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Abstract
In this paper, we investigate some new nonlinear dynamic integral inequalities
containing integration on infinite interval on time scales, which provide explicit
bounds on unknown functions. Our results not only generalize some dynamic
inequalities in related literature, but also are new even for the continuous and discrete
time cases. Two examples are given to illustrate the present results.
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1 Introduction
The theory of time scales, as a unification of the continuous and discrete analysis, was
initiated by Stefan Hilger [1] in 1988. Since then, more and more authors have been inter-
ested in this area. Along with the in-depth research into the theory, researchers find it not
only can be used in pure mathematics but also is an important tool in many branches of
science and engineering such as 3D tracking of shape [2], DNA dynamics [3], and so on.

As one of the most fundamental topics, the analysis of dynamic equations on time scales
has been extensively investigated in recent years, see [4–31]. Because dynamic inequalities
play an important role in qualitative analysis of dynamic equations on time scales, there
have been plenty of results focused on them, we refer the readers to [32–53]. Among these
inequalities, the well-known Gronwall type inequalities have been intensively investigated
due to their wide applications. However, to the best of our knowledge, Gronwall type in-
equalities containing integration on infinite interval have received less attention. Recent
results in this direction include the works of [32, 33]. For instance, Meng et al. [33] investi-
gated some integral inequalities on time scales containing integration on infinite interval

up(t) ≤ a(t) +
∫ ∞

t

[
f (s)up(s) + g(s)u(s) + h(s)

]
�s, t ∈ T

κ , (1)

where p is a real constant, u, a, f , g, h : Tκ →R+ are rd-continuous functions.
In this paper, we establish some new nonlinear dynamic inequalities containing inte-

gration on infinite interval on time scales. Our results not only generalize some dynamic
inequalities that have been studied in [33], but also are new even for the continuous and
discrete time cases.
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2 Preliminaries
In what follows, we always assume that R denotes the set of real numbers, R+ = [0,∞), T is
an arbitrary time scale (nonempty closed subset of R), Tκ is defined as follows: If T has a
maximum m and m is left-scattered, then T

κ = T – {m}, otherwise T
κ = T. R denotes the

set of all regressive and rd-continuous functions, R+ = {p ∈ R : 1 + μ(t)p(t) > 0 for all t ∈
T}. The “circle minus” addition � defined by (p � q)(t) := p(t)–q(t)

1+μ(t)q(t) for all t ∈ T
κ .

The following lemmas are useful in the proof of the main results of this paper.

Lemma 2.1 Let m > 0, n > 0, p > 0, α > 0, and β > 0 be given, then for each x ≥ 0,

mxα – nxβ ≤ m(β – α)
β – p

(
(β – p)n
(α – p)m

)(α–p)/(α–β)

xp (2)

holds for the cases when 0 < p < α < β or 0 < β < α < p.

Proof If x = 0, then it is easy to see that inequality (2) holds. So we only prove that in-
equality (2) holds when x > 0. For the case 0 < p < α < β , set F(x) = mxα–p – nxβ–p, x > 0,
where m > 0 and n > 0. Let F ′(x) = 0, we get x0 = ( m(α–p)

n(β–p) )1/(β–α). Since ∀x ∈ (0, x0), F ′(x) > 0;
∀x ∈ (x0, +∞), F ′(x) < 0, F attains its maximum at x0 = ( m(α–p)

n(β–p) )1/(β–α) and Fmax = F(x0) =
m(β–α)

β–p ( (β–p)n
(α–p)m )(α–p)/(α–β). Thus, (2) holds. For the case when 0 < β < α < p, by a similar ar-

gument with the case p < α < β , we can get (2) holds. The proof is complete. �

Lemma 2.2 ([54]) Assume that x ≥ 0, p ≥ q ≥ 0, and p 
= 0, then for any K > 0,

xq/p ≤ q
p

K (q–p)/px +
p – q

p
Kq/p.

Lemma 2.3 ([4, Theorem 6.1]) Suppose that supt∈Tκ t = ∞, x, q ∈ Crd(Tκ ,R+), p ∈R+, and
x is delta differential at t ∈ T

κ , then

x�(t) ≥ p(t)x(t) – q(t), t ∈ T
κ ,

implies

x(t) ≤ x(∞)e�p(∞, t) +
∫ ∞

t
q(s)ep

(
t,σ (s)

)
�s, t ∈ T.

3 Main results
In this section, we deal with some nonlinear inequalities on time scales. For convenience,
we always assume that t ≥ t0, t ∈ T

κ .

