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Abstract
A leader-following consensus for Caputo fractional multi-agent systems with
nonlinear intrinsic dynamics is investigated. The second Lyapunov method is used to
design a control protocol ensuring a consensus for two types of multi-agent systems.
Contrary to the previous studies on leader-following consensus, the investigation
covers systems with bounded and unbounded time-dependent Lipschitz coefficients
in the intrinsic dynamics. Moreover, coupling strength describing the interactions
between agents is considered to be a function of time.
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1 Introduction
A canonical problem that appears in the coordination of dynamic multi-agent networks
is the consensus problem: given initial values of nodes (agents), establish conditions un-
der which, through local interactions and computations, nodes (agents) asymptotically
reach an agreement upon a common state. The consensus problem plays an important role
in various contexts such as wireless communication networks, sensor networks, leader
election, clock phase synchronization, and air traffic control systems. It has been exten-
sively studied by numerous researchers from different perspectives. There already exists a
vast literature concerning first-order multi-agent systems [1–4], second-order multi-agent
systems [5–7], fractional-order multi-agent systems [8–10], and fractional-order multi-
agent systems with a leader [11–14]. This paper is concerned with the last-mentioned
case of systems, that is, we study a leader-following consensus for fractional multi-agent
systems. Fractional calculus is a generalization of differentiation and integration to the
arbitrary (non-integer) order. Fractional operators are excellent tools for modeling the
memory-dependent phenomena [15, 16]. Moreover, it was shown in [17] that fractional-
order derivative provides single neurons with a fundamental and general computation that
can contribute to efficient information processing. Presently, when computations become
faster and memory becomes cheaper, the application of fractional-order models is possi-
ble and affordable. Therefore, the stability properties of fractional-order neural networks
are extensively studied by many researchers, see, e.g., [18–22] and the references therein.
Many of real systems have been successfully described by models with fractional deriva-
tives (see, for example, viscoelastic polymers [23], semi-infinite transmission lines with
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losses [24], dielectric polarization [25]). In engineering, the digital fractional-order con-
troller was designed to control temperature in [26], the fractional-order PID controller was
used in [27] to control the trajectory of the flight path. For a recent account of applications
of fractional calculus in science and engineering, we refer the reader to [28].

In this paper, we consider a fractional-order system consisting of N agents, plus one ad-
ditional agent, which acts as the group leader and which is independent of all other agents
(followers). This means the agents have no influence on the dynamics of the leader. All
agents and the leader share the same intrinsic dynamics given by a nonlinear function. In
the literature, results concerning problems with intrinsic nonlinear dynamics have been
reported, for example, in [11, 13, 14, 29, 30]. In [29, 30], the authors consider the fixed-
time group consensus problems in networks of dynamic agents with unknown inherent
nonlinear dynamics and with intrinsic nonlinear dynamics and bounded uncertainties,
respectively. Systems are described by ordinary differential equations, and the results are
obtained using Lyapunov theory, algebraic graph theory, and fixed-time stability. Systems
more similar to the one considered in this paper, that is, fractional-order multi-agent sys-
tems, are investigated in [11, 13, 14]. The consensus control law is designed based on op-
timal control theory or algebraic graph theory and Lyapunov method. However, there are
two main differences with respect to our framework: in [11, 13, 14] the Lipschitz coeffi-
cient is a constant, while here we deal with the time-dependent Lipschitz coefficient. The
second difference is that we do not assume a constant coupling strength in the interactions
between agents. In our formulation, the coupling strength is a function of time. The main
advantage of the proposed approach is that we can analyze a more general case, which cov-
ers a wider class of systems comparing with the ones that have already been studied in the
literature. Moreover, it is worth to stress out that the coupling strength that we consider
as a function of time (non-constant) is more natural and realistic for applications.

