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Abstract
This paper presents the development of a new iterative method for solving the
two-dimensional hyperbolic telegraph fractional differential equation (2D-HTFDE)
which is central to the mathematical modeling of transmission line satisfying certain
relationship between voltage and current waves in specific distance and time. This
equation can be obtained from the classical two-dimensional hyperbolic telegraph
partial differential equation by replacing the first and second order time derivatives by
the Caputo time fractional derivatives of order 2α and α respectively, with
1/2 < α < 1. The iterative scheme, called the fractional skewed grid Crank–Nicolson
FSkG(C-N), is derived from finite difference approximations discretized on a skewed
grid rotated clockwise 450 from the standard grid. The skewed finite difference
scheme combined with Crank–Nicolson discretization formula will be shown to be
unconditionally stable and convergent by the Fourier analysis. The developed
FSkG(C-N) scheme will be compared with the fractional Crank–Nicolson scheme on
the standard grid to confirm the effectiveness of the proposed scheme in terms of
computational complexities and computing efforts. It will be shown that the new
proposed scheme demonstrates more superior capabilities in terms of the number of
iterations and CPU timings compared to its counterpart on the standard grid but with
the same order of accuracy.

Keywords: Caputo fractional derivative; Standard and skewed grid Crank–Nicolson
schemes; Time-fractional hyperbolic telegraph equation

1 Introduction
Fractional calculus is of great importance in mathematical modeling of various phenom-
ena in the field of engineering [1, 2], quantum mechanics [3], hydrology [4], viscoelas-
ticity, [5, 6], bio science [7], control system [8], and other sciences [9–13]. The fractional
derivative which simultaneously possesses memory and nonlocal property can describe
different nonlinear phenomena more accurately and efficiently in comparison with the
integer-order derivative. This makes fractional calculus a powerful tool for modeling the
complex dynamical systems [14].

Nowadays, fractional calculus [15] is also being used to represent non-differentiable
problems for various types of fractional differential equations involving the local-fractional
derivatives. In this regard, Singh et al. [16] recommended the non-differentiable solutions
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of the local-fractional wave equation in fractal strings by applying local-fractional ho-
motopy perturbation Laplace transform method (LFHPLTM). The uniqueness and con-
vergence are also proved by the suggested method. Young et al. [17] developed a new
Boussinesq-type model in a fractal domain based on the local-fractional derivative. To
achieve exact traveling wave solutions obtained from the non-differentiable graph, they
convert the local-fractional Boussinesq equation into nonlinear local-fractional ordinary
differential equations. In 2018, Kumar et al. [18] proposed a non-differentiable solution
for the vehicular fractal traffic flow problem. They solved the problem with the help of the
local-fractional homotopy perturbation Sumudu transform scheme, and the results were
computationally rigorous for similar kinds of fractional differential equations occurring
in natural sciences.

Besides this, variable-order fractional derivatives are also being utilized for numerical
solution of several types of fractional differential equations which are actually the exten-
sion of the classical fractional calculus. Recently, many researchers have established that
the variable-order fractional calculus is more accurate than the constant-order types [19]
to describe complex physical models. Hajipour et al. [20] suggested a variable-order frac-
tional (VOF) model for the accurate approximate solution of reaction-diffusion equation
in which they utilized a weighted shifted Grunwald derivative to solve the fractional part
of the time derivative. This discretization technique was superior when compared with
other methods in the literature. The variable-order fractional calculus is an efficient tool
to predict the compression deformation of amorphous glassy polymers as well. In 2019,
Meng et al. [21] proposed a three-regions-fitting-method and found that VOF models
are very efficient with higher accuracy. In [22], Cao et al. derived the excellent results for
variable-order time sub-diffusion equation by utilizing Crank–Nicolson type compact fi-
nite difference scheme with second-order temporal and fourth-order spatial accuracy.

Mathematical models can be presented more accurately by using fractional calculus
than the classical calculus to illustrate the characteristics of the real-world phenomena
in an inclusive manner. For example, Jajarmi and Baleanu [23] formulated a perfect model
for describing the pathological behavior of HIV infection in fractional calculus that can
never investigate the asymptomatic behaviors during the modeling with the integer-order
derivatives. In 2018, Baleanu et al. [24] examined their proposed model with regard to
the poor nutrition in the life cycle of humans with Mittag-Leffler non-singular kernel and
Caputo fractional derivative sense. The comparative numerical analysis reveals that the
model based on the fractional derivative with Mittag-Leffler kernel has a different asymp-
totic behavior than the classic integer-order derivatives. The same type of Mittag-Leffler
kernel associated with fractional operator is utilized by Kumar et al. [25] and Baleanu et
al. [26] for regularized long-wave equation and nonlinear dynamical system respectively.
Shamasneh et al. [27] proposed local fractional entropy (LFE) based model for kidney
images enhancement where the quality of MRI images is unpredictable. They tested the
model on the poor-quality kidney images and observed the excellent results when LFE
techniques were applied. Thus, the new aspects of fractional calculus provide us with
more stretchy mathematical models that help us to formulate more realistic judgments
about real-world problems in a better way.

In the past few years, a number of numerical or approximation techniques have been
developed to solve the hyperbolic telegraph partial differential equation such as homo-
topy perturbation techniques [28], collocation method [29], reduced differential trans-
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form method [30], B-Spline differential quadrature method [31], unconditionally stable
ADI methods [32–35], and many other methods [36–38]. However, in solving hyperbolic
telegraph fractional differential equation (HTFDE), it is not as straightforward and can be
very difficult due to the double time-fractional derivative involved in the equation. There-
fore, it is almost impossible for researchers to find the exact analytical solution of such
type of fractional differential equation.

Recently, a number of mathematical methods, techniques, and approximations have
been proposed in solving hyperbolic telegraph partial differential equation of fractional
order due to their importance in representing the various physical problems. Shivanian
[39] utilized the spectral meshless radial point interpolation (SMRPI) method for solv-
ing two-dimensional fractional telegraph equation. Ferreira et al. [40] solved the multi-
dimensional time fractional telegraph equation by using a Fourier transform. They ob-
tained an integral representation of the solution in the Fourier domain expressed in terms
of multivariate Mittag-Leffler function which leads to a double Mellin–Barnes type inte-
gral representation and consequently to an H-function of two variables. Shivanian et al.
[41] used the moving least squares approximation method in which a meshless Galerkin
weak form is applied to the interior nodes, whereas the meshless collocation method is
used for the nodes on the boundary. Heydari et al. [42] developed an accurate and ef-
ficient Legendre wavelet method for numerical solution of the time fractional telegraph
equation where they employed both the operational matrices of fractional integration and
differentiation to get an accurate numerical solution of the equation. In [43], Hosseini et al.
proposed a local radial point interpolant approximation method using radial basis func-
tion in solving 2D fractional telegraph equation.

Iterative numerical methods derived from skewed and standard grids have also been
researched quite extensively since 1980s in solving various types of partial differential
equations (PDEs) including two- and three-dimensional hyperbolic telegraph equations
[44–52]. In solving these PDEs, suitably formulated finite difference discretization ap-
proximation based on standard grid and skewed grid stencils will generate a large and
sparse system of simultaneous linear equations in the form Au = b, where A is a known
non-singular sparse matrix, b is a constant column vector, and u is the unknown column
vector. Due to the sparsity of the matrix A, iterative methods are more suitable in solving
the system of linear equations. In all of the cases tested, numerical experimental results
show that the iterative schemes derived from the skewed grids exhibited more rapid con-
vergence than the ones derived from the standard grids. This is due to the fact that the
skewed finite difference approximations enable us to construct iterative schemes where
the iterations need only involve nearly half of the total grid points. The computation of
solutions at the remaining grid points will be implemented directly once after the conver-
gence is achieved. This strategy will result in lower arithmetic operations and substantial
reduction in the computational complexity of the formulated algorithms.

Because of their good performances in solving integer derivative PDEs, efforts are now
being made to apply the strategies on skewed grids in solving fractional differential equa-
tions. Preliminary work has been done recently by Balasim and Ali [53–55] on the 2D time
fractional diffusion equation, whereby promising results were obtained when the Caputo
time fractional was used in combination with implicit skewed approximation formulas for
the spatial fractional derivatives. However, the implementation of these skewed approx-
imations on fractional hyperbolic differential equations is still an open question. In this
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paper, we have extended the formulation of the skewed grid iterative method on solving
the more complicated 2D-HTFDE and observed the efficient numerical results. To the
best of our knowledge, this work has not been done by other researchers.

The organization of this paper is as follows: In Sect. 2, we first derive the Caputo time
fractional approximations for 2α and α and then the fractional standard grid Crank–
Nicolson FSG(C-N) iterative scheme using the standard five point finite difference formula
in hybrid with the Crank–Nicolson approximation formula with respect to the standard
grid. In Sect. 3, we formulate the fractional skewed grid Crank–Nicolson FSkG(C-N) iter-
ative scheme by rotating the standard grid clockwise to an angle of 45o. The stability and
convergence of FSkG(C-N) iterative scheme are discussed in Sects. 4 and 5 respectively. In
Sect. 6, a solvability property of the proposed FSkG(C-N) scheme is presented, followed by
some numerical experimental results and computational complexities analysis in Sect. 7.
The conclusion of the work is presented in Sect. 8.