Theorem 3.1 Assume that x, f , g, h, a, b, c, m, n ∈ Crd(Tκ ,R+), k, l ∈ Crd(Tκ , (0,∞)),
μ(t)F(t) < 1, eG�(–F)(∞, t) < ∞ for t ∈ T

κ , p, q, r, α, and β are constants satisfying
(i) 0 ≤ q ≤ p, 0 ≤ r ≤ p, p < α < β ; or

(ii) 0 ≤ q ≤ p, 0 ≤ r ≤ p, 0 < β < α < p.
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Suppose that x satisfies

xp(t) ≤ f (t) + g(t)
∫ ∞

t

{
a(s)xp(s) + b(s)xq(s) + c(s) + m(s)

∫ ∞

s
n(ξ )xr(ξ )�ξ

+ h(s)
[
l(s)xα

(
σ (s)

)
– k(s)xβ

(
σ (s)

)]}
�s, t ∈ T

κ , (3)

then, for any K1 > 0 and K2 > 0,

x(t) ≤
(

f (t) + g(t)
∫ ∞

t
C(s)e(–F)�G

(
t,σ (s)

)
�s

)1/p

, t ∈ T
κ , (4)

where

F(t) := a(t)g(t) +
q
p

K (q–p)/p
1 b(t)g(t) +

r
p

K (r–p)/p
2 m(t)

∫ ∞

t
n(ξ )g(ξ )�ξ , (5)

G(t) := h(t)B(t)g
(
σ (t)

)
, (6)

A(t) := a(t)f (t) +
q
p

K (q–p)/p
1 b(t)f (t) +

p – q
p

Kq/p
1 b(t)

+ c(t) + m(t)
∫ ∞

t
n(ξ )

(
r
p

K (r–p)/p
2 f (ξ ) +

p – r
p

Kr/p
2

)
�ξ

+ h(t)B(t)f
(
σ (t)

)
, (7)

B(t) :=
l(t)(β – α)

β – p

(
(β – p)k(t)
(α – p)l(t)

)(α–p)/(α–β)

, (8)

C(t) :=
A(t)

1 + μ(t)G(t)
. (9)

Proof By Lemma 2.1 and (3), we have

xp(t) ≤ f (t) + g(t)
∫ ∞

t

[
a(s)xp(s) + b(s)xq(s) + c(s) + m(s)

∫ ∞

s
n(ξ )xr(ξ )�ξ

+ h(s)B(s)xp(σ (s)
)]

�s, t ∈ T
κ , (10)

where B(t) is defined as in (8). Denote

z(t) =
∫ ∞

t

[
a(s)xp(s) + b(s)xq(s) + c(s) + m(s)

∫ ∞

s
n(ξ )xr(ξ )�ξ

+ h(s)B(s)xp(σ (s)
)]

�s, t ∈ T
κ . (11)

From the assumptions on x, a, b, c, m, n, h, B, (10), and (11), we obtain z is nonincreasing
and

x(t) ≤ (
f (t) + g(t)z(t)

)1/p, t ∈ T
κ . (12)
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In view of (11) and (12), we have

z�(t) = –
[

a(t)xp(t) + b(t)xq(t) + c(t) + m(t)
∫ ∞

t
n(ξ )xr(ξ )�ξ + h(t)B(t)xp(σ (t)

)]

≥ –
[

a(t)
(
f (t) + g(t)z(t)

)
+ b(t)

(
f (t) + g(t)z(t)

)q/p + c(t)

+ m(t)
∫ ∞

t
n(ξ )

(
f (ξ ) + g(ξ )z(ξ )

)r/p
�ξ

+ h(t)B(t)
(
f
(
σ (t)

)
+ g

(
σ (t)

)
z
(
σ (t)

))]
, t ∈ T

κ . (13)

Using Lemma 2.2 on the right-hand side of (13), for any K1 > 0 and K2 > 0, we obtain

z�(t) ≥ –
[

a(t)
(
f (t) + g(t)z(t)

)
+ b(t)

[
q
p

K (q–p)/p
1

(
f (t) + g(t)z(t)

)
+

p – q
p

Kq/p
1

]

+ c(t) + m(t)
∫ ∞

t
n(ξ )

[
r
p

K (r–p)/p
2

(
f (ξ ) + g(ξ )z(ξ )

)
+

p – r
p

Kr/p
2

]
�ξ

+ h(t)B(t)
(
f
(
σ (t)

)
+ g

(
σ (t)

)
z
(
σ (t)

))]

≥ –
[

a(t)f (t) + a(t)g(t)z(t) +
q
p

K (q–p)/p
1 b(t)

(
f (t) + g(t)z(t)

)
+

p – q
p

Kq/p
1 b(t)