The contribution of this paper is summarized as follows. By the Lyapunov function
method, we design a control law that guarantees the leader-following consensus: the state
of each follower asymptotically converges to the state of the leader. Both cases of bounded
Lipschitz coefficient and unbounded Lipschitz coefficient are studied. For any of these
cases, we propose a set of sufficient conditions to guarantee a consensus. Compared with
previous works, the major difficulty of the problem considered here is caused by the in-
trinsic nonlinear dynamics and is connected with its time-dependent Lipschitz coefficient
and the time-varying coefficients in the control protocol. It requires the application of
non-quadratic Lyapunov functions and their fractional derivatives different from the Ca-
puto derivative. To tackle this difficulty, an appropriate extension of the Lyapunov second
method is used.

The paper is organized in the following manner. Preliminaries section includes defini-
tions, lemmas, and remarks used in the sequel. The next section contains our main results.
After the introduction of the system of the model, the control protocol is proposed. Suffi-
cient conditions for the leader-following consensus are provided in two subsections with
two separate theorems. Theorem 1 concerns the case of multi-agent systems with intrin-
sic nonlinear dynamics described by a function with a bounded time-dependent Lipschitz
coefficient and time-varying coefficients in the control protocol. The most general case is
considered in Theorem 2. Namely, the function appearing in the intrinsic nonlinear dy-
namics has an unbounded time-dependent Lipschitz coefficient and coefficients in the
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control protocol are time-varying. In both cases, examples verifying theoretical discus-
sion are provided.

2 Preliminaries
In this section, we recall the necessary definitions and facts that will be used in the sequel.
Throughout the paper we follow the notation: L1([0, T)) denotes the space of functions
defined on [0, T) for which the absolute value is Lebesgue integrable; AC([0, T)) denotes
the space of functions defined on [0, T) that are absolutely continuous; C([0, T)) denotes
the space of functions defined on [0, T) that are continuous.

The Riemann–Liouville fractional derivative of order q ∈ (0, 1) of function m ∈
L1([0, T)), T ≤ ∞, is given by (see, e.g., [31])

RL
0 Dq

t m(t) =
1

Γ (1 – q)
d
dt

∫ t

0
(t – s)–qm(s) ds, t ∈ [0, T),

where Γ (z) :=
∫ ∞

0 tz–1 exp(–t) dt, z > 0, is the gamma function.
The Caputo fractional derivative of order q ∈ (0, 1) of function m ∈ AC([0, T)), T ≤ ∞,

is defined by (see, e.g., [31])

C
0 Dq

t m(t) =
1

Γ (1 – q)

∫ t

0
(t – s)–qm′(s) ds, t ∈ [0, T).

Let us consider the n-dimensional Caputo fractional-order system

C
0 Dq

t x(t) = f
(
t, x(t)

)
for t ∈ [0, T), x(0) = x0, (1)

where x : [0, T) → R
n, f ∈ C([0, T) × R

n,Rn), T ≤ ∞, and f (t, 0) ≡ 0, t ≥ 0. Observe that
x̄ = 0 is an equilibrium point of system (1), that is, C

0 Dq
t x̄ = 0 = f (t, x̄).

Definition 1 ([32]) An equilibrium point x̄ = 0 of system (1) is asymptotically stable if, for
any initial condition x0, a solution to (1) satisfies limt→∞ ‖x(t)‖ = 0, where ‖ · ‖ denotes an
arbitrary norm in R

n.

Similarly to integer-order systems, the Lyapunov second method can be used to analyze
the asymptotic stability of nonlinear fractional-order system (1) without explicitly solving
it. The main idea is to find an appropriate Lyapunov function for system (1). To this end,
let V be a Lyapunov function, i.e., V : [0, T) × � → R+ (where � ⊂ R

n, 0 ∈ �) is contin-
uous on [0, T) × � and it is locally Lipschitz with respect to its second argument. In the
literature, one can find mainly three types of derivatives of a Lyapunov function along the
trajectories of the solutions of system (1).

1. The Caputo fractional derivative of V . Let x : [0, T) → � be a solution of (1). Then

C
0 Dq

t V
(
t, x(t)

)
=

1
Γ (1 – q)

∫ t

0
(t – s)–q d

ds
(
V

(
s, x(s)

))
ds, t ∈ [0, T). (2)

This type of derivative is applicable for continuously differentiable Lyapunov
functions. It is mainly used for quadratic Lyapunov functions to study several stability
properties of fractional differential equations (see, for example, [33]). In the context
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of the Caputo fractional derivative of a Lyapunov function, the following lemma is
useful.

