
Chen and Gao Advances in Difference Equations        (2019) 2019:315 
https://doi.org/10.1186/s13662-019-2239-5

R E S E A R C H Open Access

Hopf bifurcation and chaos control for a
Leslie–Gower type generalist predator model
Qin Chen1 and Jianguo Gao1*

*Correspondence:
gaojguo@163.com
1School of Mathematics and
Information Science, North Minzu
University, Yinchuan, China

Abstract
This paper is concerned with chaos control and bifurcations of the Leslie–Gower type
generalist predator model in a tri-trophic food web system with the time-delayed
feedback control. First, the distribution of the roots of the related characteristic
equations is analyzed by the polynomial theorem, the conditions to guarantee the
existence of Hopf bifurcation are given by choosing the time delay as a bifurcation
parameter. Then, the explicit formula for direction of Hopf bifurcation and stability of
periodic solutions bifurcating are determined by using the normal form theory and
center manifold theorem. Finally, the correctness of our theoretical analysis is verified
by some numerical simulation.
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1 Introduction
Chaos has attracted considerable attention since the discovery of Lorenz chaotic attrac-
tor. After that, many chaotic systems, such as Rössler system [1], Chua circuit [2], and
Chen system [3], have been widely studied and applied. Chaos, which often causes irreg-
ular behaviors in a practical system, is usually undesirable. Therefore, chaos control is the
amusing and challenging topic of our present work [4–11].

The control of chaos involves eliminating and restraining the chaos phenomenon when
it is unavailable and harmful. It has been noticed that purposeful control of chaos can
be a key issue in many technological applications [12–15]. Generally, the existing chaos
control methods can be divided into two categories, feedback control and non-feedback
control, according to their characteristics. The most representative methods among chaos
control include parameter perturbation control (OGY), delayed feedback control (DFC),
occasional proportional feedback (OPF), adaptive control, chaotic signal synchronization
control, and other methods. It has been confirmed that the DFC method is exceedingly
successful for stabilizing unstable periodic orbits. The DFC method, first introduced by
Pyragas, seems more applicable to stabilizing unstable periodic orbits because it can con-
struct a control force from the current state to the periodic state. Since the DFC is an ef-
fective method for chaos control, it has become a field of increasing interest and has been
applied to some real systems such as biological system, electronic system, communication
system, financial system, chemical system, and so on. As an example, Zhao, Lin, and Dai
investigated the chaos phenomena of three species food chain models using the method
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of delayed feedback control in [16]. Their results show that, when the controlling param-
eter K is some value, taking the delay as the bifurcation parameter, then passing through
a certain critical value, the stability of the equilibrium will be changed from unstable to
stable, chaos will vanish, and a periodic solution will emerge.

The recent findings confirm that systems that appeared in biology also have a chaos
phenomenon. In the sense of biology, chaos is a disadvantageous factor in the virtuous
cycle and development of ecosystems, so we intend to control this chaos phenomenon by
the DFC method. Priyadarshi and Gakkhar [17] proposed a tri-trophic food web model
with Leslie–Gower type generalist predator as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dX
dT = Xg(X) – Yp(X) – Zq1(X, Y ),
dY
dT = Y [–r + cp(X)] – Zq2(X, Y ),
dZ
dT = S0(Z2 – Z2

S3+S1X+S2Y ),

(1.1)

where X represents the density of the bottom prey, Y represents the density of the spe-
cialist predator, and Z represents the density of the generalist predator. r is the death
rate of the specialist predator in absence of the bottom prey, and c is its conversion ef-
ficiency. The two predators get food from the bottom prey, while the generalist predator
also preys on the specialist predator. The bottom prey is growing logistically, the specialist
predator predates on the bottom prey according to Holling type II functional response,
and the Leslie–Gower type dynamics is considered for the generalist predator. Therefore
g(X) = a0(1 – X

K ), p(X) = a1X
1+b1X , q1(X, Y ) = a2X

1+b2X+b3Y , q2(X, Y ) = a3Y
1+b2X+b3Y . Here, a0 is the

intrinsic growth rate of the bottom prey, K is the carrying capacity of the environment. a2

and a3 are the maximum grazing rate of the generalist predator with respect to the bottom
prey and the specialist predator, respectively. b2 and b3 represent the coefficients of food
taken by the generalist predator from the bottom prey and the specialist predator, respec-
tively. S0 is the intrinsic growth rate and S1, S2 are the respective food preferences of the
generalist predator. Suppose that all the coefficient parameters are positive and the bio-
logical significance are given in [17]. To facilitate the calculation of reduced parameters,
the following non-dimensional variables and constants were introduced:

t = a0T , x =
X
K

, y =
a1

a0
Y , z =

a2

a0
Z,

w1 = b1K , w2 = b2K , w3 =
a0

a1
b3, w4 =

a1

a0
cK , w5 =

r
a0

,

w6 =
a3

a2
, w7 =

S0

a2
, w8 =

S0

a2S3
, w9 =

S1

S3
K , w10 =

a0S2

a1S3
.

Furthermore, system (1.1) takes the following non-dimensional form:

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt = x[1 – x – y

1+w1x – z
1+w2x+w3y ],

dy
dt = y[–w5 + w4x

1+w1x – w6z
1+w2x+w3y ],

dz
dt = w7z2 – w8z2

1+w9x+w10y ,

(1.2)

the associated initial conditions are x(0) = x0 ≥ 0, y(0) = y0 ≥ 0, z(0) = z0 ≥ 0. When
w1 = 1.4, w2 = 5, w3 = 8, w4 = 1, w5 = 0.16, w6 = 0.1, w7 = 0.1, w8 = 0.5, w9 = 8, w10 = 8, sys-
tem (1.2) admits a chaotic attractor (see Fig. 1). The aim of this paper is to investigate the
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Figure 1 The trajectories and graphs of system (1.3) with τ = 0, where w1 = 1.4, w2 = 5, w3 = 8, w4 = 1,
w5 = 0.16, w6 = 0.1, w7 = 0.1, w8 = 0.5, w9 = 8, w10 = 8. System (1.3) has a chaotic attractor

dynamics of model by considering the effect of delayed feedback control. Following the
idea of [18], we add time-delayed force k1[x – x(t – τ )], k2[y – y(t – τ )], k3[z – z(t – τ )] to
system (1.2), then we have

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt = x[1 – x – y

1+w1x – z
1+w2x+w3y ] + k1[x – x(t – τ )],

dy
dt = y[–w5 + w4x

1+w1x – w6z
1+w2x+w3y ] + k2[y – y(t – τ )],

dz
dt = w7z2 – w8z2

1+w9x+w10y + k3[z – z(t – τ )].