+ c(t) +
r
p

K (r–p)/p
2 m(t)z(t)

∫ ∞

t
n(ξ )g(ξ )�ξ

+ m(t)
∫ ∞

t
n(ξ )

(
r
p

K (r–p)/p
2 f (ξ ) +

p – r
p

Kr/p
2

)
�ξ

+ h(t)B(t)g
(
σ (t)

)
z
(
σ (t)

)
+ h(t)B(t)f

(
σ (t)

)]

= –
[
F(t)z(t) + G(t)z

(
σ (t)

)
+ A(t)

]
, t ∈ T

κ , (14)

where F(t), G(t), and A(t) are defined as in (5), (6), and (7). From (14) we have

z�(t) ≥ –
[
F(t)z(t) + G(t)

(
z(t) + μ(t)z�(t)

)
+ A(t)

]

= –
[
F(t) + G(t)

]
z(t) – G(t)μ(t)z�(t) – A(t), t ∈ T

κ ,

which yields

[
1 + μ(t)G(t)

]
z�(t) ≥ –

[
F(t) + G(t)

]
z(t) – A(t), t ∈ T

κ ,

that is,

z�(t) ≥ –
F(t) + G(t)

1 + μ(t)G(t)
z(t) –

A(t)
1 + μ(t)G(t)

=
(
(–F) � G

)
(t)z(t) –

A(t)
1 + μ(t)G(t)

=
(
(–F) � G

)
(t)z(t) – C(t), t ∈ T

κ , (15)
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where C(t) is defined as in (9). Note that z is rd-continuous, and from the assumption
μ(t)F(t) < 1, t ∈ T

κ , we get (–F) � G ∈R+. Then, by Lemma 2.3 and (15), we obtain

z(t) ≤ z(∞)e�((–F)�G)(∞, t) +
∫ ∞

t
C(s)e(–F)�G

(
t,σ (s)

)
�s, t ∈ T

κ . (16)

From eG�(–F)(∞, t) < ∞ and �((–F) � G) = (G � (–F)), we have e�((–F)�G)(∞, t) < ∞. Ac-
cording to z(∞) = 0 and (16), we obtain

z(t) ≤
∫ ∞

t
C(s)e(–F)�G

(
t,σ (s)

)
�s, t ∈ T

κ . (17)

Combining (12), we get the desired inequality (4). This completes the proof. �

If we let h(t) ≡ 0 in Theorem 3.1, then we obtain the following corollary.

Corollary 3.1 Assume that x, f , g , a, b, c, m, n, p, q, r, and F are defined the same as in
Theorem 3.1, e�(–F)(∞, t) < ∞ for t ∈ T

κ ,

xp(t) ≤ f (t) + g(t)
∫ ∞

t

[
a(s)xp(s) + b(s)xq(s) + c(s)

+ m(s)
∫ ∞

s
n(ξ )xr(ξ )�ξ

]
�s, t ∈ T

κ ,

then, for any K1 > 0 and K2 > 0,

x(t) ≤
(

f (t) + g(t)
∫ ∞

t
A(s)e(–F)

(
t,σ (s)

)
�s

)1/p

, t ∈ T
κ ,

where

A(t) := a(t)f (t) +
q
p

K (q–p)/p
1 b(t)f (t) +

p – q
p

Kq/p
1 b(t)

+ c(t) + m(t)
∫ ∞

t
n(ξ )

(
r
p

K (r–p)/p
2 f (ξ ) +

p – r
p

Kr/p
2

)
�ξ .

Remark 3.1 If g(t) ≡ 1, m(t) ≡ 0, and q = 1, then Corollary 3.1 reduces to Theorem 3.3 in
[33].

Theorem 3.2 Assume that x, f , g , h, a, b, c, k, l, p, q, α, β , B, and G are defined the same
as in Theorem 3.1, μ(t)̃F(t) < 1 and eG�(–F̃)(∞, t) < ∞ for t ∈ T

κ . Suppose that x satisfies

xp(t) ≤ f (t) + g(t)
∫ ∞

t

[
a(s)xp(s) + b(s)xq(s) + c(s)

]
�s

+ g(t)
∫ t

t0

h(s)
[
k(s)xβ

(
σ (s)

)
– l(s)xα

(
σ (s)

)]
�s, t ∈ T

κ , (18)

then, for any K1 > 0,

x(t) ≤
(

f (t) + g(t)
∫ ∞

t
C̃(s)e(–F̃)�G

(
t,σ (s)

)
�s

)1/p

, t ∈ T
κ , (19)
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where

F̃(t) := a(t)g(t) +
q
p

K (q–p)/p
1 b(t)g(t), (20)