2 FSG(C-N) scheme for 2D-HTFDE
In this section, we present a brief explanation about the discrete derivation of time-
fractional derivative of order 2α and α, where 1/2 < α < 1, and derive an FSG(C-N) iterative
scheme based on the standard five point grid Crank–Nicolson discretizations.

The two-dimensional second-order hyperbolic telegraph time-fractional differential
equation is

∂2αu
∂t2α

+ 2ν(x, y, t)
∂αu
∂tα

+ γ 2(x, y, t)u = a(x, y, t)
∂2u
∂x2 + b(x, y, t)

∂2u
∂y2 + f (x, y, t), (1)

where ν(x, y, t) > 0, γ (x, y, t) > 0, a(x, y, t) > 0, b(x, y, t) > 0, and 1/2 < α < 1, this implies
1 < 2α < 2 with initial and boundary conditions

u(x, y, 0) = φ(x, y), ut(x, y, 0) = 0,

u(0, y, t) = g1(y, t), u(L, y, t) = g2(y, t),

u(x, 0, t) = g3(x, t), u(x, L, t) = g4(x, t),

where Ω = {(x, y, t)/0 ≤ x, y ≤ L, 0 ≤ t ≤ T}.
If ν > 0 and γ = 0, then Eq. (1) represents the damped wave equation, and if both ν,γ > 0,

then it represents the 2D-HTFDE.
The Caputo time fractional derivative is defined as follows:

∂αu(x, y, t)
∂tα

=
1

Γ (m – α)

∫ t

0

∂um(x, y, ξ )
∂ξm

dξ

(t – ξ )α+1–m , m – 1 < α < m. (2)

In this paper, we choose a uniform grid of mesh points with tk = kτ , k = 0, 1, 2, . . . , N , xi =
i�x, i = 0, 1, 2, . . . , Mx, and yi = j�y, j = 0, 1, 2, . . . , My, where N , Mx, and My are the positive
integers and τ = T

N , �x = L
Mx

, and �y = L
My

are the uniform temporal and spatial mesh sizes
respectively. The grid points in the internal grid space are given by (xi, yj, tk) = (ix, jy, kτ ),
where i = 1, 2, 3, . . . , Mx – 1, j = 1, 2, 3, . . . , My – 1, and k = 0, 1, 2, 3, . . . , N . Let Uk

i,j be the
exact solution and uk

i,j be the approximate solution of the fractional differential equation
(1) at the grid point (xi, yj, tk) and consider f (xi, yj, tk) = f k

i,j, ν(xi, yj, tk) = νk
i,j, γ (xi, yj, tk) = γ k

i,j,
a(xi, yj, tk) = ak

i,j, and b(xi, yj, tk) = bk
i,j.
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To solve Eq. (1), we utilize the standard five point grid Crank–Nicolson approximation
for space and the Caputo fractional derivative of order 2α and α. To derive the 2α-order
time-fractional derivative for Eq. (1), we discretize the second-order differential operator
as follows:

∂2u(x, y, ξ )
∂ξ 2 =

∂2u(x, y, ts+1/2)
∂ξ 2 =

uk+1
i,j – 2uk

i,j + uk–1
i,j

τ 2 + O
(
τ 2), ts < ξ < ts+1. (3)

Using Eq. (3) into Eq. (2), we can find an efficient approximation for fractional derivative
of order 2α, where 1/2 < α < 1, at the point (xi, yj, tk) as follows:

∂2αu(xi, yj, tk)
∂t2α

=
1

Γ (2 – 2α)

∫ tk

0

∂2u(xi, yj, ξ )
∂ξ 2 .

∂ξ

(tk – ξ )2α–1

=
1

Γ (2 – 2α)

k∑
s=1

∫ sτ

(s–1)τ

∂2u(xi, yj, ξ )
∂ξ

.
∂ξ

(tk – ξ )2α–1

=
1

Γ (2 – 2α)

k∑
s=1

∫ sτ

(s–1)τ

[us+1
i,j – 2us

i,j + us–1
i,j

τ 2 + O
(
τ 2)].

∂ξ

(tk – ξ )2α–1

=
1

Γ (2 – 2α)

k∑
s=1

[us+1
i,j – 2us

i,j + us–1
i,j

τ 2 + O
(
τ 2)].

∫ sτ

(s–1)τ

1
ρ2α–1 .∂ρ

=
τ 2–2α

Γ (3 – 2α)

k∑
s=1

[us+1
i,j – 2us

i,j + us–1
i,j

τ 2 + O
(
τ 2)][

(k – s + 1)2–2α – (k – s)2–2α
]

=
1

Γ (3 – 2α)τ 2α

k∑
s=1

b∗
s
[
uk–s+2

i,j – 2uk–s+1
i,j + uk–s

i,j
]

+
1

Γ (3 – 2α)

k∑
s=1

O
(
τ 4–2α

)[
(k – s + 1)2–2α – (k – s)2–2α

]
,

where b∗
s = s2–2α – (s – 1)2–2α , s = 1, 2, . . . , n, and ρ = (tk – ξ ) or

∂2αu(xi, yj, tk)
∂t2α

=
1

Γ (3 – 2α)τ 2α

k∑
s=1

b∗
s
[
uk–s+2

i,j – 2uk–s+1
i,j + uk–s

i,j
]

+
k1–α

Γ (3 – 2α)
O

(
τ 4–2α

)
.

The 4 – 2α order approximation for the Caputo fractional derivative is then given by the
following equation:

∂2αu(xi, yj, tk)
∂t2α

=
1

Γ (3 – 2α)τ 2α

k∑
s=1

b∗
s
[
uk–s+2

i,j – 2uk–s+1
i,j + uk–s

i,j
]
. (4)

To derive the α-order time-fractional derivative for Eq. (1), we consider the first-order
differential operator as follows:

∂u(xi, yj, ξ )
∂ξ

=
∂u(xi, yj, ts+1/2)

∂ξ
=

uk+1
i,j – uk

i,j

τ
+ O(τ ), ts < ξ < ts+1. (5)
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Using Eq. (5) into Eq. (2), we can find an efficient approximation for fractional derivative
of order α, where 1/2 < α < 1, as follows:

∂αu(xi, yj, tk)
∂tα

=
1

Γ (1 – α)

∫ tk

0

∂u(xi, yj, ξ )
∂ξ

.
∂ξ

(tk – ξ )α

=
1

Γ (1 – α)

k∑
s=1

∫ sτ

(s–1)τ

∂u(xi, yj, ξ )
∂ξ

.
∂ξ

(tk – ξ )α

=
1

Γ (1 – α)

k∑
s=1

∫ sτ

(s–1)τ

[us+1
i,j – us

i,j

τ
+ O(τ )

]
.

∂ξ

(tk – ξ )α

=
1

Γ (1 – α)

k∑
s=1

[us+1
i,j – us

i,j

τ
+ O(τ )

]
.
∫ sτ

(s–1)τ

1
ρα

.∂ρ

=
τ 1–α

Γ (2 – α)

k∑
s=1

[us+1
i,j – us

i,j

τ
+ O(τ )

][
(k – s + 1)1–α – (k – s)1–α

]

=
1

Γ (2 – α)τα

k∑
s=1

bs
[
uk–s+2

i,j – uk–s+1
i,j

]

+
1

Γ (2 – α)

k∑
s=1

O
(
τ 2–α

)[
(k – s + 1)1–α – (k – s)1–α

]
,

where bs = s1–α – (s – 1)1–α , s = 1, 2, . . . , n, and ρ = (tk – ξ ) or

∂αu(xi, yj, tk)
∂tα

=
1

Γ (2 – α)τα

k∑
s=1

bs
[
uk–s+2

i,j – uk–s+1
i,j

]
+

k1–α

Γ (2 – α)
O

(
τ 2–α

)
.

The 2 – α order approximation for the Caputo fractional derivative is then given by the
following equation:

∂αu(xi, yj, tk)
∂tα

=
1

Γ (2 – α)τα

k∑
s=1

bs
[
uk–s+2

i,j – uk–s+1
i,j

]
. (6)

Lemma 1 The coefficients bs, s = 0, 1, 2, . . . , defined in Eqs. (4) and (6) satisfy the following
properties:

(1). b1 = 1, bs > 0, ∀s = 1, 2, . . . , k,
(2). bs–1 > bs, ∀s = 1, 2, . . . , k,
(3). b–1

s ≤ b–1
k , ∀s = 1, 2, . . . , k,

(4).
∑k–1

s=1 (bk–s – bk–s+1) + bk = b1, ∀s = 1, 2, . . . , k,
(5).

