sylow, L., Lie, S. (eds.) Oeuvres Complètes de Niels Henrik Abel, Vol. I, 2nd edn.,
pp. 28–33. Grondahl & Son, Oslo (1881) (1824, in French)
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