Ã(t) := a(t)f (t) +
q
p

K (q–p)/p
1 b(t)f (t) +

p – q
p

Kq/p
1 b(t) + c(t) + h(t)B(t)f

(
σ (t)

)
, (21)

C̃(t) :=
Ã(t)

1 + μ(t)G(t)
. (22)

Proof Denote

z(t) =
∫ ∞

t

[
a(s)xp(s) + b(s)xq(s) + c(s)

]
�s

+
∫ t

t0

h(s)
[
k(s)xβ

(
σ (s)

)
– l(s)xα

(
σ (s)

)]
�s, t ∈ T

κ . (23)

From (18) and (23), we have

x(t) ≤ (
f (t) + g(t)z(t)

)1/p, t ∈ T
κ . (24)

In view of Lemma 2.1, (23), and (24), we have

z�(t) = –
[
a(t)xp(t) + b(t)xq(t) + c(t)

]
+ h(t)

[
k(t)xβ

(
σ (t)

)
– l(t)xα

(
σ (t)

)]

≥ –
[
a(t)xp(t) + b(t)xq(t) + c(t)

]
– h(t)B(t)xp(σ (t)

)

≥ –
[
a(t)

(
f (t) + g(t)z(t)

)
+ b(t)

(
f (t) + g(t)z(t)

)q/p + c(t)

+ h(t)B(t)
(
f
(
σ (t)

)
+ g

(
σ (t)

)
z
(
σ (t)

))]
, t ∈ T

κ . (25)

Using Lemma 2.2 on the right-hand side of (25), for any K1 > 0, we obtain

z�(t) ≥ –
[

a(t)
(
f (t) + g(t)z(t)

)
+ b(t)

[
q
p

K (q–p)/p
1

(
f (t) + g(t)z(t)

)
+

p – q
p

Kq/p
1

]

+ c(t) + h(t)B(t)
(
f
(
σ (t)

)
+ g

(
σ (t)

)
z
(
σ (t)

))]

= –
[̃
F(t)z(t) + G(t)z

(
σ (t)

)
+ Ã(t)

]
, (26)

where F̃(t), G(t), and Ã(t) are defined as in (20), (6), and (21). By a similar argument with
Theorem 3.1 in the rest of the proof, one can prove that (19). This completes the proof. �

Theorem 3.3 Assume that x, f , g , h, a, b, c, p, q, and r are defined the same as in Theo-
rem 3.1, k, l ∈ Crd(Tκ ,R+), and μ(t)P(t) < 1, eQ�(–P)(∞, t) < ∞ for t ∈ T

κ . Suppose that x
satisfies

xp(t) ≤ f (t) + g(t)
∫ ∞

t

[
a(s)xp(s) + b(s)xq(s) + c(s)

]
�s

– g(t)
∫ t

t0

[
h(s)xp(σ (s)

)
+ k(s)xr(σ (s)

)
+ l(s)

]
�s, t ∈ T

κ , (27)
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then, for any K1 > 0 and K2 > 0,

x(t) ≤
(

f (t) + g(t)
∫ ∞

t
M(s)e(–P)�Q

(
t,σ (s)

)
�s

)1/p

, t ∈ T
κ , (28)

where

P(t) := a(t)g(t) +
q
p

K (q–p)/p
1 b(t)g(t), (29)

Q(t) := h(t)g
(
σ (t)

)
+

r
p

K (r–p)/p
2 k(t)g

(
σ (t)

)
, (30)

R(t) := a(t)f (t) + b(t)
[

q
p

K (q–p)/p
1 f (t) +

p – q
p

Kq/p
1

]
+ c(t) + h(t)f

(
σ (t)

)

+ k(t)
[

r
p

K (r–p)/p
2 f

(
σ (t)

)
+

p – r
p

Kr/p
2

]
+ l(t), (31)

M(t) :=
R(t)

1 + μ(t)Q(t)
. (32)

Proof Denote

z(t) =
∫ ∞

t

[
a(s)xp(s) + b(s)xq(s) + c(s)

]
�s

–
∫ t

t0

[
h(s)xp(σ (s)

)
+ k(s)xr(σ (s)

)
+ l(s)

]
�s, t ∈ T

κ . (33)

From (27) and (33), we get

x(t) ≤ (
f (t) + g(t)z(t)

)1/p, t ∈ T
κ . (34)

In view of (33) and (34), we have

z�(t) = –
[
a(t)xp(t) + b(t)xq(t) + c(t) + h(t)xp(σ (t)

)
+ k(t)xr(σ (t)

)
+ l(t)

]