Lemma 1 ([32]) Let P ∈ R
n×n be a constant, symmetric, and positive definite matrix and

x : R+ →R
n be a function for which the Caputo fractional derivative exists. Then

1
2

C
0 Dq

t
(
xT (t)Px(t)

) ≤ xT (t)PC
0 Dq

t x(t), t ∈ [0, T).

2. The Dini fractional derivative of V (see [34]). Let t ∈ [0, T) and x ∈ �. Then

D+
(1)V (t, x) = lim sup

h→0

1
hq

[
V (t, x) –

[ t
h ]∑

r=1

(–1)r+1
qCrV

(
t – rh, x – hqf (t, x)

)]
, (3)

where qCr = q(q–1)(q–2)...(q–r+1)
r! .

Let us note that Dini derivative (3) is closer to both the Grunwald–Letnikov and
the Riemann–Liouville fractional derivatives than to the Caputo fractional derivative.
It does not depend on the initial value V (0, x0), which is typical for the Caputo
derivative. It is applicable for continuous Lyapunov functions.

Remark 1 In the general case one has D+
(1)V (t, x(t)) �= C

0 Dq
t V (t, x(t)), where x : [0, T) → �

is a solution of (1).

3. The Caputo fractional Dini derivative of V (see [34]). Let t ∈ [0, T) and x, x0 ∈ �,
where x0 is the initial condition of (1). Then

C
(1)D

q
+V (t, x; 0, x0) = lim sup

h→0+

1
hq

{
V (t, x) – V (0, x0)

–
[ t

h ]∑
r=1

(–1)r+1
qCr

(
V

(
t – rh, x – hqf (t, x)

)
– V (0, x0)

)}
(4)

or using the equality RL
0 Dq

t 1 = 1
Γ (1–q) t–q = lim suph→0+

1
hq

∑[ t
h ]

r=0(–1)r
qCr (see [31]) we

obtain the equivalent form

C
(1)D

q
+V (t, x; 0, x0)

= lim sup
h→0+

1
hq

{
V (t, x) +

[ t
h ]∑

r=1

(–1)r
qCrV

(
t – rh, x – hqf (t, x)

)}

– V (0, x0) lim sup
h→0+

1
hq

[ t
h ]∑

r=0

(–1)r
qCr

= lim sup
h→0+

1
hq

{
V (t, x) +

[ t
h ]∑

r=1

(–1)r
qCrV

(
t – rh, x – hqf (t, x)

)}
–

V (0, x0)
tqΓ (1 – q)

.
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Let us observe that derivative (4) depends significantly on both the fractional-order
q and the initial data (0, x0) of system (1). This type of derivative is close to the idea of
the Caputo fractional derivative. It is applicable for continuous Lyapunov functions.

Remark 2 For any t > 0 and x, x0 ∈ �, one has:

C
(1)D

q
+V (t, x; 0, x0) = D+

(1)V (t, x) –
V (0, x0)

tqΓ (1 – q)
,

C
(1)D

q
+V (t, x; 0, x0) = D+

(1)V (t, x), if V (0, x0) = 0,

C
(1)D

q
+V (t, x; 0, x0) < D+

(1)V (t, x), if V (0, x0) > 0.

In the next section, to prove the main results of the paper, we will use the following
lemmas.

Lemma 2 (Theorem 11 from [35]) Let x̄ = 0 be an equilibrium point for the nonau-
tonomous fractional-order system (1). Assume that there exists a Lyapunov function V (t, x)
such that

α1
(‖x‖) ≤ V (t, x) ≤ α2

(‖x‖), t ≥ 0, x ∈ �,

C
0 Dβ

t V
(
t, x(t)

) ≤ –α3
(‖x‖), t > 0,

where β ∈ (0, 1), functions αi ∈ C([0,∞), [0,∞)), i = 1, 2, 3, are strictly increasing and
αi(0) = 0. Then the equilibrium point x̄ = 0 of system (1) is asymptotically stable.

