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Abstract
By using a solvability method for differential equations, we present an elegant and
straightforward/direct proof of the following slight generalization of a classical result:
Let ω > 0 and f be a two times continuously-differentiable function on the closed
non-degenerated interval [a,b] such that f (a) = f (b) = 0, f (x) > 0, x ∈ (a,b), and

f ′′(x) +ω2f (x) > 0, x ∈ (a,b).

Then the following inequality holds b – a > π /ω, which is strict.
For the case when f is continuous on [a,b] and two times differentiable function on

(a,b), such that f (a) = f (b) = 0, f (x) > 0, x ∈ (a,b), and

(p(x)f ′(x))′ + f (x) > 0, x ∈ (a,b),

where p is a continuous function on [a,b], differentiable on (a,b), and such that

p(x) ≥ 1
ω2

for x ∈ [a,b],

for some ω > 0, we show by using the methods of differential calculus that then it
holds b – a ≥ π /ω.

MSC: Primary 34A40; secondary 34A30

Keywords: Estimate of the distance between zeros; Linear differential equation of
second order; Solvability method

1 Introduction
1.1 Some notations
Throughout the paper N denotes the set of all positive integers, [a, b] is a closed non-
degenerated interval of the real line (i.e., a �= b), (a, b) is an open interval of the real line,
C[a, b] is the space of all continuous functions on the interval [a, b], C(k)[a, b], k ∈ N, is
the space of all k-times continuously-differentiable functions on the interval [a, b], and
D(k)(a, b), k ∈ N, is the space of all k-times differentiable functions on the interval (a, b).

1.2 A few words on solvability
The solvability of various types of equations (differential, partial differential, difference,
functional, integral, etc.) is a topic of a great popularity for a wide audience (see, e.g.,
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[1–8]). Many mathematicians and scientists like such kind of results, as well as proofs
which use closed-form formulas for solutions to some equations in proving theoretical or
practical results. There has been a renewed interest in solving the equations, especially
in the last few decades, because of the appearance of symbolic algebra programs, which
can help in finding solutions to some equations. We have devoted part of our research
to solving some equations, with a concentration on difference equations and systems of
difference equations (see, i.e., [9–19] and numerous references therein). Out of these pa-
pers on solvable difference equations and systems, some of them are devoted to additive-
type difference equations [9, 13, 16, 18], some to product-type ones [10–12, 14], whereas
some are devoted to various representations of general solutions to difference equations
[15, 17–19]. For some interesting applications of some classes of solvable difference equa-
tions and related topics, see, e.g., [20–26] and the references therein.

Closed-form formulas for solutions to some solvable difference or differential equations
can be used for transforming them to integral-type ones, where for the case of difference
equations the notion of integral essentially refers to a sum, and such transformations are
frequently employed for some additive-type difference equations. It is a frequent situation
that it is easier to deal with integral equations than with the differential ones, so, solvability
methods can be useful. Here we deal with a classical problem for which, due to the additive
form of the differential inequality considered here, this type of transformation will be also
used in presenting a proof of the problem.

1.3 The problem which motivated this research of ours and some history related
to it

During the work on the problems in our papers [25] and [26], in order to transform a linear
difference equation to an “integral”-type form, we have recollected the following problem
which can be found in the known book by Polya and Szegö [27] (for the English translation,
see [28, p. 157]).

Problem 1 Let f ∈ C(2)[a, b] be such that
(a) f (a) = f (b) = 0,
(b) f (x) > 0 for x ∈ (a, b),
(c) f ′′(x) + f (x) > 0 for x ∈ (a, b).
Show that b – a > π .