≥ –
[
a(t)

(
f (t) + g(t)z(t)

)
+ b(t)

(
f (t) + g(t)z(t)

)q/p + c(t)

+ h(t)
(
f
(
σ (t)

)
+ g

(
σ (t)

)
z
(
σ (t)

))

+ k(t)
(
f
(
σ (t)

)
+ g

(
σ (t)

)
z
(
σ (t)

))r/p + l(t)
]
, t ∈ T

κ . (35)

Using Lemma 2.2 on the right-hand side of (35), we obtain

z�(t) ≥ –
{

a(t)
(
f (t) + g(t)z(t)

)
+ b(t)

[
q
p

K (q–p)/p
1

(
f (t) + g(t)z(t)

)
+

p – q
p

Kq/p
1

]

+ c(t) + h(t)
(
f
(
σ (t)

)
+ g

(
σ (t)

)
z
(
σ (t)

))

+ k(t)
[

r
p

K (r–p)/p
1

(
f
(
σ (t)

)
+ g

(
σ (t)

)
z
(
σ (t)

))
+

p – r
p

Kr/p
1

]
+ l(t)

}

= –
[
P(t)z(t) + Q(t)z

(
σ (t)

)
+ R(t)

]
, (36)

where P(t), Q(t), and R(t) are defined as in (29), (30), and (31). By a similar argument with
Theorem 3.1 in the rest of the proof, one can prove that (28). This completes the proof. �
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4 Applications
In this section, we apply our results to study the boundedness of the solutions of two
dynamic equations on time scales.

Example 4.1 Consider the following dynamic equation on time scales:

(
xp(t)

)� = –W
(

t, x(t), x
(
σ (t)

)
,
∫ ∞

t
V

(
s, x(s)

)
�s

)
, t ∈ T

κ , (37)

x(∞) = x0, (38)

where p > 0 and x0 are constants, W ∈ C(Tκ ×R×R×R,R), and V ∈ C(Tκ ×R,R).

Theorem 4.1 Suppose that the functions W and V in (37) satisfy the conditions

∣∣W (t, u, v, w)
∣∣ ≤ c(t) + a(t)|u|p + b(t)|u|q

+ l(t)|v|α – k(t)|v|β + m(t)|w|, t ∈ T
κ , u, v, w ∈R, (39)

∣∣V (t, u)
∣∣ ≤ n(t)|u|r , t ∈ T

κ , u ∈ R, (40)

where a, b, c, m, n ∈ Crd(Tκ ,R+), and k, l ∈ Crd(Tκ , (0,∞)), q, r, α, and β are constants sat-
isfying

(i) 0 ≤ q ≤ p, 0 ≤ r ≤ p, p < α < β ; or
(ii) 0 ≤ q ≤ p, 0 ≤ r ≤ p, 0 < β < α < p.
If x is a solution of Eq. (37) satisfying (38), μ(t)A(t) < 1 and eB�(–F)(∞, t) < ∞ for t ∈ T

κ ,
then, for any K1 > 0 and K2 > 0,

∣∣x(t)
∣∣ ≤

(∣∣xp
0
∣∣ +

∫ ∞

t
C(s)e(–F)�B

(
t,σ (s)

)
�s

)1/p

, t ∈ T
κ , (41)

where

F(t) := a(t) +
q
p

K (q–p)/p
1 b(t) +

r
p

K (r–p)/p
2 m(t)

∫ ∞

t
n(ξ )�ξ ,

A(t) :=
∣∣xp

0
∣∣a(t) +

q
p

K (q–p)/p
1

∣∣xp
0
∣∣b(t) +

p – q
p

Kq/p
1 b(t)

+ c(t) +
(

r
p

K (r–p)/p
2

∣∣xp
0
∣∣ +

p – r
p

Kr/p
2

)
m(t)

∫ ∞

t
n(ξ )�ξ +

∣∣xp
0
∣∣B(t),

B(t) :=
l(t)(β – α)

β – p

(
(β – p)k(t)
(α – p)l(t)

)(α–p)/(α–β)

,

C(t) :=
A(t)

1 + μ(t)B(t)
.