∑k–1
s=2 (bs – bs–1) + b1 = bk–1, ∀s = 1, 2, . . . , k,

(6).
∑k–1

s=2 (2b∗
s – b∗

s–1) + b1 =
∑k–1

s=2 b∗
s + b∗

k–1, ∀s = 1, 2, . . . , k.

Utilizing the Crank–Nicolson scheme and the Caputo fractional derivatives at the point
(xi, yj, tk+1/2) from Eqs. (4) and (6) leads Eq. (1) to the following expression:

q
k∑

s=1

b∗
s
[
uk–s+2

i,j – 2uk–s+1
i,j + uk–s

i,j
]

+ p1

k∑
s=1

bs
[
uk–s+2

i,j – uk–s+1
i,j

]
+ p2

(
uk+1

i,j + uk
i,j
)
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=
r1

2
[
uk+1

i–1,j – 2uk+1
i,j + uk+1

i+1,j + uk
i–1,j – 2uk

i,j + uk
i+1,j

]

+
r2

2
[
uk+1

i,j–1 – 2uk+1
i,j + uk+1

i,j+1 + uk
i,j–1 – 2uk

i,j + uk
i,j+1

]
+ f k+1/2

i,j

for i = 1, 2, 3, . . . , Mx – 1, j = 1, 2, 3, . . . , My – 1, and k = 0, 1, 2, 3, . . . , N , where

m0 = τ 2αΓ (2 – α)Γ (3 – 2α), q = Γ (2 – α)

p1 = p1(i, j, k) = 2ταΓ (3 – 2α)νk
i,j, p2 = p2(i, j, k) = m02–1(γ k

i,j
)2

r1 = r1(i, j, k) = ak
i,j

m0

(�x)2 , r2 = r2(i, j, k) = bk
i,j

m0

(�y)2 .

Rewrite the above equation as

uk+1
i,j =

1
(p1 + p2 + r1 + r2 + q)

[
r1

2
(
uk+1

i–1,j + uk+1
i+1,j

)
+

r2

2
(
uk+1

i,j–1 + uk+1
i,j+1

)
+

r1

2
(
uk

i–1,j + uk
i+1,j

)

+
r2

2
(
uk

i,j–1 + uk
i,j+1

)
+ (2q + p1 – p2 – r1 – r2)uk

i,j – quk–1
i,j

– p1

k∑
s=2

bs
[
uk–s+2

i,j – uk–s+1
i,j

]
– q

k∑
s=2

b∗
s
[
uk–s+2

i,j – 2uk–s+1
i,j + uk–s

i,j
]

+ m0f k+1/2
i,j

]

for i = 1, 2, 3, . . . , Mx – 1, j = 1, 2, 3, . . . , My – 1, and k = 0, 1, 2, 3, . . . , N .
Another alternative form is

uk+1
i,j =

1
(p1 + p2 + r1 + r2 + q)

[
r1

2
(
uk+1

i–1,j + uk+1
i+1,j

)
+

r2

2
(
uk+1

i,j–1 + uk+1
i,j+1

)
+

r1

2
(
uk

i–1,j + uk
i+1,j

)

+
r2

2
(
uk

i,j–1 + uk
i,j+1

)
+ (2q + p1 – p2 – r1 – r2)uk

i,j + p1
(
bku1

i,j – b2uk
i,j
)

+ q
(
2b∗

ku1
i,j – b∗

2uk
i,j – uk–1

i,j
)

+ p1

k–1∑
s=2

(bs – bs–1)uk–s+1
i,j + q

k–1∑
s=2

(
2b∗

s – b∗
s–1

)
uk–s+1

i,j

– q
k–1∑
s=2

b∗
s uk–s

i,j + m0f k+1/2
i,j

]
(7)

for i = 1, 2, 3, . . . , Mx –1, j = 1, 2, 3, . . . , My –1, and k = 0, 1, 2, 3, . . . , N with initial and bound-
ary conditions

u0
i,j = φ(xi, yj),

uk
0,j = g1(yj, t), uk

L,j = g2(yj, t),

uk
i,0 = g3(xj, t), uk

i,L = g4(xj, t),

0 ≤ x, y ≤ L, 0 ≤ t ≤ T .
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Figure 1 Computational molecule of the FSG(C-N) iterative scheme

As the solution domain is discretized as ut(xi, yj, 0) = u1(xi ,yj)–u–1(xi ,yj)
2τ

, from the initial con-
dition we have ut(xi, yj, 0) = 0, which implies u–1

i,j = u1
i,j.

For k = 0,

u1
i,j =

1
(p1 + p2 + r1 + r2 + 2q)

[
r1

2
(
u1

i–1,j + u1
i+1,j

)
+

r2

2
(
u1

i,j–1 + u1
i,j+1

)
+

r1

2
(
u0

i–1,j + u0
i+1,j

)

+
r2

2
(
u0

i,j–1 + u0
i,j+1

)
+

(
2q + p1 – p2 – r1 – r2 – p1b2 – qb∗

2
)
u0

i,j + m0f 1/2
i,j

]

for i = 1, 2, 3, . . . , Mx – 1, j = 1, 2, 3, . . . , My – 1.
In Figs. 1 and 2, consider the following:

R1 = p1 + p2 + r1 + r2 + q,

R2 = 2q + p1 – p2 – r1 – r2 – p1b2 – qb∗
2,

S1 = p1 + p2 + r1/2 + r2/2 + q,

S2 = 2q + p1 – p2 – r1/2 – r2/2 – p1b2 – qb∗
2,

R3 = p1(b2 – 1) + q
(
2b∗

2 – 1
)

– q,

R4 = p1bk + 2qb∗
k – qb∗

k–1.

The scheme defined in Eq. (7) is an all grid-based numerical scheme on the computa-
tional domain which utilizes all the grid points for the grid convergence. In such type of
all grid-based numerical schemes, all the grid points of the solution rectangular domain
are treated as iterative grid points in the iterative process at each time level until the grid
converged solutions are achieved for some predefined convergence criteria and tolerance
factor. When grid converged solutions are attained, the estimated grid solutions are then
utilized as an initial guess for the next time level.
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Figure 2 Computational molecule of the FSkG(C-N) iterative scheme

3 FSKG(C-N) scheme for 2D-HTFDE
The expression for an FSkG(C-N) iterative scheme can be derived from the FSG(C-N) iter-
ative scheme by rotating the grids clockwise an angle of 45o with respect to the standard
grids. Utilization of skewed Crank–Nicolson difference approximation and the Caputo
fractional derivative of order 2α and α from Eqs. (4) and (6) at the point (xi, yj, tk+1/2) in
Eq. (1) leads to the following expression:

q
k∑

s=1

b∗
s
[
uk–s+2

i,j – 2uk–s+1
i,j + uk–s

i,j
]

+ p1

k∑
s=1

bs
[
uk–s+2

i,j – uk–s+1
i,j

]
+ p2

(
uk+1

i,j + uk
i,j
)

=
r1

4
[
uk+1

i–1,j–1 – 2uk+1
i,j + uk+1

i+1,j+1 + uk
i–1,j–1 – 2uk

i,j + uk
i+1,j+1

]

+
r2

4
[
uk+1

i–1,j+1 – 2uk+1
i,j + uk+1

i+1,j–1 + uk
i–1,j+1 – 2uk

i,j + uk
i+1,j–1

]
+ m0f k+1/2

i,j

for i = 1, 2, 3, . . . , Mx – 1, j = 1, 2, 3, . . . , My – 1, and k = 0, 1, 2, 3, . . . , N .
Again rewrite the equation as follows:

uk+1
i,j =

1
(p1 + p2 + r1/2 + r2/2 + q)

[
r1

4
(
uk+1

i–1,j+1 + uk+1
i+1,j–1

)
+

r2

4
(
uk+1

i–1,j–1 + uk+1
i+1,j+1

)

+
r1

4
(
uk

i–1,j+1 + uk
i+1,j–1

)
+

r2

4
(
uk

i–1,j–1 + uk
i+1,j+1

)
+ (2q + p1 – p2 – r1/2 – r2/2)uk

i,j

– quk–1
i,j – p1

k∑
s=2

bs
[
uk–s+2

i,j – uk–s+1
i,j

]

– q
k∑

s=2

b∗
s
[
uk–s+2

i,j – 2uk–s+1
i,j + uk–s

i,j
]

+ m0f k+1/2
i,j

]

for i = 1, 2, 3, . . . , Mx – 1, j = 1, 2, 3, . . . , My – 1, and k = 0, 1, 2, 3, . . . , N .
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An alternative form of the above equation is

uk+1
i,j =

1
(p1 + p2 + r1/2 + r2/2 + q)

[
r1

4
(
uk+1

i–1,j+1 + uk+1
i+1,j–1

)
+

r2

4
(
uk+1

i–1,j–1 + uk+1
i+1,j+1

)

+
r1

4
(
uk

i–1,j+1 + uk
i+1,j–1

)
+

r2

4
(
uk

i–1,j–1 + uk
i+1,j+1

)
+ (2q + p1 – p2 – r1/2 – r2/2)uk

i,j

+ p1
(
bku1

i,j – b2uk
i,j
)