Book [27] cites article [29] as the original source of the problem. In fact, [29] poses
a problem from geometry concerning convexity of a curve given in polar coordinates,
which implies the statement formulated in Problem 1. Our considerable, but, of course,
not thorough, literature investigation showed an interesting fact that the original prob-
lem attracted considerable attention of some experts of that time. The first answer to the
problem was given by Hadamard in [30], the second one by Poincaré in [31], the third one
by Roux in [32], the fourth one by Duporcq in [33], the fifth one by Le Roux in [34]. The
solution to Problem 1 given in [27] (i.e., in [28, p. 367]) is relatively simple, but it is kind
of a set up one and uses a few tricks. Such tricks can be usually found in many books on
differential equations, which deal with basic Sturm theory, that is, with the results related
to zeros of solutions to ordinary differential equations (see, for example, [35]). Some other
results on differential inequalities and related topics, such as integral inequalities, can be
found in [1] and [36].
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1.4 One of our aims and the main idea for achieving it
Since in condition (c) in Problem 1, there appears a linear differential inequality with con-
stant coefficients, it is a natural idea to try to find a proof of Problem 1 based on solvabil-
ity of the corresponding linear differential equation with constant coefficients (it is well
known that the differential equations with constant coefficients are solvable [1, 4–7, 35]).
The idea is to regard the differential inequality as a nonhomogeneous differential equation
and employ one of the solvability methods for dealing with such equations. The fact that
the differential equation is of second order is crucial for our consideration, and it facili-
tates the situation considerably. Namely, not only the differential equation is theoretically,
but it is also practically solvable equation since the characteristic polynomial associated
with the equation is solvable by radicals due to the Abel–Ruffini theorem [37]. Hence, one
of our aims is to present a solution to Problem 1 which is interesting to those working on
solvability theory.

2 Main results
Here we give a detailed, elegant, and straightforward/direct proof of a slight generaliza-
tion of the result in Problem 1 by using solvability of the corresponding linear differential
equation. The proof could be known, but we have not managed to find it in the literature
so far, which is one of the reasons for writing this note. The proof is actually a slight mod-
ification of our original solution to Problem 1, which we obtained long time ago, but have
not published it so far. Besides, we could not find in the literature a detailed discussion on
the estimate for the distance between zeros, which is another reason for writing this note.
From the proof of our first theorem it will be seen how the fact that the distance between
the zeros cannot be equal to π is naturally explained, whereas for the case when b – a > π ,
we will construct such functions.

We want also to point out that the value of the coefficient at term f (x) in condition (c)
can be replaced by any positive number ω, but with the dispense of changing the lower
bound of the distance between the zeros a and b of the function f . Finally, we also show
that the estimate for the distance between the zeros is best possible.

So, we prove the following result.

Theorem 1 Let ω > 0 and f ∈ C(2)[a, b] be such that
(a) f (a) = f (b) = 0,
(b) f (x) > 0 for x ∈ (a, b),
(c) f ′′(x) + ω2f (x) > 0 for x ∈ (a, b).
Then the following inequality holds:

b – a >
π

ω
, (1)

and the lower bound π
ω

for the distance b – a is best possible.

Proof Assume to the contrary that inequality (1) does not hold, that is, that the following
holds:

b – a ≤ π

ω
. (2)
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Let

ε(x) := f ′′(x) + ω2f (x). (3)

Then obviously ε ∈ C[a, b], whereas relation (3) can be regarded as a nonhomogeneous
differential equation of second order with constant coefficients. Together with the condi-
tions f (a) = f (b) = 0, the equation becomes a standard boundary value problem.

Since general solution to the corresponding homogeneous differential equation

f ′′(x) + ω2f (x) = 0

has the form

fh(x) = c1 sinωx + c2 cosωx,

we can find general solution to nonhomogeneous equation (3) by the Lagrange method of
variation of constants (see [38–40] or any of the books [1, 4–7, 35]).

So, let

f (x) = c1(x) sinωx + c2(x) cosωx, x ∈ [a, b]. (4)

Then it must be

c′
1(x) sinωx + c′

2(x) cosωx = 0,

ωc′
1(x) cosωx – ωc′

2(x) sinωx = ε(x),

from which it follows that

c′
1(x) =

ε(x) cosωx
ω

and c′
2(x) = –

ε(x) sinωx
ω

,

and consequently

c1(x) = c1(a) +
∫ x

a

ε(t) cosωt
ω

dt and c2(x) = c2(a) –
∫ x

a

ε(t) sinωt
ω

dt. (5)

By using (5) in (4) we see that the general solution to equation (3) is

f (x) = c1 sinωx + c2 cosωx +
1
ω

∫ x

a
ε(t) sinω(x – t) dt (6)

(here we simply write c1 and c2 instead of c1(a) and c2(a)).
Since function f must satisfy the conditions in (a), we have that it must be

c1 sinωa + c2 cosωa = 0,

c1 sinωb + c2 cosωb = –
1
ω

∫ b

a
ε(t) sinω(b – t) dt.