Lemma 3 (Theorem 3 from [36]) Let there exists the Lyapunov function V such that
V (t, 0) = 0, t ≥ 0, and

α1
(‖x‖) ≤ V (t, x) ≤ α2

(‖x‖), t ≥ 0, x ∈ �,

C
(1)D

q
+V (t, x; 0, x0) ≤ –α3

(‖x‖), t > 0, x, x0 ∈ �,

where functions αi ∈ C([0,∞), [0,∞)), i = 1, 2, 3, are strictly increasing and αi(0) = 0. Then
the equilibrium point x̄ = 0 of system (1) is asymptotically stable.

3 Main results
In this section, we consider the multi-agent network that consists of N agents and a leader.
The dynamics of each agent, labeled xi, i = 1, 2, . . . , N , is given by the following equation:

C
0 Dq

t xi(t) = f
(
t, xi(t)

)
+ ui(t) for i = 1, 2, . . . , N , xi(0) = xi

0, (5)

where q ∈ (0, 1), xi(t) ∈ R is the state and ui(t) is the control input of the ith agent at the
moment t, f ∈ C([0, T) × R,R), T ≤ ∞, is a nonlinear function describing the intrinsic
dynamics for the ith agent. The virtual leader for multi-agent system (5) is an isolated
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agent described by

C
0 Dq

t x0(t) = f
(
t, x0(t)

)
, x0(0) = x0

0, (6)

where x0 is the state of the virtual leader. All agents and the leader share the same intrinsic
dynamics.

In what follows, it is assumed that fractional-order system (5) and (6) has a unique solu-
tion for any initial values (x0

0, x1
0, . . . , xN

0 )T (for the existence results see, for example, [31]).

Definition 2 ([3]) Multi-agent system (5) and (6) is said to achieve the leader-following
consensus if a solution to (5) and (6) satisfies

lim
t→∞

∣∣xi(t) – x0(t)
∣∣ = 0, i = 1, 2, . . . , N ,

for any initial values x0
i ∈ R, i = 0, 1, 2, . . . , N .

The control protocol is proposed as

ui(t) = –β(t)

[ N∑
j=1

aij
(
xi(t) – xj(t)

)
+ bi

(
xi(t) – x0(t)

)]
, (7)

where aij, i, j = 1, 2, . . . , N , is the (i, j)th entry of the adjacency matrix A ∈R
N×N associated

with the undirected graph G that describes the information exchange between agents;
bi = 1, i = 1, 2, . . . , N , if there exists the information flow from the virtual leader to agent i
and bi = 0 otherwise, β ∈ C([0,∞), (0,∞)) is the coupling strength function.

In what follows, B = diag{b1, b2, . . . , bN } and H = L + B, where matrix L = [lij] ∈ R
N×N

with lii =
∑

i�=j aij and lij = –aij, i �= j, is called the graph Laplacian matrix induced by
graph G .

Let us denote by yi(t) = xi(t) – x0(t) the state error between the ith agent and the leader.
Then system (5) and (6) with ui given by (7) implies that

C
0 Dq

t yi(t) = f
(
t, yi(t) + x0(t)

)
– f

(
t, x0(t)

)

– β(t)

[ N∑
j=1

aij
(
yi(t) – yj(t)

)
+ biyi(t)

]
, for t > 0,

yi(0) = xi
0 – x0

0, i = 1, 2, . . . , N .

(8)

Let Λ = P–1HP be the Jordan canonical form of matrix H , where P = {pij} ∈ R
N×N and

its inverse P–1 = {p̄ij} ∈R
N×N .

Set z(t) = P–1y(t), where y(t) = (y1(t), y2(t), . . . , yN (t))T . Then (8) can be rewritten in the
vector form

C
0 Dq

t z(t) = –β(t)Λz(t) + P–1F
(
t, Pz(t)

)
, for t > 0,

z(0) = z0, (9)
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where

F(t, y) =
(
f (t, y1 + x0) – f (t, x0), f (t, y2 + x0) – f (t, x0),

. . . , f (t, yN + x0) – f (t, x0)
)T ,

z0 = P–1y0, y0 =
(
x1

0 – x0
0, x2

0 – x0
0, . . . , xN

0 – x0
0
)T .