Proof Considering (38), then the equivalent integral equation of Eq. (37) is denoted by

xp(t) = xp
0 +

∫ ∞

t
W

(
s, x(s), x

(
σ (s)

)
,
∫ ∞

t
V

(
ξ , x(ξ )

)
�ξ

)
�s, t ∈ T

κ . (42)
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Using assumptions (37)–(40) and (42), we have

∣∣x(t)
∣∣p ≤ ∣∣xp

0
∣∣ +

∫ ∞

t

[
a(s)

∣∣x(s)
∣∣p + b(s)

∣∣x(s)
∣∣q + c(s) + m(s)

∫ ∞

s
n(ξ )

∣∣x(ξ )
∣∣r
�ξ

+ l(s)
∣∣x(

σ (s)
)∣∣α – k(s)

∣∣x(
σ (s)

)∣∣β
]
�s, t ∈ T

κ . (43)

Then a suitable application of Theorem 3.1 to (43) yields (41). �

Example 4.2 Consider the following dynamic integral equation on time scales:

x2(t) ≤ f (t) +
∫ ∞

t

[
a(s)x2(s) + b(s)x(s) + c(s)

]
�s

+
∫ t

t0

h(s)
[
k(s)x5(σ (s)

)
– l(s)x4(σ (s)

)]
�s, t ∈ T

κ , (44)

where x, a, b, c, h, k, and l are defined the same as in Theorem 3.1, f ∈ Crd(Tκ ,R), μ(t) ×
F̃(t) < 1, and eG�(–F̃)(∞, t) < ∞ for t ∈ T

κ , then, for any K1 > 0,

∣∣x(t)
∣∣ ≤

(∣∣f (t)
∣∣ +

∫ ∞

t
C̃(s)e(–F̃)�G

(
t,σ (s)

)
�s

)1/p

, t ∈ T
κ , (45)

where

F̃(t) := a(t) +
1
2

K (–1)/p
1 b(t),

Ã(t) := a(t)
∣∣f (t)

∣∣ +
1
2

K (–1)/2
1 b(t)

∣∣f (t)
∣∣ +

1
2

K1/2
1 b(t) + c(t) + h(t)B(t)

∣∣f (σ (t)
)∣∣,

G(t) := h(t)B(t), B(t) :=
4l3(t)

27k2(t)
and C̃(t) :=

Ã(t)
1 + μ(t)G(t)

.

In fact, from (44), we have

∣∣x(t)
∣∣2 ≤ ∣∣f (t)

∣∣ +
∫ ∞

t

[
a(s)

∣∣x(s)
∣∣2 + b(s)

∣∣x(s)
∣∣ + c(s)

]
�s

+
∫ t

t0

h(s)
[
k(s)

∣∣x(
σ (s)

)∣∣5 – l(s)
∣∣x(

σ (s)
)∣∣4]

�s, t ∈ T
κ . (46)

Then a suitable application of Theorem 3.2 to (46) yields (45).

5 Conclusions
In this paper, we have established some new nonlinear dynamic integral inequalities con-
taining integration on infinite interval on time scales which can be used as tools in the
qualitative theory of certain classes of dynamic equations on time scales. Our results com-
plement the results established in the literature.

Acknowledgements
The authors are indebted to the anonymous referees for their valuable suggestions and helpful comments which helped
improve the paper significantly.



Liu et al. Advances in Difference Equations        (2019) 2019:311 Page 10 of 11

Funding
This research was supported by the Natural Science Foundation of Shandong Province (China) (No.: ZR2018MA018) and
the National Natural Science Foundations of China (Nos.: 11671227, 61873144).

Competing interests
The authors declare that there is no conflict of interests regarding the publication of this paper.

Authors’ contributions
HDL carried out the main part of this article. All authors read and approved the final manuscript.

Author details
1School of Mathematical Sciences, Qufu Normal University, Qufu, P.R. China. 2School of Mathematics and Computing
Science, Guilin University of Electronic Technology University, Guilin, P.R. China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 15 May 2019 Accepted: 11 July 2019

References
1. Hilger, S.: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmanningfaltigkeiten. PhD thesis, Universität Würzburg

(1988)
2. Metaxas, D., Tsechpenakis, G.: Dynamic data driven coupling of continuous and discrete methods for 3D tracking. In:

Computational Science-ICCS, vol. 712, Springer, Berlin (2005)
3. Klapper, I., Qian, H.: Remarks on discrete and continuous large-scale models of DNA dynamics. Biophys. J. 74(5),

2504–2514 (1998)
4. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston

(2001)
5. Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003)
6. Adivar, M., Raffoul, Y.N.: Existence results for periodic solutions of integro-dynamic equations on time scales. Ann.

Mat. Pura Appl. 188, 543–559 (2009)
7. Atici, F.M., Biles, D.C., Lebedinsky, A.: An application of time scales to economics. Math. Comput. Model. 43, 718–726

(2006)
8. Bi, L., Bohner, M., Fan, M.: Periodic solutions of functional dynamic equations with infinite delay. Nonlinear Anal. 68,

170–174 (2008)
9. Liu, H.D., Meng, F.W., Liu, P.C.: Oscillation and asymptotic analysis on a new generalized Emden-Fowler equation. Appl.