(1.3)

Regarding time delay τ as the bifurcation parameter, when τ passes through some certain
critical values, the equilibrium will lose its stability and Hopf bifurcation will take place.
By controlling the feedback effect strength ki (i = 1, 2, 3), we can implement the control
of chaos phenomena of the system. The existence of branches makes the changing laws
of nature more complicated, which is also in line with objective facts. Branch theory is
increasingly applied in the study of biomathematical model. It plays an important role in
determining whether periodic solutions exist in biological systems [19–21].

The rest of the paper is organized as follows. In Sect. 2, the local stability and the exis-
tence of Hopf bifurcation are determined. In Sect. 3, some explicit formulas determining
the direction and stability of periodic solutions bifurcating from Hopf bifurcations point
are demonstrated by applying the normal form theory and the center manifold theorem.
In Sect. 4, we illustrate a particular example, in which numerical simulations to verify the
theorem analysis are given. Finally, there is the summary and prospect part in Sect. 5.
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2 Bifurcation analysis of the chaotic system
In this section, we investigate the existence of Hopf bifurcation occurring at the positive
equilibrium by analyzing the characteristic equation of system (1.3). To ensure the exis-
tence of the positive of system (1.3), we assume that the coefficient of system gratifies the
following conditions:

H1 : w6(w8 – w7) < w7w10(w5 + w6),

H2 : (w8 – w7) > w7w9x∗,

H3 : (w4 – w1w5)x∗ > w5.

Obviously, under hypotheses (H1), (H2), (H3), system (1.2) has a unique positive equilib-
rium E+(x∗, y∗, z∗),

x∗ =
–B1 +

√
�

2A1
, y∗ =

w8 – w7 – w7w9x∗

w7w10
,

z∗ =
( w4x∗

1+w1x∗ – w5)(1 + w2x∗ + w3y∗)
w6

,

where

� = B2
1 – 4A1C1, A1 = w1w6w7w10,

B1 = w7w10(w4 + w6) – w6w7w9 – w1w7w10(w5 + w6),

C1 = w6(w8 – w7) – w7w10(w5 + w6).

When (H1), (H2), (H3) hold, the linearizing system of (1.3) is

u̇ = Au(t) + Bu(t – τ ), (2.1)

where

u(t) = (x, y, z)T , A = (aij)3×3, B = (bij)3×3,

a11 = 1 – 2x∗ –
y∗

(1 + w1x∗)2 –
z∗(1 + w3y∗)

(1 + w2x∗ + w3y∗)2 + k1,

a12 = –
x∗

1 + w1x∗ +
w3x∗z∗

(1 + w2x∗ + w3y∗)2 , a13 = –
x∗

1 + w2x∗ + w3y∗ ,

a21 =
w4y∗

(1 + w1x∗)2 +
w2w6y∗z∗

(1 + w2x∗ + w3y∗)2 ,

a22 = –w5 + k2 +
w4x∗

1 + w1x∗ –
w6z∗(1 + w2x∗)

(1 + w2x∗ + w3y∗)2 ,

a23 = –
w6y∗

1 + w2x∗ + w3y∗ , a31 =
w8w9(z∗)2

(1 + w9x∗ + w10y∗)2 ,

a32 =
w8w10(z∗)2

(1 + w9x∗ + w10y∗)2 , a33 = 2w7z∗ –
2w8z∗

1 + w9x∗ + w10y∗ + k3,
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b11 = –k1, b22 = –k2, b33 = –k3,

all the others of bij are 0, the characteristic equation of (2.1) is

λ3 + a2λ
2 + a1λ + a0 +

(
b2λ

2 + b1λ + b0
)
e–λτ + (c1λ + c0)e–2λτ + d0e–3λτ = 0, (2.2)

where

a2 = –a11 – a22 – a33,

a1 = a11a22 + a22a33 + a11a33 – a12a21 – a13a31 – a23a32,

a0 = a11a23a32 + a12a21a33 + a13a22a31 – a11a22a33 – a12a23a31 – a13a21a32,

b2 = k1 + k2 + k3, b1 = –k1(a22 + a33) – k2(a11 + a33) – k3(a11 + a22),

b0 = k1(a22a33 – a23a32) + k2(a11a33 – a13a31) + k3(a11a22 – a12a21),

c1 = k1k2 + k1k3 + k2k3, c0 = –k1k2a33 – k1k3a22 – k2k3a11, d0 = k1k2k3.

Multiplying eλτ on the both sides of Eq. (2.2), we get

(
λ3 + a2λ

2 + a1λ + a0
)
eλτ + b2λ

2 + b1λ + b0 + (c1λ + c0)e–λτ + d0e–2λτ = 0. (2.3)

For the sake of investigating the properties of the roots of the transcendental equation, we
introduce the following result from [22].

Lemma 1 Consider the exponential polynomial

P
(
λ, e–λτ1 , . . . , e–λτm

)

= λn + p(0)
1 λn–1 + · · · + p(0)

n–1λ + p(0)
n

+
[
p(1)

1 λn–1 + · · · + p(1)
n–1λ + p(1)

n
]
e–λτ1 + · · ·

+
[
p(m)

1 λn–1 + · · · + p(m)
n–1λ + p(m)

n
]
e–λτm ,

where τi ≥ 0 (i = 1, 2, . . . , m) and p(i)
j (i = 0, 1, 2, . . . , m; j = 1, 2, . . . , n) are constants. As

(τ1, τ2, . . . , τm) vary, the sum of the order of the zeros of P(λ, e–λτ1 , . . . , e–λτm ) on the open
right half plane can change only if a zero appears on or crosses the imaginary axis.