Remark 3 Observe that under an assumption f (t, 0) ≡ 0 for t ≥ 0, z̄ = 0 is an equilibrium
point of system (9). On the other hand, if z̄ = 0, then y(t) = Pz̄ = 0. Therefore, the fact
that multi-agent system (5) and (6) with the proposed control law (7) achieves a leader-
following consensus is equivalent to the asymptotic stability of the equilibrium point z̄ = 0
of system (9).

For M ∈R
N×N , we consider the norm ‖M‖1 = max1≤j≤N

∑N
i=1 |mij|.

In the following two subsections, using the direct Lyapunov method, we will prove suffi-
cient conditions for the leader-following consensus in system (5) and (6) with the control
protocol given by (7). For this purpose, we assume that:

A1 f (t, 0) ≡ 0 for t ≥ 0, i.e., z̄ = 0 is an equilibrium point of system (9).
A2 Function f is Lipschitz, i.e., there exists a function L ∈ C([0,∞), (0,∞)) such that

|f (t, z) – f (t, v)| ≤ L(t)|z – v| for z, v ∈R and t ≥ 0.

3.1 Intrinsic nonlinear dynamics with the bounded Lipschitz coefficient and
time-varying coefficients in the control protocol

Theorem 1 Assume that assumptions A1 and A2 hold. Additionally, let
(i) the Lipschitz coefficient L ∈ C([0,∞), (0,∞)) be bounded, i.e., there exists a constant

K > 0 such that L(t) ≤ K , t ≥ 0;
(ii) there exists a constant β̄ > K ‖P‖1‖P–1‖1

min1≤i≤N {λi} such that function β satisfies the condition
β(t) ≥ β̄ for all t ≥ 0.

Then multi-agent system (5) and (6) with control law (7) achieves a leader-following con-
sensus.

Proof Consider the quadratic function V (t, x) = xT x with x ∈ R
N . Applying Lemma 1 to

the solution z(·), t > 0, of system (9), we get

C
0 Dq

t V
(
t, z(t)

) ≤ 2
N∑

i=1

zi(t)C
0 Dq

t zi(t)

= 2
N∑

i=1

zi(t)

[
–β(t)λizi(t)

+
N∑

j=1

p̄ij

(
f

(
t,

N∑
k=1

pjkzk(t) – x0(t)

)
– f

(
t, x0(t)

))]

≤ 2
N∑

i=1

zi(t)

[
–β̄λizi(t) +

N∑
j=1

p̄ij

(
L(t)

N∑
k=1

pjk
∣∣zk(t)

∣∣
)]

≤ –2β̄

N∑
i=1

λi
(
zi(t)

)2 + L(t)
N∑

i=1

N∑
j=1

p̄ij

N∑
k=1

pjk2
∣∣zi(t)

∣∣∣∣zk(t)
∣∣
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≤ –2β̄

N∑
i=1

λi
(
zi(t)

)2 + L(t)
N∑

i=1

N∑
j=1

p̄ij

N∑
k=1

pjk
(
zi(t)

)2

+ L(t)
N∑

i=1

N∑
j=1

p̄ij

N∑
k=1

pjk
(
zk(t)

)2

≤ –2
(
β̄ min

i
{λi} – K

∥∥P–1∥∥
1‖P‖1

) N∑
i=1

(
zi(t)

)2. (10)

By assumptions A2 and (i), it follows that there exists a function α3 ∈ C([0,∞), [0,∞)),
α3(0) = 0 such that C

0 Dq
t V (t, z(t)) ≤ –α3(‖z‖). According to Lemma 2, the equilibrium point

z̄ = 0 of system (9) is asymptotically stable. Therefore, by the substitution Z(t) = P–1Y (t),
we get limt→∞ |yi(t)| = 0 or limt→∞ |xi(t) – x0(t)| = 0, i = 1, 2, . . . , N , which proves the
claim. �

Remark 4 If the Lipschitz coefficient in assumption A2 is a constant, i.e., L(t) ≡ l, then
Theorem 1 is reduced to Theorem 11 from [13].