(7)
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There are two cases to be considered:

(1) b – a =
π

ω
and (2) b – a ∈

(
0,

π

ω

)
.

Case b – a = π
ω

. Since b = a + π
ω

, from the second equality in (7), we have

c1 sinω

(
a +

π

ω

)
+ c2 cosω

(
a +

π

ω

)
= –

1
ω

∫ a+ π
ω

a
ε(t) sinω

(
a +

π

ω
– t

)
dt,

from which, along with some calculation and the first equality in (7), it follows that

0 = –c1 sinωa – c2 cosωa = –
1
ω

∫ a+ π
ω

a
ε(t) sinω

(
a +

π

ω
– t

)
dt. (8)

However, since the integrand in (8) is positive on the interval (a, a + π
ω

) (see (c)), we have

–
1
ω

∫ a+ π
ω

a
ε(t) sinω

(
a +

π

ω
– t

)
dt < 0,

which contradicts (8).
Case b – a ∈ (0, π

ω
). By solving linear system (7), we obtain

c1 =
cosωa

ω sinω(a – b)

∫ b

a
ε(t) sinω(b – t) dt, (9)

c2 =
– sinωa

ω sinω(a – b)

∫ b

a
ε(t) sinω(b – t) dt. (10)

Note that since 0 < b – a < π
ω

, we have

sinω(a – b) �= 0,

so that the values of constants c1 and c2 in (9) and (10) are well defined, in this case.
Employing (9) and (10) in (6), we obtain

f (x) =
1
ω

(∫ x

a
ε(t) sinω(x – t) dt +

sinω(x – a)
sinω(a – b)

∫ b

a
ε(t) sinω(b – t) dt

)
. (11)

Since f ∈ C[a, b], it is also integrable. Hence, by integrating (11) over the interval [a, b],
using condition (b) and a well-known theorem, we have

0 <
∫ b

a
f (x) dx =

1
ω

∫ b

a

∫ x

a
ε(t) sinω(x – t) dt dx

–
1
ω

∫ b

a
ε(t) sinω(b – t) dt

∫ b

a

sinω(x – a)
sinω(b – a)

dx. (12)

From inequality (12), by using the Fubini theorem (see, for example, [41, 42]), some stan-
dard algebraic and integral calculations and use of some trigonometric addition formulas,
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we have

0 <
1
ω

(∫ b

a

∫ x

a
ε(t) sinω(x – t) dt dx –

∫ b

a
ε(t) sinω(b – t) dt

∫ b

a

sinω(x – a)
sinω(b – a)

dx
)

=
1
ω

(∫ b

a
ε(t)

∫ b

t
sinω(x – t) dx dt –

∫ b

a
ε(t) sinω(b – t) dt

(1 – cosω(b – a))
ω sinω(b – a)

)

=
1
ω

(∫ b

a
ε(t)

1 – cosω(b – t)
ω

dt –
(1 – cosω(b – a))

ω sinω(b – a)

∫ b

a
ε(t) sinω(b – t) dt

)

=
1
ω2

∫ b

a
ε(t)

sinω(b – a)(1 – cosω(b – t)) – sinω(b – t)(1 – cosω(b – a))
sinω(b – a)

dt

=
1

ω2 sinω(b – a)

∫ b

a
ε(t)

(
sinω(b – a) – sinω(b – t) – sinω(t – a)

)
dt

=
1

ω2 sinω(b – a)

∫ b

a
ε(t)

(
sinω(b – a) – 2 sin

ω(b – a)
2

cos
ω(b + a – 2t)

2

)

=
2

ω2 sinω(b – a)

∫ b

a
ε(t) sin

ω(b – a)
2

(
cos

ω(b – a)
2

– cos
ω(b + a – 2t)

2

)

= –
4

ω2 sinω(b – a)

∫ b

a
ε(t) sin

ω(b – a)
2

sin
ω(b – t)

2
sin

ω(t – a)
2

=: Ia,b. (13)

However, since all the functions under the sign of the last integral are positive on the
interval (a, b) and b – a ∈ (0, π

ω
), it follows that

Ia,b < 0,

which contradicts the inequality in (13). Hence, assumption (2) is not possible, implying
that inequality (1) must hold, as claimed.