When τ = 0, then Eq. (2.3) takes the form

λ3 + (a2 + b2)λ2 + (a1 + b1 + c1)λ + a0 + b0 + c0 + d0 = 0. (2.4)

According to the Routh–Hurwitz criterion [23], all roots of Eq. (2.4) have negative real
parts provided that the following conditions are satisfied:

�1 = a2 + b2 > 0,

�2 =

∣
∣
∣
∣
∣

a2 + b2 1
a0 + b0 + c0 + d0 a1 + b1 + c1

∣
∣
∣
∣
∣
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= (a2 + b2)(a1 + b1 + c1) – (a0 + b0 + c0 + d0) > 0,

�3 =

∣
∣
∣
∣
∣
∣
∣

a2 + b2 1 0
a0 + b0 + c0 + d0 a1 + b1 + c1 a2 + b2

0 0 a0 + b0 + c0 + d0

∣
∣
∣
∣
∣
∣
∣

= (a0 + b0 + c0 + d0)
(
(a2 + b2)(a1 + b1 + c1) – (a0 + b0 + c0 + d0)

)
> 0.

That means Eq. (2.4) satisfies the following condition:

(H4) : a2 + b2 > 0, (a2 + b2)(a1 + b1 + c1) > a0 + b0 + c0 + d0, a0 + b0 + c0 + d0 > 0.

Then the positive equilibrium is locally asymptotically stable when τ = 0.
Obviously, Eq. (2.3) has a pair of purely imaginary roots ±iω0(ω0 > 0) if and only if ω0

satisfies

(
–iω3

0 – a2ω
2
0 + a1iω0 + a0

)
eiω0τ – b2ω

2
0 + b1iω0 + b0

+ (c1iω0 + c0)e–iω0τ + d0e–2iω0τ = 0. (2.5)

Separating the real and imaginary parts, we have

m1 cosω0τ + m2 sinω0τ + m3 = –d0 cos 2ω0τ ,

n1 cosω0τ + n2 sinω0τ + n3 = d0 sin 2ω0τ ,
(2.6)

where

m1 = a0 – a2ω
2
0 + c0, m2 = c1ω0 – a1ω0 + ω3

0, m3 = b0 – b2ω
2
0,

n1 = a1ω0 – ω3
0 + c1ω0, n2 = a0 – a2ω

2
0 – c0, n3 = b1ω0.

It follows from (2.6) that

(
m2

1 + n2
1
)

cos2 ω0τ +
(
m2

2 + n2
2
)

sin2 ω0τ + 2(m1m2 + n1n2) sinω0τ cosω0τ

+ 2(m1m3 + n1n3) cosω0τ + 2(m2m3 + n2n3) sinω0τ + m2
3 + n2

3 – d2
0 = 0. (2.7)

In view of sinω0τ = ±√
1 – cos2 ω0τ and (2.7), we get

q1 cos4 ω0τ + q2 cos3 ω0τ + q3 cos2 ω0τ + q4 cosω0τ + q5 = 0,

where

q1 =
(
m2

1 + n2
1 – m2

2 – n2
2
)2 + 4(m1m2 + n1n2)2,

q2 = 4
(
m2

1 + n2
1 – m2

2 – n2
2
)
(m1m3 + n1n3) + 8(m1m2 + n1n2)(m2m3 + n2n3),

q3 = 2
(
m2

1 + n2
1 – m2

2 – n2
2
)(

m2
2 + n2

2 + m2
3 + n2

3 – d2
0
)

+ 4(m1m3 + n1n3)2

+ 4(m2m3 + n2n3)2 – 4(m1m2 + n1n2)2,
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q4 = 4(m1m3 + n1n3)
(
m2

2 + n2
2 + m2

3 + n2
3 – d2

0
)

– 8(m1m2 + n1n2)(m2m3 + n2n3),

q5 =
(
m2

2 + n2
2 + m2

3 + n2
3 – d2

0
)

– 4(m2m3 + n2n3)2.

Let cosω0τ = r and denote

h(r) = r4 +
q2

q1
r3 +

q3

q1
r2 +

q4

q1
r +

q5

q1
,

then

h′(r) = 4r3 + 3
q2

q1
r2 + 2

q3

q1
r +

q4

q1
.

Set

4r3 + 3
q2

q1
r2 + 2

q3

q1
r +

q4

q1
= 0. (2.8)

Let r = z – q2
4q1

. Then Eq. (2.8) takes the form

z3 + ρ1z + ρ2 = 0, (2.9)

where ρ1 = q3
2q2

– 3q2
2

16q2
1

,ρ2 = q3
2

32q3
1

– q2q3
8q2

1
+ q4

4q1
.

Define σ1 = ( ρ2
2 )2 + ( ρ1

3 )3,σ2 = –1+
√

3i
2 ,σ3 = –1–

√
3i

2 . By Eq. (2.9), we obtain

z1 = 3

√

–
ρ2

2
+

√
σ1 + 3

√

–
ρ2

2
–

√
σ1,

z2 = σ2
3

√

–
ρ2

2
+

√
σ1 + σ3

3

√

–
ρ2

2
–

√
σ1,

z3 = σ3
3

√

–
ρ2

2
+

√
σ1 + σ2

3

√

–
ρ2

2
–

√
σ1.

Based on the analysis and calculation above, we can deduce the expression of cosω0τ , i.e.,

cosω0τ = f1(ω0), (2.10)

where f1(ω0) is a function with respect to ω0. Substituting (2.10) into (2.7), we can easily
get the expression of sinω0τ , i.e.,

sinω0τ = f2(ω0), (2.11)

where f2(ω0) is a function with respect to ω0. Thus we get

f1(ω0)2 + f2(ω0)2 = 1. (2.12)
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Through a series of calculations, we can easily calculate Eq. (2.12). Then it follows from
(2.10) that

τk =
1
ω0

[
arccos f1(ω0) + 2kπ

]
(k = 0, 1, 2, . . .). (2.13)

Clearly, when τ = τk (k = 0, 1, 2, . . .) Eq. (2.3) has a simple pair of imaginary roots ±iω0.
Concluding the above analysis, and according to Lemma 1 and [24], we can obtain the
following Lemma 2.

Lemma 2 Let τk be defined by (2.13). If (H1)–(H4) hold, then we have the following:
(i) When τ = τk , Eq. (2.3) has a simple pair of imaginary roots ±iω0, where ω0 is the

positive root of Eq. (2.12).
(ii) When τ ∈ [0, τ0), all the roots of Eq. (2.14) have strictly negative real parts.

(iii) When τ = τk , Eq. (2.3) has a pair of imaginary roots ±iω and all other roots have
strictly negative real parts.