To illustrate the effectiveness of the sufficient conditions given in Theorem 1, we con-
sider the modified example from [13].

Example 1 Let us consider a network of seven followers and a leader with matrices

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 0 0
1 0 1 0 1 0 0
0 1 0 0 0 1 0
1 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B = diag{0, 0, 1, 0, 0, 0, 0}.

Therefore, the model is

C
0 Dq

t x0(t) = e–t sin
(
x0(t)

)
,

C
0 Dq

t x1(t) = e–t sin
(
x1(t)

)
– 90

(
2x1(t) – x2(t) – x4(t)

)
,

C
0 Dq

t x2(t) = e–t sin
(
x2(t)

)
– 90

(
3x2(t) – x1(t) – x3(t) – x5(t)

)
,

C
0 Dq

t x3(t) = e–t sin
(
x3(t)

)
– 90

(
3x3(t) – x2(t) – x6(t) – x0(t)

)
,

C
0 Dq

t x4(t) = e–t sin
(
x4(t)

)
– 90

(
2x4(t) – x1(t) – x7(t)

)
,

C
0 Dq

t x5(t) = e–t sin
(
x5(t)

)
– 90

(
x5(t) – x2(t)

)
,

C
0 Dq

t x6(t) = e–t sin
(
x6(t)

)
– 90

(
x6(t) – x3(t)

)
,

C
0 Dq

t x7(t) = e–t sin
(
x7(t)

)
– 90

(
x7(t) – x4(t)

)
,

xi(0) = x0
i , i = 1, 2, . . . , 7. (11)
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Figure 1 The states of system (11) with initial values
(1, –5, 8, –9, 2, 10, –3, 0)T . The leader state is drawn in
thick black and the states of followers are in blue

Figure 2 The states of system (11) with initial values
(18, –50, 80, –19, 20, 60, –33, 0)T . The leader state is
drawn in thick black and the states of followers are
in blue

The eigenvalues of the matrix H = L + B are 0.07, 0.382, 0.6767, 1.4080, 2.6180,
3.2982, and 4.5472. We also have that ‖P‖1 = 2.4835 and ‖P–1‖1 = 2.3669. The case
with f (t, z) = 1

6 sin(z) was studied in [13]. Here we consider the nonlinear intrinsic dy-
namics of the virtual leader given by f (t, z) = e–t sin(z). In this case, L(t) = e–t is a time-
varying function, so the results of [13] could not be applied. However, if we choose
β̄ = 90 and K = 1, then the conditions of Theorem 1 are satisfied and, what follows,
the leader-following consensus is achieved. Figures 1 and 2 show the states of all agents
with the nonlinear intrinsic dynamics of the virtual leader f (t, z) = e–t sin(z) and two
different initial values (1, –5, 8, –9, 2, 10, –3, 0)T and (18, –50, 80, –19, 20, 60, –33, 0)T , re-
spectively. It could be seen that the state of each follower asymptotically converges
to the state of the leader, i.e., the leader-following consensus is achieved. Figures 1
and 2 show the states of all agents with initial values (1, –5, 8, –9, 2, 10, –3, 0)T and
(18, –50, 80, –19, 20, 60, –33, 0)T , respectively. When the nonlinear intrinsic dynamics
of the virtual leader given by f (t, z) = sin(t) sin(z) or the coupling strength function by
β(t) = 90 + sin(t) assumptions of Theorem 1 still hold, and the leader-following con-
sensus is achieved. Figures 3 and 4 show the states of all agents with initial values
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Figure 3 The states of all agents, from Example 1,
with f (t, z) = sin(t) sin(z). The leader state is drawn in
thick black and the states of followers are in blue

Figure 4 The states of all agents, from Example 1,
with β(t) = 90 + sin(t). The leader state is drawn in
thick black and the states of followers are in blue

(1, –5, 8, –9, 2, 10, –3, 0)T , and with f (t, z) = sin(t) sin(z) and β(t) = 90 + sin(t), respec-
tively. Apparently, the state of each follower asymptotically converges to the state of
the leader, i.e., the leader-following consensus is achieved. We point out that the be-
havior of state trajectories is similar in spite of changing the coupling strength func-
tion β and the initial values. Moreover, we observe very fast convergence to the
consensus.