+ q
(
2b∗

ku1
i,j – b∗

2uk
i,j – uk–1

i,j
)

+ p1

k–1∑
s=2

(bs – bs–1)uk–s+1
i,j

+ q
k–1∑
s=2

(
2b∗

s – b∗
s–1

)
uk–s+1

i,j – q
k–1∑
s=2

b∗
s uk–s

i,j + m0f k+1/2
i,j

]
(8)

for i = 1, 2, 3, . . . , Mx –1, j = 1, 2, 3, . . . , My –1, and k = 0, 1, 2, 3, . . . , N with initial and bound-
ary conditions

u0
i,j = φ(xi, yj),

uk
0,j = g1(yj, t), uk

L,j = g2(yj, t),

uk
i,0 = g3(xj, t), uk

i,L = g4(xj, t),

0 ≤ x, y ≤ L, 0 ≤ t ≤ T .
For k = 0, again from the initial condition, we have

u1
i,j =

1
(p1 + p2 + r1/2 + r2/2 + 2q)

[
r1

4
(
u1

i–1,j+1 + u1
i+1,j–1

)
+

r2

4
(
u1

i–1,j–1 + u1
i+1,j+1

)

+
r1

4
(
u0

i–1,j+1 + u0
i+1,j–1

)
+

r2

4
(
u0

i–1,j–1 + u0
i+1,j+1

)

+
(
2q + p1 – p2 – r1/2 – r2/2 – p1b2 – qb∗

2
)
u0

i,j + m0f 1/2
i,j

]

for i = 1, 2, 3, . . . , Mx – 1, j = 1, 2, 3, . . . , My – 1.
The scheme defined in Eq. (8) is a half-grid based numerical scheme on the solution

rectangular domain which utilizes the half of the grid points for the grid convergence. In
half-grid based numerical scheme, we divide grid points of the whole discretized domain
into sets of two grid points, one type of points is known as iterative points •, while the
other type of points is known as direct points ◦ as shown in Fig. 3. This process completes
in two steps: in the first step the scheme in Eq. (8) iterates only on iterative points • of
the solution domain until a certain convergence is achieved. In the second step, when
convergence is attained, the values on direct points ◦ are evaluated by the scheme defined
in Eq. (7). In this way, by sweeping the half of the grid points, we reduce nearly the half of
the computational complexity of algorithm which ultimately decreases CPU timings per
iteration.

4 Stability analysis of FSKG(C-N) iterative scheme for 2D-HTFDE
In this section, we discuss the stability of the proposed finite difference scheme by the
Fourier method [56]. Suppose that ρk

i,j is the approximation solution of Eq. (8) and define
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Figure 3 Solution domain of the skewed grid
scheme with mesh size n = 10

the error

ρk
i,j = Uk

i,j – uk
i,j

for i = 1, 2, 3, . . . , Mx – 1, j = 1, 2, 3, . . . , My – 1, and k = 0, 1, 2, 3, . . . , N and

ρk =
[
ρk

1,1,ρk
1,2, . . . ,ρk

1,My–1,ρk
2,1,ρk

2,2, . . . ,ρk
2,My–1,ρk

Mx–1,1,ρk
Mx–1,2, . . . ,ρk

Mx–1,My–1
]T .

This error satisfies Eq. (8), and we have

–
r1

4
(
ρk+1

i–1,j+1 + ρk+1
i+1,j–1

)
+ (p1 + p2 + r1/2 + r2/2 + q)ρk+1

i,j –
r2

4
(
ρk+1

i–1,j–1 + ρk+1
i+1,j+1

)

=
r1

4
(
ρk

i–1,j+1 + ρk
i+1,j–1

)
+ (2q + p1 – p2 – r1/2 – r2/2)ρk

i,j +
r2

4
(
ρk

i–1,j–1 + ρk
i+1,j+1

)

+ p1
(
bkρ

1
i,j – b2ρ

k
i,j
)

+ q
(
2b∗

kρ
1
i,j – b∗

2ρ
k
i,j – ρk–1

i,j
)

+ p1

k–1∑
s=2

(bs – bs–1)ρk–s+1
i,j

+ q
k–1∑
s=2

(
2b∗

s – b∗
s–1

)
ρk–s+1

i,j – q
k–1∑
s=2

b∗
s ρ

k–s
i,j (9)

for i = 1, 2, 3, . . . , Mx –1, j = 1, 2, 3, . . . , My –1, and k = 0, 1, 2, 3, . . . , N with initial and bound-
ary conditions

ρk
0 = ρk

L = ρ0
i,j = 0.

For k = 0, 1, 2, . . . , L, define the grid function

ρk(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρk
i,j, xi– �x

2
< x ≤ xi+ �x

2
, yj– �y

2
< y ≤ yj+ �y

2
,

0, 0 ≤ x ≤ �x
2 or L – �x

2 ≤ x ≤ L,

0, 0 ≤ y ≤ �y
2 or L – �y

2 ≤ y ≤ L.
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We can expand ρk
(x,y) in Fourier series as

ρk(x, y) =
∞∑

l1=–∞

∞∑
l2=–∞

λk(l1, l2)e2Π
√

–1(l1x/L∗+l2y/L∗),

where

λk(l1, l2) =
1
L2

∫ L

0

∫ L

0
ρk(x, y)e–2Π

√
–1(l1x/L∗+l2y/L∗) dx dy.

Using the definition of l2 norm and Parseval’s equality, we have

∥∥ρk∥∥2
2 =

m–1∑
i=1

n–1∑
j=1

�x�y
∣∣ρk

i,j
∣∣2 =

∞∑
l1=–∞

∞∑
l2=–∞

∣∣λk(l1, l2)
∣∣2.

Suppose that the error Eq. (9) has the solution of the following form:

ρk
i,j = λke

√
–1(σ1i�x+σ2j�y),

where σ1 = 2Π l1/L and σ2 = 2Π l2/L.
Substituting the above expression in Eq. (9), we have

λk+1 =
1

μ + p1 + p2 + q

[{
μ + p1(1 – b2) – p2 + q

(
2 – b∗

2
)}

λk +
(
p1bk + 2qb∗

k
)
λ1 – qλk–1

+ p1

k–1∑
s=2

(bs – bs–1)λk–s+1 + q
k–1∑
s=2

(
2b∗

s – b∗
s–1

)
λk–s–1 – q

k–1∑
s=2

b∗
s λ

k–s

]
, (10)

where μ = r2 sin2( σ1i�x+σ2j�y
2 ) + r1 sin2( σ1i�x–σ2j�y

2 ).

Proposition 1 The proposed rotated five point finite difference scheme defined in Eq. (8)
is unconditionally stable.

Proof First, we prove the following result with the help of mathematical induction.
If λk (k = 0, 1, 2, . . . , N ) satisfy Eq. (10), then |λk| ≤ |λ0|.
For k = 0, from Eq. (10) we have

∣∣λ1∣∣ =
1

μ + p1 + p2 + 2q
[
μ + p1(1 – b2) – p2 + q

(
2 – b∗

2
)]∣∣λ0∣∣

since μ > 0 and coefficients of p1, p2, and q in the numerator are less than the coefficients
of p1 and q in the denominator in the above expression, i.e.,

∣∣λ1∣∣ ≤ ∣∣λ0∣∣.

Now, assuming that |λm| ≤ |λ0| for m = 1, 2, . . . , k, we have

∣∣λk+1∣∣ ≤ 1
(μ + p1 + p2 + q)

[{
μ + p1(1 – b2) – p2 + q

(
2 – b∗

2
)}∣∣λk∣∣
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+
(
p1bk + 2qb∗

k
)∣∣λ1∣∣ – q

∣∣λk–1∣∣

+ p1

k–1∑
s=2

(bs – bs–1)
∣∣λk–s+1∣∣ + q

k–1∑
s=2

(
2b∗

s – b∗
s–1

)∣∣λk–s–1∣∣ – q
k–1∑
s=2

b∗
s
∣∣λk–s∣∣

]

=
1

(μ + p1 + p2 + q)

[{
μ + p1(1 – b2) – p2 + q

(
2 – b∗

2
)}

+
(
p1bk + 2qb∗

k
)

– q + p1

k–1∑
s=2

(bs – bs–1) + q
k–1∑
s=2

(
2b∗

s – b∗
s–1

)
– q

k–1∑
s=2

b∗
s

]∣∣λ0∣∣.

Utilizing (5) and (6) in Lemma (1) in the above inequality, we get

∣∣λk+1∣∣ ≤ 1
(μ + p1 + p2 + q)

[{
μ + p1(1 – b2) – p2 + q

(
2 – b∗

2
)}

+
(
p1bk + 2qb∗

k
)

+ p1(bk–1 – b1) + q
(
b∗

k–1 – 2
)]∣∣λ0∣∣.