Let λ(τ ) = α(τ ) + iω(τ ) be the root of the characteristic Eq. (2.2) near τ = τk , satisfying
α(τk) = 0, ω(τk) = ω0 (k = 0, 1, 2, . . .). Substituting λ(τ ) into Eq. (2.2) and taking the deriva-
tive with respect to τ , we obtain

[(
3λ2 + 2a2λ + a1

)
eλτ + τ

(
λ3 + a2λ

2 + a1λ + a0
)
eλτ + 2b2λ + b1 + c1e–λτ

– τ (c1λ + c0)e–λτ – 2τ d0e–2λτ
]dλ

dτ
+ λ

(
λ3 + a2λ

2 + a1λ + a0
)
eλτ

– λ(c1λ + c0)e–λτ – 2λd0e–2λτ = 0, (2.14)

hence

[
dλ

dτ

]–1

=
(3λ2 + 2a2λ + a1)eλτ + 2b2λ + b1 + c1e–λτ

–λ(λ3 + a2λ2 + a1λ + a0)eλτ + (c1λ + c0)λe–λτ + 2d0λe–2λτ
–

τ

λ
.

Then

Re

[
dλ

dτ

]–1

τ=τk

= Re

[
N1 + iN2

M1 + iM2

]

=
M1N1 + M2N2

M2
1 + M2

2
,

where

M1 = ω2
0
(
–ω2

0 + a1 – c1
)

cosω0τk + ω0
(
c0 + a0 – a2ω

2
0
)

sinω0τk

+ 2d0ω0 sin 2ω0τk ,

M2 = ω2
0
(
–ω2

0 + a1 + c1
)

sinω0τk + ω0
(
c0 – a0 + a2ω

2
0
)

cosω0τk

+ 2d0ω0 cos 2ω0τk ,

N1 =
(
a1 + c1 – 3ω2

0
)

cosω0τk – 2a2ω0 sinω0τk + b1,

N2 =
(
a1 – c1 – 3ω2

0
)

sinω0τk + 2a2ω0 cosω0τk + 2b2ω0.
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Lemma 3 Let τ = τk , and suppose condition (H5) : M1N1 + M2N2 �= 0 holds, then the fol-
lowing transversality condition

dRe[λ(τ )]
dτ

∣
∣
∣
τ=τk

�= 0 (2.15)

is satisfied.

On the basis of previous analysis and the results of [25] and [26], we can easily obtain
the following theorem.

Theorem 1 If conditions (H1)–(H5) hold, τk is defined by (2.13). Then the positive equi-
librium of system (1.3) is asymptotically stable for τ ∈ [0, τ0) and system (1.3) undergoes a
Hopf bifurcation at the positive equilibrium when τ = τk (k = 0, 1, 2, . . .).

3 Direction and stability of Hopf bifurcation period solution
In this section, we investigate the direction of Hopf bifurcation and the stability of the
bifurcating periodic solutions based on the normal form theory and center manifold the-
orem introduced by [27]. We assume that system (1.2) always undergoes Hopf bifurcation
at the positive equilibrium E+ for τ = τ

j
k (k = 1, 2 and j = 0, 1, 2, . . .) and the characteristic

Eq. (2.3) has a pair of purely imaginary roots at the positive equilibrium E+.
Let x1 = x – x0, x2 = y – y0, x3 = z – z0, x̄i = xi(tτ ), τ = τk + μ, dropping the bars for

simplification of notations, and let p(x) = x
1+w1x , q1(x, y) = x

1+w2x+w3y , q2(x, y) = y
1+w2x+w3y ,

R(x, y) = 1
1+w9x+w10y . Then the nonlinear system (1.3) can be transformed into a functional

differential equation (FDE) system in C ∈ C([–1, 0], R3) as

ẋ(t) = Lμ(xt) + f (μ, xt), (3.1)

where x(t) = (x1(t), x2(t), x3(t))T ∈ R3 and Lμ : C → R3, f : R × C → R3 are given respec-
tively by

Lμ(ϕ) =
(
μ + τ j)

⎛

⎜
⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞

⎟
⎠

⎛

⎜
⎝

ϕ1(0)
ϕ2(0)
ϕ3(0)

⎞

⎟
⎠

+ (μ + τk)

⎛

⎜
⎝

b11 0 0
0 b22 0
0 0 b33

⎞

⎟
⎠

⎛

⎜
⎝

ϕ1(–1)
ϕ2(–1)
ϕ3(–1)

⎞

⎟
⎠ (3.2)

and

f (μ,ϕ) = (μ + τk)

⎛

⎜
⎝

f1

f2

f3

⎞

⎟
⎠ , (3.3)

where

f1 = – l11ϕ
2
1 (0) – l12ϕ1(0)ϕ2(0) – l13ϕ1(0)ϕ3(0) – l14ϕ2(0)ϕ3(0)
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– l15ϕ
2
1 (0)ϕ2(0) – l16ϕ

3
1 (0) – l17ϕ

3
1 (0)ϕ2(0) – l18ϕ

2
2 (0)

– l19ϕ
3
2 (0) – l110ϕ

2
2 (0)ϕ3(0) + · · · ,

f2 = l21ϕ
2
1 (0) + l22ϕ1(0)ϕ2(0) + l23ϕ

3
1 (0) + l24ϕ

3
1 (0)ϕ2(0)

+ l25ϕ
2
1 (0)ϕ2(0) – l26ϕ1(0)ϕ3(0) – l27ϕ2(0)ϕ3(0) – l28ϕ

2
1 (0)ϕ3(0)

– l29ϕ
2
2 (0)ϕ3(0) – l210ϕ

3
2 (0) – l211ϕ

3
2 (0)ϕ3(0) – l212ϕ

2
1 (0)ϕ2

2 (0)

– l213ϕ1(0)ϕ3
2 (0) + · · · ,

f3 = l31ϕ
2
3 (0) – l32ϕ

2
1 (0) – l33ϕ

2
2 (0) – l34ϕ1(0)ϕ2(0) – l35ϕ1(0)ϕ3(0)

– l36ϕ2(0)ϕ3(0) – l37ϕ
3
1 (0) – l38ϕ

3
2 (0) – l39ϕ1(0)ϕ2(0)ϕ3(0)

– l310ϕ
2
1 (0)ϕ2(0) – l311ϕ

2
2 (0)ϕ1(0) – l312ϕ1(0)ϕ2

3 (0)

– l313ϕ2(0)ϕ2
3 (0) – l314ϕ

2
1 (0)ϕ3(0) – l315ϕ

2(0)ϕ3(0) + · · · ,

and

ϕ(θ ) =
(
ϕ1(θ ),ϕ2(θ ),ϕ3(θ )