Remark 5 The value obtained for β̄ is conservative. As shown in Figs. 1–4, the bound for
function β can be in practice much smaller than theoretical one β̄ . The conservativeness of
the bound is caused by: (1) the bound on the Caputo derivative of the Lyapunov function.
In this respect, the approach which does not rely on the Lyapunov second method could
provide a possible alternative; (2) the generality of the considered system. In this respect,
the results for the case of the system with the constant coupling strength and the constant
Lipschitz coefficient have been reported in [13].
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3.2 Intrinsic nonlinear dynamics with an unbounded Lipschitz coefficient and
time-varying coefficients in the control protocol

Theorem 2 Assume that assumptions A1 and A2 hold. Additionally, let there exist a func-
tion g ∈ C([0,∞), (0,∞)) such that

L(t)‖P‖1
∥∥P–1∥∥

1 +
RL
0 Dq

t g(t)
g(t)

< 2β(t) min
1≤i≤N

λi, t ≥ 0. (12)

Then multi-agent system (5) and (6) with control law (7) achieves a leader-following con-
sensus.

Proof Observe that using the quadratic function V (t, x) = xT x, as in the proof of The-
orem 1, we obtain inequality (10), which is not giving any bound of the Caputo frac-
tional derivative C

0 Dq
t V (t, z(t)) since now L could be unbounded. Therefore, we consider

the Lyapunov function V (t, x) = g(t)xT x, x ∈ R
N . By formula (3), for any point z ∈ R

N ,
z = (z1, z2. . . . , zN ), and t > 0, the Dini fractional derivative for system (9) is

D+
(5)V (t, z)

= lim sup
h→0

1
hq

[
g(t)

N∑
i=1

(zi)2 –
[ t

h ]∑
r=1

(–1)r+1
qCrg(t – rh)

N∑
i=1

(
zi – hqGi(t, z)

)2
]

= lim sup
h→0

1
hq

[
g(t)

( N∑
i=1

(zi)2 –
N∑

i=1

(
zi – hqGi(t, z)

)2
)

+
[ t

h ]∑
r=0

(–1)r
qCrg(t – rh)

N∑
i=1

(
zi – hqGi(t, z)

)2
]

= lim sup
h→0

1
hq

[
hqg(t)

N∑
i=1

Gi(t, z)
(
2zi – hqGi(t, z)

)

+

( N∑
i=1

(
zi – hqGi(t, z)

)2
) [ t

h ]∑
r=0

(–1)r
qCrg(t – rh)

]

= lim sup
h→0

g(t)
N∑

i=1

Gi(t, z)
(
2zi – hqGi(t, z)

)

+

( N∑
i=1

lim sup
h→0

(
zi – hqGi(t, z)

)2
)

lim sup
h→0

1
hq

[ t
h ]∑

r=0

(–1)r
qCrg(t – rh)

= 2g(t)
N∑

i=1

Gi(t, z)(zi) +

( N∑
i=1

(zi)2

)
RL
0 Dqg(t), (13)

where Gi(t, z) = –β(t)λizi +
∑N

j=1 p̄ij(f (t,
∑N

k=1 pjkzk – x0) – f (t, x0)).
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Hence

g(t)
N∑

i=1

Gi(t, z)zi

= –β(t)g(t)
N∑

i=1

λi(zi)2 + g(t)
N∑

j=1

p̄ij

(
f

(
t,

N∑
k=1

pjkzk – x0(t)

)
– f (t, x0)

)
zi

≤
(

–β(t)g(t) min
1≤i≤N

{λi} + g(t)L(t)
∥∥P–1∥∥

1‖P‖1

) N∑
i=1

(zi)2. (14)