Collecting the coefficients of p1 and q in the numerator, we have the following:

∣∣λk+1∣∣ ≤ 1
(μ + p1 + p2 + q)

[
μ + p1(bk + bk–1 – b2) – p2 + q

(
2b∗

k + b∗
k–1 – b∗

2
)]∣∣λ0∣∣.

As τ → 0, p1, p2, bk , bk–1, b∗
k , and b∗

k–1 all approach to zero, therefore

∣∣λk+1∣∣ ≤ 1
(μ + q)

[
μ – q

(
b∗

2
)]∣∣λ0∣∣.

It is observed that 0 < b∗
2 < 1 and < 0.886 < q < 1 for all α. Thus, 0 < qb∗

2 < 1, therefore

∣∣λk+1∣∣ ≤ ∣∣λ0∣∣.
Now, using the above result and Parseval’s equality, we have the following inequality:

∥∥ρk∥∥2
2 =

∞∑
l1=–∞

∞∑
l2=–∞

∣∣λk(l1, l2)
∣∣2 ≤

∞∑
l1=–∞

∞∑
l2=–∞

∣∣λ0(l1, l2)
∣∣2 =

∥∥ρ0∥∥2
2,

that is,

∥∥ρk∥∥ ≤ ∥∥ρ0∥∥,

k = 0, 1, 2, . . . , N .
Therefore, the proposed scheme defined in Eq. (8) is unconditionally stable. �

5 Convergence of FSKG(C-N) iterative scheme for 2D-HTFDE
In this section, we discuss the convergence of the skewed grid Crank–Nicolson iterative
scheme by Fourier analysis. Suppose that u(xi, yj, tk+1/2) is the exact solution represented
by the Taylor series, then the truncation error at u(xi, yj, tk+1/2) is denoted by Rk+1/2

i,j and
defined as follows:

Rk+1/2
i,j = q

k∑
s=1

b∗
s (u(xi, yj, tk–s+2) – 2u(xi, yj, tk–s+1) + u(xi, yj, tk–s)
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+ p1

k∑
s=1

bs
(
u(xi, yj, tk–s+2) – u(xi, yj, tk–s+1)

)
+ p2((u

(
xi, yj, tk+1 – u(xi, yj, tk)

)

–
m0a(xi, yj, tk)

4(�x)2

[
u(xi–1, yj+1, tk+1) – 2u(xi, yj, tk+1)

+ u(xi+1, yj–1, tk+1) + u(xi–1, yj+1, tk) – 2u(xi, yj, tk) + u(xi+1, yj–1, tk)
]

–
m0b(xi, yj, tk)

4(�x)2

[
u(xi–1, yj–1, tk+1) – 2u(xi, yj, tk+1) + u(xi+1, yj+1, tk+1)

+ u(xi–1, yj–1, tk) – 2u(xi, yj, tk) + u(xi+1, yj+1, tk)
]

– m0f (xi, yj, tk) (11)

for i = 1, 2, 3, . . . , Mx – 1, j = 1, 2, 3, . . . , My – 1, and k = 0, 1, 2, 3, . . . , N .
From Eq. (1), we have

Rk+1/2
i,j = q

k∑
s=1

b∗
s (u(xi, yj, tk–s+2) – 2u(xi, yj, tk–s+1) + u(xi, yj, tk–s) –

∂2αu(xi, yj, tk)
∂t2α

+ p1

k∑
s=1

bs(u(xi, yj, tk–s+2) – u(xi, yj, tk–s+1) –
∂αu(xi, yj, tk)

∂tα

+
m0a(xi, yj, tk+1)

4(�x)2 [
∂2u(xi, yj, tk)

∂x2 –
{

u(xi–1, yj+1, tk+1) – 2u(xi, yj, tk+1)

+ u(xi+1, yj–1, tk+1) + u(xi–1, yj+1, tk) – 2u(xi, yj, tk) + u(xi+1, yj–1, tk)
}

+
m0b(xi, yj, tk+1)

4(�y)2 [
∂2u(xi, yj, tk)

∂y2 –
{

u(xi–1, yj–1, tk+1) – 2u(xi, yj, tk+1)

+ u(xi+1, yj+1, tk+1) + u(xi–1, yj–1, tk) – 2u(xi, yj, tk) + u(xi+1, yj+1, tk)
}

= O
(
τ 4–2α + τ 2–α + (�x)2 + (�y)2).

There exists a constant C1 for i = 1, 2, 3, . . . , Mx – 1, j = 1, 2, 3, . . . , My – 1, and k =
0, 1, 2, 3, . . . , N such that

Rk+1/2
i,j ≤ C1

(
τ 4–2α + τ 2–α + (�x)2 + (�y)2), (12)

where

C1 = max
1≤i≤Mx–1,1≤j≤My–1,0≤k≤N

{
Ck

i,j
}

.

Define the error function

φk
i,j = u(xi, yj, tk) – uk

i,j.

From Eq. (11), we have

–
r1

4
(
u(xi–1, yj+1, tk+1) + u(xi+1, yj–1, tk+1)

)
+ (p1 + p2 + r1/2 + r2/2 + q)u(xi, yj, tk+1)

–
r2

4
(
u(xi–1, yj–1, tk+1) + u(xi+1, yj+1, tk+1)

)
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=
r1

4
(
u(xi–1, yj+1, tk) + u(xi+1, yj–1, tk)

)
+ (2q + p1 – p2 – r1/2 – r2/2)u(xi, yj, tk)

–
r2

4
(
u(xi–1, yj–1, tk) + u(xi+1, yj+1, tk)

)

– qu(xi, yj, tk–1) – q
k∑

s=2

b∗
s (u(xi, yj, tk–s+2) – 2u(xi, yj, tk–s+1) + u(xi, yj, tk–s)

– p1

k∑
s=2

bs(u(xi, yj, tk–s+2) – u(xi, yj, tk–s+1) – m0f (xi, yj, tk+1/2). (13)

To obtain the error equation subtract Eq. (13) from Eq. (8), we have

–
r1

4
(
φk+1

i–1,j+1 + φk+1
i+1,j–1

)
+ (p1 + p2 + r1/2 + r2/2 + q)φk+1

i,j –
r2

4
(
φk+1

i–1,j–1 + φk+1
i+1,j+1

)

=
r1

4
(
φk

i–1,j+1 + φk
i+1,j–1

)
+ (2q + p1 – p2 – r1/2 – r2/2)φk

i,j +
r2

4
(
φk

i–1,j–1 + φk
i+1,j+1

)

– qφk–1
i,j – q

k–1∑
s=2

b∗
s
(
φk–s+2

i,j – 2φk–s+1
i,j + φk–s

i,j
)

+ p1

k–1∑
s=2

b∗
s
(
φk–s+2

i,j – φk–s+1
i,j

)

+ m0Rk+1/2
i,j

for i = 1, 2, 3, . . . , Mx – 1, j = 1, 2, 3, . . . , My – 1, and k = 0, 1, 2, 3, . . . , N .
Its equivalent form is

–
r1

4
(
φk+1

i–1,j+1 + φk+1
i+1,j–1

)
+ (p1 + p2 + r1/2 + r2/2 + q)φk+1

i,j –
r2

4
(
φk+1

i–1,j–1 + φk+1
i+1,j+1

)

=
r1

4
(
φk

i–1,j+1 + φk
i+1,j–1

)
+ (2q + p1 – p2 – r1/2 – r2/2)φk

i,j +
r2

4
(
φk

i–1,j–1 + φk
i+1,j+1

)

+ p1
(
bkφ

1
i,j – b2φ

k
i,j
)

+ q
(
2b∗

kφ
1
i,j – b∗

2φ
k
i,j – φk–1

i,j
)

+ p1

k–1∑
s=2

(bs – bs–1)φk–s+1
i,j

+ q
k–1∑
s=2

(
2b∗

s – b∗
s–1

)
φk–s+1

i,j – q
k–1∑
s=2

b∗
s φ

k–s
i,j + m0Rk+1/2

i,j (14)

for i = 1, 2, 3, . . . , Mx – 1, j = 1, 2, 3, . . . , My – 1, and k = 0, 1, 2, 3, . . . , N – 1.
This equation satisfies the boundary conditions

φk
i,0 = φk

i,m = 0, 1 ≤ i ≤ Mx – 1, 0 ≤ k ≤ N – 1,

φk
0,j = φk

n,j = 0, 1 ≤ j ≤ My – 1, 0 ≤ k ≤ N – 1

and the initial conditions

φ0
i,j = 0, 0 ≤ i ≤ Mx, 0 ≤ j ≤ My.