)T ∈ R3,

l11 = 1 +
1
2

p′′(x∗)y∗ +
1
2

q′′
1
(
x∗)z∗, l12 = p′(x∗) + q′

1
(
x∗)q′

1
(
y∗)z∗,

l13 = q′
1
(
x∗), l14 = q′

1
(
y∗), l15 =

1
2

p′′(x∗) +
1
2

q′′
1
(
x∗)q′

1
(
y∗)z∗,

l16 =
1
6

p′′′(x∗)y∗ +
1
6

q′′′
1
(
x∗)z∗, l17 =

1
6

p′′′(x∗) +
1
6

q′′′
1
(
x∗)q′

1
(
y∗)z∗,

l18 =
1
2

q′′
1
(
y∗)z∗, l19 =

1
6

q′′′
1
(
y∗)z∗, l110 =

1
2

q′′
1
(
y∗),

l21 =
w4

2
p′′(x∗)y∗ –

w6

2
q′′

2
(
x∗)z∗,

l22 = w4p′(x∗) – w6q′
2
(
x∗)q′

2
(
y∗)z∗,

l23 =
w4

6
p′′′(x∗)y∗ –

w6

6
q′′′

2
(
x∗)z∗,

l24 =
w4

6
p′′′(x∗) –

w6

6
q′′′

2
(
x∗)q′

2
(
y∗)z∗,

l25 =
w4

2
p′′(x∗) –

w6

2
q′′

2
(
x∗)q′

2
(
y∗)z∗,

l26 = w6q′
2
(
x∗), l27 = w6q′

2
(
y∗), l28 =

w6

2
q′′

2
(
x∗), l29 =

w6

2
q′′

2
(
y∗),

l210 =
w6

6
q′′′

2
(
y∗)z∗, l211 =

w6

6
q′′′

2
(
y∗), l212 =

w6

4
q′′

2
(
x∗)q′′

2
(
y∗)z∗,

l213 =
w6

6
q′

2
(
x∗)q′′′

2
(
y∗)z∗, l31 = w7 – w8R

(
x∗, y∗),

l32 =
w8

2
R′′

x
(
x∗, y∗)(z∗)2, l33 =

w8

2
R′′

y
(
x∗, y∗)(z∗)2,

l34 = w8
(
R′(x∗, y∗))2(z∗)2, l35 = 2w8R′

x
(
x∗, y∗)z∗,

l36 = 2w8R′
y
(
x∗, y∗)z∗, l37 =

w8

6
R′′′

x
(
x∗, y∗)(z∗)2,

l38 =
w8

6
R′′′

y
(
x∗, y∗)(z∗)2, l39 = 2w8R′

x
(
x∗, y∗)R′

y
(
x∗, y∗)z∗,
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l310 =
w8

2
R′′

x
(
x∗, y∗)R′

y
(
x∗, y∗)(z∗)2,

l311 =
w8

2
R′

x
(
x∗, y∗)R′′

y
(
x∗, y∗)(z∗)2,

l312 = w8R′
x
(
x∗, y∗), l313 = w8R′

y
(
x∗, y∗), l314 = w8R′′

x
(
x∗, y∗)z∗,

l315 = w8R′′
y
(
x∗, y∗)z∗.

By the Riesz representation theorem, there exists a function η(θ ,μ) of bounded variation
for θ ∈ [–1, 0]. If we choose

η(θ ,μ) = (μ + τk)

⎛

⎜
⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞

⎟
⎠ δ(θ )

– (μ + τk)

⎛

⎜
⎝

b11 0 0
0 b22 0
0 0 b33

⎞

⎟
⎠ δ(θ + 1), (3.4)

where δ(·) is a Dirac delta function and θ ∈ [–1, 0], then

Lμ(ϕ) =
∫ 0

–1
dη(θ ,μ)ϕ(θ ) for ϕ ∈ C. (3.5)

For ϕ ∈ C([–1, 0], R3), define

A(μ)ϕ =

⎧
⎨

⎩

dϕ(θ )
dθ

, θ ∈ [–1, 0),
∫ 0

–1 dη(μ, s)ϕ(s), θ = 0,

and

R(μ)ϕ =

⎧
⎨

⎩

0, θ ∈ [–1, 0),

f (μ,ϕ), θ = 0.

For convenience, we can write system (3.1) into an operate

ẋ(t) = A(μ)xt + R(μ)xt , (3.6)

where xt(θ ) = x(t + θ ), θ ∈ [–1, 0]. For ψ ∈ C1([0, 1], (R3)∗), define

A∗ψ(s) =

⎧
⎨

⎩

– dψ(s)
ds , s ∈ (0, 1],

∫ 0
–1 dηT (t, 0)ψ(–t), s = 0,

and a bilinear inner product

〈
ψ(s),ϕ(θ )

〉
= ψ̄(0)ϕ(0) –

∫ 0

–1

∫ θ

ξ=0
ψ̄(ξ – θ ) dη(θ )ϕ(ξ ) dξ , (3.7)



Chen and Gao Advances in Difference Equations        (2019) 2019:315 Page 12 of 23

where η(θ ) = η(θ , 0). Obviously A∗ and A(0) are adjoint operators. By the discussion in
Sect. 2, we know that ±iω0τk are eigenvalues of A(0). Thus they are also eigenvalues of
A∗. We need to calculate the eigenvectors of A∗ and A(0) corresponding to –iω0τk and
iω0τk , respectively. Let q(θ ) = (1,α,β)T eiθω0τk be the eigenvector of A(0), in other words,
A(0)q(θ ) = iω0τkq(θ ). Then we have

τk

⎛

⎜
⎝

iω0 – a11 + k1e–iω0τk –a12 –a13

–a21 iω0 – a22 + k2e–iω0τk –a23

–a31 –a32 iω0 – a33 + k3e–iω0τk

⎞

⎟
⎠ ,

q(0) =

⎛

⎜
⎝

0
0
0

⎞

⎟
⎠ .

Then it is easy to obtain

q(0) = (1,α,β)T =
(

1,
a13a21 – a11a23 + ia23ω0 + a23k1e–iω0τk

a12a23 – a13a22 + ia13ω0 + a13k2e–iω0τk
,

a12a31 – a11a32 + ia32ω0 + a32k1e–iω0τk

a13a32 – a12a33 + ia12ω0 + a12k3e–iω0τk

)T

.