Now we show that the lower bound π/ω is best possible. To do this we will construct
a one-parameter family of functions fδ , where δ is a small positive number such that, for
fixed δ, fδ satisfies conditions (a)–(c) and that b – a = π

ω
+ δ. Let δ ∈ (0, π

2ω
),

â = a –
δ

2
, and b̂ = a +

π

ω
+

δ

2
.

Then clearly b̂ – â = π
ω

+ δ.
We choose fδ in the following form:

fδ(x) = sin(cx + d),

and choose constants c and d such that fδ (̂a) = fδ (̂b) = 0.
A simple calculation shows that

fδ(x) = sin

(
ωπ

π + ωδ

(
x +

δ

2
– a

))
.

It is clear that

fδ(x) > 0, x ∈ (̂a, b̂). (14)
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We also have

f ′′
δ (x) + ω2fδ(x) = sin

(
ωπ

π + ωδ

(
x +

δ

2
– a

))(
ω2 –

(
ωπ

π + ωδ

)2)

= fδ(x)ω2
(

1 –
(

π

π + ωδ

)2)
. (15)

Using the fact that π
π+ωδ

∈ (0, 1) and inequality (14) in (15), it follows that

f ′′
δ (x) + ω2fδ(x) > 0, x ∈ (̂a, b̂),

which means that condition (c) holds.
Hence, the function fδ satisfies conditions (a)–(c) on the interval [̂a, b̂], whose length is

π
ω

+δ. Since δ is an arbitrary number, we see that the length of the interval can be arbitrarily
close to π

ω
, which means that the lower bound in (1) is really best possible, finishing the

proof of the theorem. �

If we omit the condition that the second derivative of the function f is continuous on
the interval [a, b], then the above proof cannot be applied, since then the function ε(x)
defined in (3) need not be integrable. Hence, in this case another method has to be used,
which might be less constructive than the one given in the proof of Theorem 1.

There is also a result related to Theorem 1, which does not request the continuity of
derivatives on the closed interval [a, b]. It can be found, for example, in [43]. The following
relative of Theorem 1 can be proved by using a modification of the proof presented therein.

Theorem 2 Let f ∈ C[a, b] ∩ D(2)(a, b) be such that
(a) f (a) = f (b) = 0,
(b) f (x) > 0 for x ∈ (a, b),
(c) the following inequality holds:

(
p(x)f ′(x)

)′ + f (x) > 0

for every x ∈ (a, b) and for some p ∈ C[a, b] ∩ D(a, b) such that

p(x) ≥ 1
ω2 for x ∈ [a, b], (16)

for some ω > 0.
Then the following inequality holds:

b – a ≥ π

ω
. (17)

Proof Let g(x) = ln f (x). From conditions (a) and f ∈ C[a, b] it follows that

lim
x→a+0

g(x) = lim
x→b–0

g(x) = –∞.

Further, we have

lim sup
x→a+0

g ′(x) = +∞ and lim inf
x→b–0

g ′(x) = –∞. (18)
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Indeed, assume that lim supx→a+0 g ′(x) < +∞. Then

sup
x∈(a, a+b

2 ]
g ′(x) =: L < +∞.

Let L1 := max{1, L}.
By using the Lagrange mean value theorem, we have

g(x) = g(x0) + (x – x0)g ′(ζ ) (19)

for every x0, x ∈ (a, b) and some ζ inside the interval with endpoints x0 and x. Hence, for
x0 = a+b

2 and every x ∈ (a, x0), we would have

g(x) ≥ g(x0) – (x0 – x)L1 > g(x0) – (x0 – a)L1 > –∞,

which would be a contradiction with the fact limx→a+0 g(x) = –∞.
On the other hand, if it were lim infx→b–0 g ′(x) > –∞, then we would have

inf
x∈[ a+b

2 ,b)
g ′(x) = M > –∞.