Substituting (14) into (13) we get

D+
(5)V (t, z)

≤
(

–β(t)g(t) min
1≤i≤N

{λi} + g(t)L(t)
∥∥P–1∥∥

1‖P‖1 + RL
0 Dqg(t)

) N∑
i=1

(zi)2, t > 0. (15)

The claim follows by inequality (15), assumption (12), Remark 2, and Lemma 3. �

Remark 6 Note that the main difficulty in the application of sufficient conditions provided
by Theorem 2 is connected with obtaining an appropriate function g in the Lyapunov
function V (t, x) = g(t)xT x.

The next example illustrates Theorem 2.

Example 2 Let us consider a network of seven followers and a leader, modeled by system
(5) and (6) with control (7), where matrices A and B are defined in Example 1. Now, the
nonlinear intrinsic dynamics of the leader is given by f (t, z) = L(t)z with

L(t) =
1

‖P‖1‖P–1‖1Γ (1 – q)
Γ (1 – q)Eq(tq) – 1.1

tq(Eq(–tq) + 0.1)
≥ 0,

where ‖P‖1 = 2.4835 and ‖P–1‖1 = 2.3669 (see Example 1). Please note that the Lipschitz
coefficient L(·) is not bounded (see Fig. 5).

Let us consider β(t) = 10Eq(tq)
tq min1≤i≤7 λi

and the Lyapunov function V (t, z) = (Eq(–tq) +
0.1)

∑7
i=1(zi)2 for t ≥ 0, z ∈R

7. Then inequality (12) reduces to

L(t)g(t)‖P‖1
∥∥P–1∥∥ + RL

0 Dqg(t) – 2g(t)β(t) min
1≤i≤7

λi

=
Eq(tq)

tq –
1.1

tqΓ (1 – q)
+ RL

0 Dq(Eq
(
–tq) + 0.1

)
– 2

(
Eq

(
–tq) + 0.1

)10Eq(tq)
tq

=
Eq(tq)

tq –
1.1

tqΓ (1 – q)
– Eq

(
–tq) +

1.1
tqΓ (1 – q)

– 2
(
Eq

(
–tq) + 0.1

)10Eq(tq)
tq

≤ –
Eq(tq)

tq

(
–1 + 10Eq

(
–tq) + 1

)
= –10

Eq(tq)
tq Eq

(
–tq) < 0.

According to Theorem 2, the multi-agent system achieves the leader-following consen-
sus, i.e., limt→∞ |xi(t) – x0(t)| = 0, i = 1, 2, . . . , 7. Figure 6 shows the states of all agents
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Figure 5 Graph of the function L, from Example 2,
for various q = 0.3, 0.5, 0.8

Figure 6 The states of all agents from Example 2.
The leader state is drawn in thick black and the
states of followers are in blue

with initial values (1, –5, 8, –9, 2, 10, –3, 0)T . It could be seen that the state of each follower
asymptotically converges to the state of the leader.

4 Conclusions
The consensus problem is a key point in the dynamic multi-agent networks. In this pa-
per, a leader-following consensus problem of Caputo fractional multi-agent systems was
studied. Since asymptotic stability of the properly transformed system ensures the con-
sensus in the considered model, stability analysis with the use of the second Lyapunov
method was performed. We proposed a control protocol under which two types of exam-
ined multi-agent systems achieve a consensus. As a result, a set of sufficient conditions was
derived to guarantee a consensus. Finally, numerical examples were presented to show the
effectiveness of our theoretical results. Since many real-world phenomena are described
by directed networks, such as the World Wide Web or mobile networks, as the future
work the analysis of the case when the information exchange between agents is described
by a directed graph can be considered. Investigating our approach to design a control law
that guarantees the follower agents tracking their corresponding leaders in each subgroup
(group consensus) [37] does also represent an interesting research venue. Other impor-
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tant directions of further investigation are scaled consensus with and without time delay
[38–40] for fractional multi-agent systems problems. Those problems will be studied in
subsequent papers.
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