Math. Comput. 219(5), 2739–2748 (2012)
10. Chen, D., Kou, K.I., Xia, Y.H.: Linear quaternion-valued dynamic equations on time scales. J. Appl. Anal. Comput. 8,

172–201 (2018)
11. Dogan, A.: Positive solutions of the p-Laplacian dynamic equations on time scales with sign changing nonlinearity.

Electron. J. Differ. Equ. 2018, 39 (2018)
12. Tunç, E., Liu, H.D.: Oscillatory behavior for second-order damped differential equation with nonlinearities including

Riemann-Stieltjes integrals. Electron. J. Differ. Equ. 2018, 54 (2018)
13. Liu, H.D., Meng, F.W.: Existence of positive periodic solutions for a predator-prey system of Holling type IV function

response with mutual interference and impulsive effects. Discrete Dyn. Nat. Soc. 2015, 138984 (2015)
14. Zhao, D.L., Liu, H.D.: Coexistence in a two species chemostat model with Markov switchings. Appl. Math. Lett. 94,

266–271 (2019)
15. Erbe, L., Jia, B.G., Peterson, A.: On the asymptotic behavior of solutions of Emden-Fowler equations on time scales.

Ann. Mat. Pura Appl. 191, 205–217 (2012)
16. Liu, H.D., Meng, F.W.: Some new generalized Volterra–Fredholm type discrete fractional sum inequalities and their

applications. J. High Energy Phys. 2016, 213 (2016)
17. Federson, M., Mesquita, J.G., Slavik, A.: Measure functional differential equations and functional dynamic equations on

time scales. J. Differ. Equ. 252, 3816–3847 (2012)
18. Zhao, D.L.: Study on the threshold of a stochastic SIR epidemic model and its extensions. Commun. Nonlinear Sci.

Numer. Simul. 38, 172–177 (2016)
19. Zhang, B., Zhuang, J.S., Liu, H.D., Cao, J.D., Xia, Y.H.: Master-slave synchronization of a class of fractional-order

Takagi-Sugeno fuzzy neural networks. Adv. Differ. Equ. 2018, 473 (2018)
20. Zhao, D.L., Yuan, S.L., Liu, H.D.: Random periodic solution for a stochastic SIS epidemic model with constant

population size. Adv. Differ. Equ. 2018, 64 (2018)
21. Erbe, L., Jia, B.G., Peterson, A.: Belohorec-type oscillation theorem for second order sublinear dynamic equations on

time scales. Math. Nachr. 284, 1658–1668 (2011)
22. Liu, H.D., Liu, P.C.: Oscillation and asymptotic analysis on a new generalized Emden-Fowler equation. Abstr. Appl. Anal.

2013, Article ID 962590 (2013)
23. Zhao, D.L., Yuan, S.L., Liu, H.D.: Stochastic Dynamics of the delayed chemostat with Lévy noises. Int. J. Biomath. (2019).

https://doi.org/10.1142/S1793524519500566
24. Liu, H.D.: Lyapunov-type inequalities for certain higher-order difference equations with mixed non-linearities. Adv.

Differ. Equ. 2018, 229 (2018)
25. Feng, Q.H., Meng, F.W.: Oscillation results for a fractional order dynamic equation on time scales with conformable

fractional derivative. Adv. Differ. Equ. 2018, 193 (2018)
26. Liu, H.D., Ma, C.Q.: Oscillation criteria for second-order neutral delay dynamic equations with nonlinearities given by

Riemann-Stieltjes integrals. Abstr. Appl. Anal. 2013, Article ID 530457 (2013)

https://doi.org/10.1142/S1793524519500566


Liu et al. Advances in Difference Equations        (2019) 2019:311 Page 11 of 11

27. Liu, H.D., Meng, F.W.: Interval oscillation criteria for second-order nonlinear forced differential equations involving
variable exponent. Adv. Differ. Equ. 2016, 291 (2016)

28. Karpuz, B.: Volterra theory on time scales. Results Math. 65, 263–292 (2014)
29. Liu, H.D.: Some new integral inequalities with mixed nonlinearities for discontinuous functions. Adv. Differ. Equ. 2018,

22 (2018)
30. Slavik, A.: Averaging dynamic equations on time scales. J. Math. Anal. Appl. 388, 996–1012 (2012)
31. Liu, H.D., Ma, C.Q.: Oscillation criteria of even order delay dynamic equations with nonlinearities given by