Similarly, we suppose that q∗(s) = D(1,α∗,β∗)eisωkτk . From the definition of A∗, we have

q∗(s) = D
(

1,
a12a31 – a11a32 + ia32ω0 + a32k1e–iω0τk

a21a32 – a22a31 – ia31ω0 + a31k2e–iω0τk
,

a13a21 – a11a23 + ia23ω0 + a23k1e–iω0τk

a23a31 – a21a33 – ia21ω0 + a21k3e–iω0τk

)

eisωkτk ,

where D is a constant such that 〈q∗(s), q(θ )〉 = 1, and according to (3.7), we get

〈
q∗(s), q(θ )

〉
= D̄

(
1, ᾱ∗, β̄∗)(1,α,β)T

–
∫ 0

–1

∫ θ

ξ=0
D̄

(
1, ᾱ∗, β̄∗)e–i(ξ–θ )ω0τk dη(θ )(1,α,β)T eiξω0τk dξ

= D̄
[

1 + ᾱ∗α + β̄∗β –
∫ 0

–1

(
1, ᾱ∗, β̄∗)θeiθω0τk dη(θ )(1,α,β)T

]

= D̄
[
1 + ᾱ∗α + β̄∗β –

(
k1 + k2ᾱ∗α + k3β̄∗β

)
τ0e–iω0τk

]
. (3.8)

Therefore, we can choose D̄ as

D̄ =
1

1 + ᾱ∗α + β̄∗β – (k1 + k2ᾱ∗α + k3β̄∗β)τ0e–iω0τk
.

Following the ideas in [27] and using the same notation as in [28] to compute the coordi-
nates describing the center manifold C0 at μ = 0, let xt be the solution of Eq. (3.1) when
μ = 0.

Define

z(t) =
〈
q∗, xt

〉
, W (t, θ ) = xt(θ ) – 2 Re

{
z(t)q(θ )

}
. (3.9)
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On the center manifold C0, we get

W (t, θ ) = W
(
z(t), z̄(t), θ

)
, (3.10)

where

W
(
z(t), z̄(t), θ

)
= W20(θ )

z2

2
+ W11(θ )zz̄ + W02(θ )

z̄2

2
+ W30(θ )

z3

6
+ · · · (3.11)

and z and z̄ are local coordinates for the center manifold C0 in the direction of q∗ and q̄∗.
Noting that W is also real if xt ∈ C0, since μ = 0, we have

ż =
〈
q∗(s), ẋt

〉

=
〈
q∗(s), A(0)xt + R(0)xt

〉
=

〈
q∗(s), A(0)xt

〉
+

〈
q∗(s), R(0)xt

〉

=
〈
A∗q∗(s), xt

〉
+ q̄∗(0)R(0)xt –

∫ 0

–1

∫ θ

ξ=0
q̄∗(ξ – θ ) dη(θ )A(0)R(0)xt(ξ ) dξ

=
〈
iω0τkq∗(s), xt

〉
+ q̄∗(0)f

(
0, xt(θ )

)

= iω0τkz(t) + q̄∗(0)f0
(
z(t), z̄(t)

)
.

That is,

ż(t) = iω0τkz + g(z, z̄), (3.12)

where

g(z, z̄) = q̄∗(0)f0(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄
2

+ · · · . (3.13)

Noticing

xt(θ ) =
(
x1t(θ ), x2t(θ ), x3t(θ )

)T = W (t, θ ) + zq(θ ) + z̄q̄(θ ),

q(θ ) = (1,α,β)T eiω0θ ,

we have

x1t(0) = z + z̄ + W (1)
20 (0)

z2

2
+ W (1)

11 (0)zz̄ + W (1)
02 (0)

z̄2

2
+ · · · ,

x2t(0) = αz + ᾱz̄ + W (2)
20 (0)

z2

2
+ W (2)

11 (0)zz̄ + W (2)
02 (0)

z̄2

2
+ · · · ,

x3t(0) = βz + β̄ z̄ + W (3)
20 (0)

z2

2
+ W (3)

11 (0)zz̄ + W (3)
02 (0)

z̄2

2
+ · · · ,

we get

g(z, z̄) = q̄∗(0)f0(z, z̄) = f (0, xt) = D̄τk
(
1, ᾱ∗, β̄∗)(f (0)

1 , f (0)
2 , f (0)

3
)T

= D̄τk
[
f (0)
1 + ᾱ∗f (0)

2 + β̄∗f (0)
3

]
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= D̄τk
[
–
(
–l11x2

1t(0) – l12x1t(0)x2t(0) – l13x1t(0)x3t(0)

– l14x2t(0)x3t(0) – l15x2
1t(0)x2t(0) – l16x3

1t(0) – l17x3
1t(0)x2t(0)

– l18x2
2t(0) – l19x3

2t(0) – l110x2
2t(0)x3t(0) + · · · ) + ᾱ∗(l21x2

1t(0)

+ l22x1t(0)x2t(0) + l23x3
1t(0) + l24x3

1t(0)x2t(0) + l25x2
1t(0)x2t(0)

– l26x1t(0)x3t(0) – l27x2t(0)x3t(0) – l28x2
1t(0)x3t(0)

– l29x2
2t(0)x3t(0) – l210x3

2t(0) – l211x3
2t(0)x3t(0)

– l212x2
1t(0)x2

2t(0) – l213x1t(0)x3
2t(0) + · · · ) + β̄∗(l31x2

3t(0)

– l32x2
1t(0) – l33x2

2t(0) – l34x1t(0)x2t(0) – l35x1t(0)x3t(0)

– l36x2t(0)x3t(0) – l37x3
1t(0) – l38x3

2t(0) – l39x1t(0)x2t(0)x3t(0)

– l310x2
1t(0)x2t(0) – l311x2

2t(0)x1t(0) – l312x1t(0)x2
3t(0)

– l313x2t(0)x2
3t(0) – l314x2

1t(0)x3t(0) – l315x2(0)x3t(0) + · · · )
]
,

where

g20 = 2D̄τk
[(

–l11 + l12α + l13β + l14αβ + l18α
2) + ᾱ∗(l21 + l22α

– l26β – l27αβ) + β̄∗(l31β
2 – l32 – l33α

2 – l34α – l35β – l36αβ
)]

,

g11 = 2D̄τk
[(

–2l11 + l12(α + ᾱ) + l13(β + β̄) + l14(αβ̄ + ᾱβ) + 2l18(αᾱ)
)