For k = 0, 1, 2, . . . , N , define the grid function as

φk(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φk
i,j, xi– �x

2
< x ≤ xi+ �x

2
, yj– �y

2
< y ≤ yj+ �y

2
,

0, 0 ≤ x ≤ �x
2 or L – �x

2 ≤ x ≤ L,

0, 0 ≤ y ≤ �y
2 or L – �y

2 ≤ y ≤ L,
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and

Rk(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Rk
i,j, xi– �x

2
< x ≤ xi+ �x

2
, yj– �y

2
< y ≤ yj+ �y

2
,

0, 0 ≤ x ≤ �x
2 or L – �x

2 ≤ x ≤ L,

0, 0 ≤ y ≤ �y
2 or L – �y

2 ≤ y ≤ L,

for i = 1, 2, 3, . . . , Mx – 1, j = 1, 2, 3, . . . , My – 1, and k = 0, 1, 2, 3, . . . , N .
The grid functions φk(x, y) and Rk(x, y) can be expanded in Fourier series:

φk(x, y) =
∞∑

l1=–∞

∞∑
l2=–∞

ηk(l1, l2)e2Π
√

–1(l1x/L+l2y/L),

Rk(x, y) =
∞∑

l1=–∞

∞∑
l2=–∞

ξ k(l1, l2)e2Π
√

–1(l1x/L+l2y/L),

where

ηk(l1, l2) =
1
L2

∫ L

0

∫ L

0
φk(x, y)e–2Π

√
–1(l1x/L+l2y/L) dx dy, (15)

ξ k(l1, l2) =
1
L2

∫ L

0

∫ L

0
Rk(x, y)e–2Π

√
–1(l1x/L+l2y/L) dx dy. (16)

Using the definition of l2 norm and Parseval’s equality, we have

∥∥φk∥∥2
2 =

m–1∑
i=1

n–1∑
j=1

�x�y
∣∣φk

i,j
∣∣2 =

∞∑
l1=–∞

∞∑
l2=–∞

∣∣ηk(l1, l2)
∣∣2, (17)

∥∥Rk∥∥2
2 =

m–1∑
i=1

n–1∑
j=1

�x�y
∣∣Rk

i,j
∣∣2 =

∞∑
l1=–∞

∞∑
l2=–∞

∣∣ξ k(l1, l2)
∣∣2, (18)

where

φk =
[
φk

1,1,φk
1,2, . . . ,φk

1,My–1,φk
2,1,φk

2,2, . . . ,φk
2,My–1,φk

Mx–1,1,φk
Mx–1,2, . . . ,φk

Mx–1,My–1
]T ,

Rk =
[
Rk

1,1, Rk
1,2, . . . , Rk

1,My–1, Rk
2,1, Rk

2,2, . . . , Rk
2,My–1, Rk

Mx–1,1, Rk
Mx–1,2, . . . , Rk

Mx–1,My–1
]T .

Suppose that the solution has the following forms:

φk
i,j = ηke

√
–1(σ1i�x+σ2j�y), (19)

Rk
i,j = ξ ke

√
–1(σ1i�x+σ2j�y), (20)

where σ1 = 2Π l1/L and σ2 = 2Π l2/L.
Substituting Eq. (19) and Eq. (20) in equation Eq. (14), we have

ηk+1 =
1

μ + p1 + p2 + q

[{
μ + p1(1 – b2) – p2 + q

(
2 – b∗

2
)}

ηk +
(
p1bk + 2qb∗

k
)
η1 – qηk–1
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+ p1

k–1∑
s=2

(bs – bs–1)ηk–s+1 + q
k–1∑
s=2

(
2b∗

s – b∗
s–1

)
ηk–s–1 – q

k–1∑
s=2

b∗
s η

k–s

+ m0ξ
k+1/2

]
, (21)

where μ is defined in Sect. 4.

Proposition 2 Assuming that ηk (k = 0, 1, 2, . . . , N ) is the solution of Eq. (21), then there
exists a positive constant C0, so that |ηk| ≤ C0|ξ 1/2|, k = 0, 1, 2, . . . , N .

Proof From Eq. (15), noticing that φ0 = 0, we have η0(l1, l2) = 0. For convergence criteria
of the series, there exists a positive constant C0 of the right-hand side of Eq. (18) such that

∣∣ξ k∣∣ =
∣∣ξ k(l1, l2)

∣∣ ≤ Ck∣∣ξ 1/2(l1, l2)
∣∣ = C0

∣∣ξ 1/2∣∣, k = 0, 1, 2, . . . , N , (22)

where C0 = max0≤k≤N {Ck}.
We prove the proposition by mathematical induction.
For k = 0 from Eq. (21), we have

η1 =
m0

(μ + p1 + p2 + 2q)
ξ 1/2.

Since μ ≥ 0, and for all values of τ > 0 and α, we have 0 < m0 < 1 and m0 < (μ + p1 + p2 +
2q).

From Eq. (22), we have

∣∣η1∣∣ ≤ C0
∣∣ξ 1/2∣∣.

Assume that |ηm| ≤ C0|ξ 1/2|, m = 1, 2, . . . , k. We show that it is true for n = k + 1. Again
from Eq. (21) we have

∣∣ηk+1∣∣ ≤ 1
μ + p1 + p2 + q

×
[{

μ + p1(1 – b2) – p2 + q
(
2 – b∗

2
)}∣∣ηk∣∣ +

(
p1bk + 2qb∗

k
)∣∣η1∣∣ – q

∣∣ηk–1∣∣

+ p1

k–1∑
s=2

(bs – bs–1)
∣∣ηk–s+1∣∣ + q

k–1∑
s=2

(
2b∗

s – b∗
s–1

)∣∣ηk–s–1∣∣

– q
k–1∑
s=2

b∗
s
∣∣ηk–s∣∣ + m0ξ

k

]

=
1

μ + p1 + p2 + q

[{
μ + p1(1 – b2) – p2 + q

(
2 – b∗

2
)}

+
(
p1bk + 2qb∗

k
)

– q + p1

k–1∑
s=2

(bs – bs–1) + q
k–1∑
s=2

(
2b∗

s – b∗
s–1

)
– q

k–1∑
s=2

b∗
s + m0

]
C0

∣∣ξ 1/2∣∣.
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By utilizing (5) and (6) in Lemma (1), the following inequality is obtained:

∣∣ηk+1∣∣ ≤ 1
μ + p1 + p2 + q

[{
μ + p1(1 – b2) – p2 + q

(
2 – b∗

2
)}

+
(
p1bk + 2qb∗

k
)

+ p1(bk–1 – b1) + q
(
b∗

k–1 – 2
)

+ m0
]
C0

∣∣ξ 1/2∣∣
=

1
(μ + p1 + p2 + q)

[
μ + p1(bk + bk–1 – b2) – p2

+ q
(
2b∗

k + b∗
k–1 – b∗

2
)

+ m0
]
C0

∣∣ξ 1/2∣∣.

Since m0 = τ 2αΓ (2 – α)Γ (3 – 2α), p1 = 2ταΓ (3 – 2α)νk
i,j and p2 = m02–1(γ k

i,j)2 as τ → 0
implies that m0, p1, p2 → 0. Further, as 0 < b2 < 1 is a constant positive term, whereas bk ,
bk–1, b∗

k , and b∗
k–1 in the above expression depend on the time level k. From Lemma 1, (2) we

have 1 = b0 > b1 > b2 > · · · > bk–1 > bk and 1 = b∗
0 > b∗

1 > b∗
2 > · · · > b∗

k–1 > b∗
k as the number of

time level k increases (in other words τ → 0); consequently, bk , bk–1, b∗
k , and b∗

k–1 approach
to zero. Therefore, we can write the above inequality as

∣∣ηk+1∣∣ ≤ 1
(μ + q)

[
μ – q

(
b∗

2
)]

C0
∣∣ξ 1/2∣∣.

As 0 < qb∗
2 < 1. Thus,

∣∣ηk+1∣∣ ≤ C0
∣∣ξ 1/2∣∣. �

Theorem 1 The proposed rotated five point finite difference scheme defined in Eq. (8) is l2

convergent, and the order of convergence is τ 4–2α + τ 2–α + (�x)2 + (�y)2.

Proof Applying Proposition (2) and Eqs. (17) and (18) for k = 0, 1, 2, 3, . . . , N , we have

∥∥φk∥∥2
2 =

∞∑
l1=–∞

∞∑
l2=–∞

∣∣ηk(l1, l2)
∣∣2 ≤

∞∑
l1=–∞

∞∑
l2=–∞

C2
0
∣∣ξ 1/2(l1, l2)

∣∣2 = C2
0
∥∥R1/2∥∥2

2.