Riemann-Stieltjes integrals. Abstr. Appl. Anal. 2014, Article ID 395381 (2014)
32. Zheng, B., Feng, Q.H., Meng, F.W., Zhang, Y.M.: Some new Gronwall-Bellman type nonlinear dynamic inequalities

containing integration on infinite intervals on time scales. J. Inequal. Appl. 2012, 201 (2012)
33. Meng, Z.W., Zheng, B., Wen, C.B.: Some new integral inequalities on time scales containing integration on infinite

intervals. J. Inequal. Appl. 2013, 245 (2013)
34. Agarwal, R.P., Bohner, M., Peterson, A.: Inequalities on time scales: a survey. Math. Inequal. Appl. 4, 535–557 (2001)
35. Anderson, D.R.: Nonlinear dynamic integral inequalities in two independent variables on time scale pairs. Adv. Dyn.

Syst. Appl. 3, 1–13 (2008)
36. Bohner, E.A., Bohner, M., Akin, F.: Pachpatte inequalities on time scale. JIPAM. J. Inequal. Pure Appl. Math. 6(1), Article

ID 6 (2005)
37. Liu, H.D.: Some new half-linear integral inequalities on time scales and applications. Discrete Dyn. Nat. Soc. 2019,

9860302 (2019)
38. Meng, F.W., Shao, J.: Some new Volterra–Fredholm type dynamic integral inequalities on time scales. Appl. Math.

Comput. 223, 444–451 (2013)
39. Xia, Y.H., Li, J.B., Wong, P.J.Y.: On the topological classification of dynamic equations on time scales. Nonlinear Anal.,

Real World Appl. 14(6), 2231–2248 (2013)
40. Liu, H.D.: An improvement of the Lyapunov inequality for certain higher order differential equations. J. Inequal. Appl.

2018, 215 (2018)
41. Saker, S.H.: Some nonlinear dynamic inequalities on time scales. Math. Inequal. Appl. 14, 633–645 (2011)
42. Sun, Y.G., Hassan, T.S.: Some nonlinear dynamic integral inequalities on time scales. Appl. Math. Comput. 220,

221–225 (2013)
43. Xia, Y.H., Chen, L., Kou, K.I.: Holder regularity of Grobman-Hartman theorem for dynamic equations on measure

chains. Bull. Malays. Math. Sci. Soc. 41(3), 1153–1180 (2018)
44. Feng, Q.H., Meng, F.W., Zheng, B.: Gronwall-Bellman type nonlinear delay integral inequalities on time scale. J. Math.

Anal. Appl. 382, 772–784 (2011)
45. Pachpatte, D.B.: Explicit estimates on integral inequalities with time scale. J. Inequal. Pure Appl. Math. 7, Article ID 143

(2006)
46. Liu, H.D.: On some nonlinear retarded Volterra–Fredholm type integral inequalities on time scales and their

applications. J. Inequal. Appl. 2018, 211 (2018)
47. Li, L.Z., Meng, F.W., Ju, P.J.: Some new integral inequalities and their applications in studying the stability of nonlinear

integro-differential equations with time delay. J. Math. Anal. Appl. 377(2), 853–862 (2011)
48. Liu, H.D.: A class of retarded Volterra–Fredholm type integral inequalities on time scales and their applications.

J. Inequal. Appl. 2017, 293 (2017)
49. Tian, Y.Z., Cai, Y.L., Li, L.Z., Li, T.X.: Some dynamic integral inequalities with mixed nonlinearities on time scales.

J. Inequal. Appl. 2015, 12 (2015)
50. Liu, H.D., Meng, F.W.: Nonlinear retarded integral inequalities on time scales and their applications. J. Math. Inequal.

12(1), 219–234 (2018)
51. Wang, J.F., Meng, F.W., Gu, J.: Estimates on some power nonlinear Volterra–Fredholm type dynamic integral

inequalities on time scales. Adv. Differ. Equ. 2017, 257 (2017)
52. Gu, J., Meng, F.W.: Some new nonlinear Volterra–Fredholm type dynamic integral inequalities on time scales. Appl.

Math. Comput. 245, 235–242 (2014)
53. Li, W.N., Sheng, W.H.: Some Gronwall type inequalities on time scales. J. Math. Inequal. 4(1), 67–76 (2010)
54. Jiang, F.C., Meng, F.W.: Explicit bounds on some new nonlinear integral inequalities with delay. J. Comput. Appl. Math.

205, 479–486 (2007)


	A class of new nonlinear dynamic integral inequalities containing integration on inﬁnite interval on time scales
	Abstract
	Keywords

	Introduction
	Preliminaries
	Main results
	Applications
	Conclusions
	Acknowledgements
	Funding
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