+ ᾱ∗(2l21 + l22(α + ᾱ) – l26(β + β̄) – l27(αβ̄ + ᾱβ)
)

+ β̄∗(2l31ββ̄

– 2l32 – 2l33αᾱ – l34(α + ᾱ) – l35(β + β̄) – l36(αβ̄ + ᾱβ)
)]

,

g02 = 2D̄τk
[(

–l11 + l12ᾱ + l13β̄ + l14ᾱβ̄ + l18ᾱ2
)

+ ᾱ∗(2l21 + l22ᾱ – l26β̄ – l27ᾱβ̄)

+ β̄∗(l31β̄
2 – l32 – l33ᾱ

2 – l34ᾱ – l35β̄ – l36ᾱβ̄
)]

,

g21 = 2D̄τk
{[(

l15(α + ᾱ) + l16 + l19α
2ᾱ

)
– l11

(
2W (1)

11 (0) + 4W (1)
20 (0)

)

+ l12
(
W (2)

11 (0) + 2W (2)
20 (0) + αW (1)

11 (0) + 2ᾱW (1)
20 (0)

)
+ l13

(
W (3)

11 (0)

+ 2W (3)
20 (0) + βW (1)

11 (0) + 2β̄W (1)
20 (0)

)
+ l18

(
2αW (2)

11 (0) + 4ᾱW (2)
20 (0)

)]

+ α∗[l23 + l25(α + ᾱ) – l28(β + β̄) – l29
(
β̄α2 + ᾱαβ – l210β

2β̄
)

+ l21
(
2W (1)

11 (0) + 4W (1)
20 (0)

)
+ l22

(
W (2)

11 (0) + 2W (2)
20 (0) + αW (1)

11 (0)

+ 2ᾱW (1)
20 (0)

)
– l26

(
W (3)

11 (0) + 2W (3)
20 (0) + βW (1)

11 (0) + 2β̄W (1)
20 (0)

)

– l27
(
αW (3)

11 (0) + 2ᾱW (3)
20 (0) + βW (2)

11 (0) + 2β̄W (2)
11 (0)

)]

+ β∗[–l37 – l38α
2ᾱ – l39(αβ̄ᾱβ + αβ) – l310(β + β̄)

– l311
(
α2 + 2αᾱ

)
– l312

(
β2 + 2ββ̄

)
– l313

(
β2ᾱ + 2ββ̄α

)

– l314(β̄ + 2β) – l315
(
α2β̄ + 2αᾱβ

)
+ l31

(
βW (3)

11 (0) + 2β̄W (3)
20 (0)

)

– l32
(
W (1)

11 (0) + 2W (1)
20 (0)

)
+ l33

(
αW (2)

11 (0) + 2ᾱW (2)
20 (0)

)

– l34
(
W (2)

11 (0) + 2W (2)
20 (0) + αW (1)

11 (0) + 2ᾱW (1)
20 (0)

)
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– l35
(
W (3)

11 (0) + 2W (3)
20 (0) + βW (1)

11 (0) + 2β̄W (1)
20 (0)

)

– l36
(
αW (3)

11 (0) + 2ᾱW (3)
20 (0) + βW (2)

11 (0) + 2β̄W (2)
20 (0)

)]}
.

Since W11(θ ), W20(θ )) in g21 are unknown, we still need to compute them. By (3.6) and
(3.8), we can derive

Ẇ =

⎧
⎨

⎩

AW – 2 Re{q̄∗(0)f0q(θ )}, θ ∈ [–1, 0)

AW – 2 Re{q̄∗(0)f0q(θ )} + f0, θ = 0
� AW + H(z, z̄, θ ), (3.14)

where

H(z, z̄, θ ) = H20(θ )
z2

2
+ H11(θ )zz̄ + H02(θ )

z̄2

2
· · · . (3.15)

Notice that near the origin on the center manifold C0, we have

Ẇ = Wzż + Wz̄ ˙̄z. (3.16)

From (3.14), (3.15), and (3.16), comparing the coefficients, we get

(A – 2iω0τkI)W20(θ ) = –H20(θ ), (3.17)

AW11(θ ) = –H11(θ ). (3.18)

According to (3.14), we know that, for θ ∈ [–1, 0),

H(z, z̄, θ ) = –q̄∗(0)f0q(θ ) – q∗(0)f̄0q̄(θ ) = –g(z, z̄)q(θ ) – ḡ(z, z̄)q̄(θ ). (3.19)

Comparing the coefficients with (3.15), we obtain

H20(θ ) = –g20q(θ ) – ḡ02q̄(θ ), (3.20)

H11(θ ) = –g11q(θ ) – ḡ11q̄(θ ). (3.21)

By (3.17), (3.20), and the definition of A, it follows that

Ẇ20(θ ) = 2iω0τkW20(θ ) + g20q(θ ) + ḡ02q̄(θ ). (3.22)

Substituting q(θ ) = (1,α,β)T eiθω0τk into the equation, we can obtain the solution of it,
which reads

W20(θ ) =
ig20

ω0τk
q(0)eiθω0τk +

iḡ02

3ω0τk
q̄(0)e–iθω0τk + E1e2iθω0τk , (3.23)

where E1 = (E(1)
1 , E(2)

1 , E(3)
1 )T ∈ R3 is a constant vector.

Similarly, in view of (3.18), (3.21), and the definition of A, we can obtain

Ẇ11(θ ) = g11q(θ ) + ḡ11q̄(θ ), (3.24)
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W11(θ ) = –
ig11

ω0τk
q(0)eiθω0τk +

iḡ11

ω0τk
q̄(0)e–iθω0τk + E2, (3.25)

where E2 = (E(1)
2 , E(2)

2 , E(3)
2 )T ∈ R3 is a constant vector.