Let M1 = min{–1, M}, then from (19) with x0 = a+b
2 and every x ∈ (x0, b), we would have

g(x) ≥ g(x0) + (x – x0)M1 > g(x0) + (b – x0)M1 > –∞,

which would be a contradiction with the fact limx→b–0 g(x) = –∞.
From (18) along with the continuity of function p and condition (16), we have

lim sup
x→a+0

p(x)g ′(x) = +∞ and lim inf
x→b–0

p(x)g ′(x) = –∞. (20)

Further, by some calculation and use of conditions (b) and (c), we have

(
p(x)g ′(x)

)′ =
(p(x)f ′(x))′

f (x)
–

(p(x)g ′(x))2

p(x)
> –1 –

(
ωp(x)g ′(x)

)2

for x ∈ (a, b).
Let

F(x) =
1
ω

arctan
(
ωp(x)g ′(x)

)
. (21)

Then, by employing the Lagrange mean value theorem to function (21) on an interval
[t, s] ⊂ (a, b), t �= s, we get

F(t) – F(s) =
(pg ′)′(ζ )

1 + (ω(pg ′)(ζ ))2 (t – s) < s – t < b – a. (22)

By letting t → a – 0 and s → b – 0, in the inequality in (22), using (20) and that ω > 0, it
follows that

π

ω
= lim sup

t→a–0
F(t) – lim inf

s→b–0
F(s) ≤ b – a,

from which inequality (17) follows, finishing the proof of the theorem. �
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From Theorem 2 we obtain the following corollary.

Corollary 1 Let ω > 0 and f ∈ C[a, b] ∩ D(2)(a, b) be such that
(a) f (a) = f (b) = 0,
(b) f (x) > 0 for x ∈ (a, b),
(c) f ′′(x) + ω2f (x) > 0 for x ∈ (a, b).
Then inequality (17) holds and the lower bound π

ω
for the distance b – a is best possible.

Proof The first part of the corollary follows directly by choosing in Theorem 2 p(x) ≡ 1
ω2 .

That the estimate in (17) is best possible can be shown as in the proof of Theorem 1. �

Remark 1 If condition (c) in Corollary 1 is replaced by the following one:

f ′′(x) + ω2f (x) ≥ 0 for x ∈ (a, b),

then it is easy to see that the function

f (x) = sinω(x – a)

satisfies also conditions (a), (b) on the interval [a, a + π
ω

], so that the lower bound π
ω

is
achieved in this case.

However, if

f ′′(x) + ω2f (x) > 0

for x ∈ (a, a + π
ω

), it is not clear if the lower bound π
ω

in Corollary 1 is achieved.

Remark 2 Theorem 1 can be obtained from the statement in Problem 1. Indeed, if the
statement is proved, then instead of the function f , the function

f1/ω(x) := f
(

x
ω

)

can be taken into consideration on the interval [ωa,ωb].
From f (a) = f (b) = 0, we have

f1/ω(ωa) = f1/ω(ωb) = 0.

From f (x) > 0, x ∈ (a, b), we have

f1/ω(x) > 0 for x ∈ (ωa,ωb).

Finally, if f ′′(x) + ω2f (x) > 0 for x ∈ (a, b), then we have

(f1/ω)′′(x) + f1/ω(x) =
f ′′
1/ω(x) + ω2f1/ω(x)

ω2 > 0

for x ∈ (ωa,ωb). Hence, Theorem 1 follows from the statement in Problem 1.
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Stević Advances in Difference Equations        (2019) 2019:298 Page 11 of 11

27. Polya, G., Szegö, G.: Aufgaben und Lehrsätze aus der Analysis, II. Springer, Berlin (1964) (in German)
28. Polya, G., Szegö, G.: Problems and Theorems in Analysis II. Springer, Berlin (1976)
29. Dellac, H.: Interméd. des Math., 1, 69–70 (1894) (in French)
30. Hadamard, J.: Interméd. des Math., 1, 127 (1894) (in French)
31. Poincareé, H.: Interméd. des Math., 1, 141–144 (1894) (in French)
32. Roux, J.: Interméd. des Math., 1, 172–173 (1894) (in French)
33. Duporcq, E.: Interméd. des Math., 1, 216–217 (1894) (in French)
34. Le Roux, J.: Interméd. des Math., 2, 212–213 (1895) (in French)
35. Hartman, P.: Ordinary Differential Equations. Wiley, New York (1964)
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