There exists positive constant C1 as in inequality Eq. (12) such that

∥∥φk∥∥
2 ≤ C0

∥∥R1/2∥∥
2 ≤ C0C1

(
τ 4–2α + τ 2–α + (�x)2 + (�y)2),

∥∥φk∥∥
2 ≤ C

(
τ 4–2α + τ 2–α + (�x)2 + (�y)2)

for k = 0, 1, 2, 3, . . . , N , where C = C0C1.
This completes the theorem. �



Ali and Ali Advances in Difference Equations        (2019) 2019:303 Page 19 of 29

6 Solvability of FSKG(C-N) iterative scheme
The FSkG(C-N) iterative scheme can be written in matrix form as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AU1 = BU0 + ϕ0, n = 0,

AUn+1 = BUn + (p1bn + 2qb∗
n)U1 + qUn–1

+ p1
∑n–1

m=2(bm – bm–1)Un–m+1 + q
∑n–1

m=2(2b∗
m – b∗

m–1)Un–m+1

– q
∑n–1

l=2 bmUn–m + ϕ0, n ≥ 1,

U0
i,j = φ(xi, yj), 1 ≤ i ≤ Mx – 1, 0 ≤ j ≤ My,

Un
0,j = gn

1 (0, yj), 1 ≤ j ≤ My – 1, 0 ≤ n ≤ N ,

Un
L,j = gn

2 (L, yj), 1 ≤ j ≤ My – 1, 0 ≤ n ≤ N ,

Un
i,0 = gn

3 (xi, 0), 1 ≤ i ≤ Mx – 1, 0 ≤ n ≤ N ,

Un
i,L = gn

4 (xi, L), 1 ≤ i ≤ Mx – 1, 0 ≤ n ≤ N ,

(23)

where ϕn = [ϕn
0 ,ϕn

1 ,ϕn
2 , . . . ,ϕn

0 ]T and ϕk+1/2
i,j = f (xi, yj, tn+1/2) for 1 ≤ i ≤ Mx – 1, 1 ≤ j ≤ My –

1, 0 ≤ k ≤ N . Consider r = p1 + p2 + r1/2 + r2/2 + q and p = 2q + p1 – p2 – r1/2 – r2/2 in
Eq. (8), the matrices A and B are the pentadiagonal matrices of the following forms:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r · · · –r1/4 · · · –r2/4 · · · 0
... r · · · –r1/4 · · · –r2/4

...

–r1/4
. . . r

. . . . . . . . .
...

. . . . . . . . . . . . –r2/4

–r2/4 –r1/4
. . . . . . . . .

...
... –r2/4

. . . . . . . . . –r1/4

. . . . . . . . .
...

0 · · · –r2/4 · · · –r1/4 · · · r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p · · · r1/4 · · · r2/4 · · · 0
... p · · · r1/4 · · · r2/4

...

r1/4
. . . p

. . . . . . . . .
...

. . . . . . . . . . . . r2/4

r2/4 r1/4
. . . . . . . . .

...
... r2/4

. . . . . . . . . r1/4

. . . . . . . . .
...

0 · · · r2/4 · · · r1/4 · · · p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Theorem 2 The difference equation defined by Eq. (23) is uniquely solvable.

Proof Since r > 0, the coefficient matrix defined in Eq. (23) is strictly diagonally dominant
matrix. Therefore, matrix A is non-singular matrix. This completes the proof. �
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Table 1 Computational complexity analysis for FSG(C-N) and FSkG(C-N)methods before
convergence

Method Per iteration

(+/-) (×/÷)

FSG(C-N) (25 + 22(k – 1))λ2 (17 + (k – 1))λ2

FSkG(C-N) (12.5 + 11(k – 1))(λ2 + 1) (8.5 + 0.5(k – 1))(λ2 + 1)

Table 2 Computational complexity analysis for FSG(C-N) and FSkG(C-N)methods after convergence

Method After convergence

(+/-) (×/÷)

FSG(C-N) – –
FSkG(C-N) (12.5 + 11(k – 1))(λ2 – 1) (8.5 + 0.5(k – 1))(λ2 – 1)

Table 3 Total number of arithmetic operations of FSG(C-N) and FSkG(C-N)methods

Methods Total operations

FSG(C-N) (42 + 23(k – 1))λ2 ∗ Ite.
FSkG(C-N) (21 + 11.5(k – 1))(λ2 + 1) ∗ Ite. + (21 + 11.5(k – 1))(λ2 – 1)

7 Numerical experiments and results
In order to show the effectiveness and applicability of FSkG(C-N) method in solving the
two-dimensional time-fractional hyperbolic telegraph equation, the numerical experi-
ments were carried out on a PC with Core 2 Duo 2.8 GHz, 2GB of RAM with Window
XP SP3 operating system using Cygwin C and Mathematica 11 software. For convenience,
the Gauss–Seidel method with relaxation factor ωe equal to 1 was used throughout our
numerical calculation in both examples. For the convergence criteria, the l∞ norm was
used with tolerance factor ε = 10–5.

The computational complexity of any iterative numerical method purely depends upon
the total number of arithmetical operations per iteration. The higher the computational
complexity of iterative method, the more dense the algorithm indicating the slowness in
convergence. In order to measure the computational complexity of both the methods, as-
sume that the solution domain is discretized with the grid size n, then the internal grid
points will be λ2, where λ = n – 1. We divide the internal grid points λ2 of the solution
domain into two types of points, namely iterative points and direct points. The iterative
points are the points that take a part in getting the convergence of iterative process, while
the direct points are the points which can be directly evaluated from the standard grid
Crank–Nicolson finite difference formula. Tables 1 and 2 show the computational com-
plexity analysis of both FSG(C-N) and FSkG(C-N) iterative methods before and after con-
vergence respectively. In the FSG(C-N) iterative method, all the internal grid points are
the iterative points that utilize all the grid points of the solution domain to achieve the con-
vergence, while in the FSkG(C-N) iterative method, half of the internal grid points are the
iterative points that take part for convergence. Once convergence is achieved, the values
at the remaining half grid points (direct points) can be calculated by standard difference
formula. Table 3 shows the total number of arithmetical operations required per iteration
after convergence for each method. For more about the computational complexity of the
fractional skewed iterative scheme, please refer to [53].
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The maximum error of the exact analytic solution and numerical approximation solu-
tion is defined as follows:

Max Error = max
0≤i,j≤n

max
0≤k≤l

{∣∣Uk
i,j – uk

i,j
∣∣}.

Example 1 Here we apply both standard and skewed grid numerical schemes on the two-
dimensional hyperbolic telegraph equation of fractional order [31]:

∂2αu
∂t2α

+
∂αu
∂tα

+ u =
∂2u
∂x2 +

∂2u
∂y2 + f (x, y, t).

The initial and boundary conditions are given by

u(x, y, 0) = φ(x, y) = sin(x) sin(y), ut(x, y, 0) = 0,

u(0, y, t) = g1(y, t) = 0, u(1, y, t) = g2(1, y, t) = cos(t) sin(1) sin(y),

u(x, 0, t) = g3(x, t) = 0, u(x, 1, t) = g4(x, 1, t) = cos(t) sin(x) sin(1),

0 ≤ x, y ≤ 1, 0 ≤ t ≤ T .
Here, f (x, y, t) = 2 sin(x) sin(y)(cos(t) – sin(t)) and the exact analytical solution is u(x,

y, t) = cos(t) sin(x) sin(y).

In the solution of the problem, we discretize the solution domain for various mesh sizes
of 10, 15, 20, and 25 by assuming h = �x = �y in both x and y directions for the space dis-
cretization and for time discretization (0 < T < 1), we assume τ = 1/10. Table 4 describes
the summary of calculated values of elapsed time (in seconds), number of iterations (Ite),
maximum absolute error (Max Error), average absolute error (Ave Error), and the total
number of arithmetic operations (Total Operations) by both FSG(C-N) and FSkG(C-N)
iterative schemes when α = 0.65, 0.75, 0.85. The numerical results show that the FSkG(C-
N) iterative method has (30.0–38.80)% less computational complexity than the FSG(C-N)
iterative method, whereas the computing time and the number of iterations were calcu-
lated almost (31.20 – 42.50)% and (58.60 – 65.60)% less respectively, with the same degree
of accuracy. The comparison between two iterative schemes is sketched in Figs. 4, 5, 6
when α = 0.65, while the graphical representation of the numerical solution is illustrated
in Figs. 7, 8, 9 when α = 0.65, 0.75, 0.85 respectively.

Example 2 Here we apply both standard and skewed grid numerical schemes on the two-
dimensional hyperbolic telegraphic equation of fractional order [31]:

∂2αu
∂t2α

+
∂αu
∂tα

+ u =
∂2u
∂x2 +

∂2u
∂y2 + f (x, y, t).

The initial and boundary conditions are given by

u(x, y, 0) = φ(x, y) = sinh(x) sinh(y), ut(x, y, 0) = 0,

u(0, y, t) = g1(y, t) = 0, u(1, y, t) = g2(1, y, t) = cos(t) sinh(1) sinh(y),

u(x, 0, t) = g3(x, t) = 0, u(x, 1, t) = g4(x, 1, t) = cos(t) sinh(x) sinh(1).



Ali and Ali Advances in Difference Equations        (2019) 2019:303 Page 22 of 29

Table 4 Comparison between FSG(C-N) and FSkG(C-N) iterative methods at τ = 1/10 for Example 1

h–1 Method Execution time (sec.) Ite. Ave error Max error Total operations

α = 0.65
10 FSG(C-N) 2.93282 20 4.71168× 10–2 9.69517× 10–2 403,380

FSkG(C-N) 1.10761 12 4.88586× 10–2 1.00569× 10–1 132,468

15 FSG(C-N) 12.5737 35 4.41042× 10–2 9.71679× 10–2 1,708,140
FSkG(C-N) 4.30563 21 4.48098× 10–2 9.87645× 10–2 539,334

20 FSG(C-N) 35.2718 54 4.26392× 10–2 9.72095× 10–2 4,854,006
FSkG(C-N) 11.6689 32 4.30456× 10–2 9.81329× 10–2 1,487,028

25 FSG(C-N) 78.9365 75 4.17918× 10–2 9.75259× 10–2 10,756,800
FSkG(C-N) 25.1786 44 4.20595× 10–2 9.81334× 10–2 3,232,394

α = 0.75
10 FSG(C-N) 2.26201 16 3.82775× 10–2 7.67695× 10–2 322,704

FSkG(C-N) 0.90480 10 3.98710× 10–2 8.01500× 10–2 112,050

15 FSG(C-N) 9.42246 27 3.58042× 10–2 7.83929× 10–2 1,317,708
FSkG(C-N) 3.33842 17 3.64650× 10–2 7.98128× 10–2 441,228

20 FSG(C-N) 26.3018 41 3.46193× 10–2 7.86265× 10–2 3,685,449
FSkG(C-N) 8.81406 25 3.49882× 10–2 7.94765× 10–2 1,171,545

25 FSG(C-N) 57.9856 58 3.39374× 10–2 7.85311× 10–2 8,318,592
FSkG(C-N) 18.6265 34 3.41800× 10–2 7.91150× 10–2 2,514,029

α = 0.85
10 FSG(C-N) 1.87201 13 2.39638× 10–2 5.27844× 10–2 262,197

FSkG(C-N) 0.79561 9 2.53145× 10–2 5.55785× 10–2 101,841

15 FSG(C-N) 7.36325 21 2.24018× 10–2 5.21491× 10–2 1,024,884
FSkG(C-N) 2.71442 13 2.29590× 10–2 5.34259× 10–2 343,122

20 FSG(C-N) 20.1397 32 2.17059× 10–2 5.27656× 10–2 2,876,448
FSkG(C-N) 6.89524 19 2.20033× 10–2 5.34685× 10–2 901,131

25 FSG(C-N) 44.0391 44 2.13271× 10–2 5.25357× 10–2 6,310,656
FSkG(C-N) 14.6017 26 2.15153× 10–2 5.29944× 10–2 1,939,337

Figure 4 Graph of the number of iterations when α = 0.65 of Example 1

Here f (x, y, t) = sinh(x) sinh(y)(β2 cos(t) – 2δ sin(t) – 3 cos(t)) and the exact analytical solu-
tion is u(x, y, t) = cos(t) sinh(x) sinh(y). Let β = 5 and δ = 10 in f (x, y, t), in solving the above
2D-HTFDE.

In this example, we discretize the solution domain for various mesh sizes of 12, 16, 20,
and 24 by assuming h = �x = �y in both x and y directions for the space discretization and
for time discretization (0 < T < 1), we assume τ = 1/15. Table 5 describes the summary
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Figure 5 Graph of execution time (sec.) when α = 0.65 of Example 1

Figure 6 Graph of the total number of operations when α = 0.65 of Example 1

Figure 7 Numerical solution by the FSkG(C-N) method when α = 0.65 of Example 1

of calculated values of elapsed time (in seconds), number of iterations (Ite), maximum
absolute error (Max Error), average absolute error (Ave Error), and the total number of
arithmetic operations (Total Operations) by both FSG(C-N) iterative and FSkG(C-N) it-
erative schemes when α = 0.60, 0.70, 0.80. The numerical results show that the FSkG(C-N)
iterative method has (29.70 – 39.50)% less computational complexity than the FSG(C-N)
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Figure 8 Numerical solution by the FSkG(C-N) method when α = 0.75 of Example 1

Figure 9 Numerical solution by the FSkG(C-N) method when α = 0.85 of Example 1

iterative method, whereas the computing time and the number of iterations were calcu-
lated almost (31.80 – 40.80)% and (57.90 – 71.40)% less respectively, with the same degree
of accuracy. The comparison between two iterative schemes is sketched in Figs. 10, 11, 12
when α = 0.70 and the graphical representation of the numerical solution is illustrated in
Figs. 13, 14, 15 when α = 0.60, 0.70, 0.80 respectively.

Figures 4–6 and 10–12 show the graphs of the number of iterations, execution of timings
(in seconds), and the total number of operations of FSkG(C-N) and FSG(C-N) schemes.
In each graph the values of the FSkG(C-N) scheme are significantly less than those of the
FSG(C-N) scheme at different values of α in two different examples. Due to this reason,
the FSkG(C-N) iterative method has less computational complexity than the FSG(C-N)
iterative method, whereas Figs. 7–9 and 13–15 show the graphs of 3D diagram of the
numerical solutions of FSkG(C-N) method and variation of graphs can be seen as the
values of α varies.

8 Conclusion
In this work, we successfully formulate a new fractional skewed grid point Crank–
Nicolson iterative scheme at the point (xi, yj, tk+1/2) derived from fractional standard five
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Table 5 Comparison between FSG(C-N) and FSkG(C-N) iterative methods τ = 1/15 for Example 2

h–1 Method Execution time (sec.) Ite. Ave error Max error Total operations

α = 0.60
12 FSG(C-N) 12.3553 26 1.13977× 10–2 3.04174× 10–2 1,145,144

FSkG(C-N) 4.27443 16 1.12180× 10–2 3.11192× 10–2 377,104

16 FSG(C-N) 34.7570 40 1.12653× 10–2 3.04467× 10–2 3,276,000
FSkG(C-N) 11.0605 24 1.11831× 10–2 3.08253× 10–2 1,027,936

20 FSG(C-N) 78.3905 57 1.11666× 10–2 3.08420× 10–2 7,490,028
FSkG(C-N) 25.7246 33 1.11369× 10–2 3.09775× 10–2 2,239,692

24 FSG(C-N) 150.182 76 1.10778× 10–2 3.09794× 10–2 14,634,256
FSkG(C-N) 48.0327 44 1.10844× 10–2 3.11293× 10–2 4,340,336

α = 0.70
12 FSG(C-N) 8.82966 19 8.23924× 10–3 2.59719× 10–2 836,836

FSkG(C-N) 3.26042 12 8.21954× 10–3 2.65085× 10–2 288,288

16 FSG(C-N) 24.1490 29 8.06517× 10–3 2.63727× 10–2 2,375,100
FSkG(C-N) 8.40845 18 8.06394× 10–3 2.66746× 10–2 781,144

20 FSG(C-N) 53.4459 41 7.96695× 10–3 2.65627× 10–2 5,387,564
FSkG(C-N) 17.5189 24 7.98367× 10–3 2.67728× 10–2 1,646,736

24 FSG(C-N) 104.567 54 7.89936× 10–3 2.66550× 10–2 10,398,024
FSkG(C-N) 32.7290 32 7.93508× 10–3 2.68291× 10–2 3,182,816

α = 0.80
12 FSG(C-N) 6.61444 14 1.15550× 10–2 2.71116× 10–2 616,616

FSkG(C-N) 2.69882 10 1.15107× 10–2 2.76285× 10–2 243,880

16 FSG(C-N) 17.3941 21 1.11922× 10–2 2.74914× 10–2 1,719,900
FSkG(C-N) 6.55204 13 1.11648× 10–2 2.76485× 10–2 575,484

20 FSG(C-N) 37.9550 28 1.09646× 10–2 2.75706× 10–2 3,679,312
FSkG(C-N) 13.2445 18 1.09317× 10–2 2.76839× 10–2 1,251,432

24 FSG(C-N) 72.2909 37 1.08101× 10–2 2.76601× 10–2 7,124,572
FSkG(C-N) 23.9930 22 1.07676× 10–2 2.76683× 10–2 2,218,216

Figure 10 Graph of the number of iterations when α = 0.70 of Example 2

point Crank–Nicolson finite difference approximation by skewing clockwise an angle of
450 with respect to the standard grids in solving the two-dimensional second-order hy-
perbolic telegraph equation of fractional order. The derived numerical iterative scheme is
unconditionally stable, and its stability and convergence are proven by the Fourier anal-
ysis. A comparison of both the numerical iterative schemes has been given in terms of
computational complexities of the algorithm and verified with the help of examples. Ex-
perimental numerical results show that the FSkG(C-N) iterative method not only has the
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Figure 11 Graph of execution time (sec.) when α = 0.70 of Example 2

Figure 12 Graph of total operations when α = 0.70 of Example 2

Figure 13 Numerical solution by the FSkG(C-N) method when α = 0.60 of Example 2

least number of arithmetical operations (per iteration) in terms of computational com-
plexity, but it also requires least CPU execution timings (in seconds) and number of iter-
ations (Ite) when compared to the FSG(C-N) iterative method without jeopardizing the
solution accuracies.
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Figure 14 Numerical solution by the FSkG(C-N) method when α = 0.70 of Example 2

Figure 15 Numerical solution by the FSkG(C-N) method when α = 0.80 of Example 2
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