Next, we shall seek appropriate E1, E2, respectively. In the light of the definition of A,
combined with (3.23) and (3.25), we have

Ẇ20(θ ) =
∫ 0

–1
dη(θ )W20(θ ) = 2iω0τkW20(0) – H20(0) (3.26)

and

Ẇ11(θ ) =
∫ 0

–1
dη(θ )W11(θ ) = –H11(0), (3.27)

where η(θ ) = η(0, θ ). From (3.17) and (3.18), we get

H20(0) = –g20q(0) – ḡ02q̄(0)

+ 2τk

⎛

⎜
⎝

–l11 + l12α + l13β + l14αβ + l18α
2

l21 + l22α – l26β – l27αβ

l31β
2 – l32 – l33α

2 – l34α – l35β – l36αβ

⎞

⎟
⎠ , (3.28)

and

H11(0) = –g11q(0) – ḡ11q̄(0) + 2τk

×
⎛

⎜
⎝

–2l11 + l12(α + ᾱ) + l13(β + β̄) + l14(αβ̄ + ᾱβ) + 2l18(αᾱ)
2l21 + l22(α + ᾱ) – l26(β + β̄) – l27(αβ̄ + ᾱβ)

2l31ββ̄ – 2l32 – 2l33αᾱ – l34(α + ᾱ) – l35(β + β̄) – l36(αβ̄ + ᾱβ)

⎞

⎟
⎠ . (3.29)

For iω0τk is the eigenvalues of A and q(0) is the corresponding eigenvector, we obtain

(

iω0τkI –
∫ 0

–1
eiθω0τk dη(θ )

)

q(0) = 0, (3.30)

(

–iω0τkI –
∫ 0

–1
e–iθω0τk dη(θ )

)

q̄(0) = 0. (3.31)

Substituting (3.23), (3.28) into (3.26), we obtain

(

2iω0τkI –
∫ 0

–1
e2iθω0τk dη(θ )

)

E1

= 2τk

⎛

⎜
⎝

–l11 + l12α + l13β + l14αβ + l18α
2

l21 + l22α – l26β – l27αβ

l31β
2 – l32 – l33α

2 – l34α – l35β – l36αβ

⎞

⎟
⎠ .

That is,

⎛

⎜
⎝

2iω0 – a11 + k1e–iω0τk –a12 –a13

–a21 2iω0 – a22 + k2e–iω0τk –a23

–a31 –a32 2iω0 – a33 + k3e–iω0τk

⎞

⎟
⎠
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E1 =

⎛

⎜
⎝

�1 –a12 –a13

–a21 �2 –a23

–a31 –a32 �3

⎞

⎟
⎠E1

= 2

⎛

⎜
⎝

–l11 + l12α + l13β + l14αβ + l18α
2

l21 + l22α – l26β – l27αβ

l31β
2 – l32 – l33α

2 – l34α – l35β – l36αβ

⎞

⎟
⎠ = 2

⎛

⎜
⎝

ℵ1

ℵ2

ℵ3

⎞

⎟
⎠ .

It follows that

E(1)
1 =

�11

�1
, E(2)

1 =
�12

�1
, E(3)

1 =
�13

�1
,

where

�1 =

∣
∣
∣
∣
∣
∣
∣

�1 –a12 –a13

–a21 �2 –a23

–a31 –a32 �3

∣
∣
∣
∣
∣
∣
∣

,

�11 = 2

∣
∣
∣
∣
∣
∣
∣

ℵ1 –a12 –a13

ℵ2 �2 –a23

ℵ3 –a32 �3

∣
∣
∣
∣
∣
∣
∣

,

�12 = 2

∣
∣
∣
∣
∣
∣
∣

�1 ℵ1 –a13

–a21 ℵ2 –a23

–a31 ℵ3 �3

∣
∣
∣
∣
∣
∣
∣

,

�13 = 2

∣
∣
∣
∣
∣
∣
∣

�1 –a12 ℵ1

–a21 �2 ℵ2

–a31 –a32 ℵ3

∣
∣
∣
∣
∣
∣
∣

.

Similarly, substituting (3.24), (3.29) into (3.27), we have

⎛

⎜
⎝

–a11 + k1 –a12 –a13

–a21 –a22 + k2 –a23

–a31 –a32 –a33 + k3

⎞

⎟
⎠E2

= 2

⎛

⎜
⎝

–2l11 + l12(α + ᾱ) + l13(β + β̄) + l14(αβ̄ + ᾱβ) + 2l18(αᾱ)
2l21 + l22(α + ᾱ) – l26(β + β̄) – l27(αβ̄ + ᾱβ)

2l31ββ̄ – 2l32 – 2l33αᾱ – l34(α + ᾱ) – l35(β + β̄) – l36(αβ̄ + ᾱβ)

⎞

⎟
⎠

= 2

⎛

⎜
⎝

�1

�2

�3

⎞

⎟
⎠ .

It follows that

E(1)
2 =

�21

�2
, E(2)

2 =
�22

�2
, E(3)

2 =
�23

�2
,



Chen and Gao Advances in Difference Equations        (2019) 2019:315 Page 18 of 23

where

�2 =

∣
∣
∣
∣
∣
∣
∣

–a11 + k1 –a12 –a13

–a21 –a22 + k2 –a23

–a31 –a32 –a33 + k3

∣
∣
∣
∣
∣
∣
∣

,

�21 = 2

∣
∣
∣
∣
∣
∣
∣

�1 –a12 –a13

�2 –a22 + k2 –a23

�3 –a32 –a33 + k3

∣
∣
∣
∣
∣
∣
∣

,

�22 = 2

∣
∣
∣
∣
∣
∣
∣

–a11 + k1 �1 –a13

–a21 �2 –a23

–a31 �3 –a33 + k3

∣
∣
∣
∣
∣
∣
∣

,

�23 = 2

∣
∣
∣
∣
∣
∣
∣

–a11 + k1 –a12 �1

–a21 –a22 + k2 �2

–a31 –a32 �3

∣
∣
∣
∣
∣
∣
∣

.

Consequently, we can determine W20(0) and W11(0) from (3.24), (3.26). Furthermore,
based on the above calculation, we can compute g21. Therefore, all gij are determined by
the parameters and delay in (3.1). After that, we can easily compute the following values:

C1(0) =
i

2ω0τk

(

g11g20 – 2|g11|2 –
1
3
|g02|2

)

+
g21

2
,

μ2 = –
Re{C1(0)}
Re{λ′(τk)} ,

β2 = 2 Re
{

C1(0)
}

,

T2 = –
Im{C1(0)} + μ2 Im{λ′(τk)}

ω0τk
.

(3.32)

Thus, we have the main results of this section.

Theorem 2 For (3.32), we have
(i) The sign of μ2 determines the direction of the Hopf bifurcation, if μ2 > 0(μ2 < 0),

then the Hopf bifurcation is supercritical (subcritical) and the bifurcating period
solutions exist for τ > τk(τ < τk);

(ii) The sign of β2 determines the stability of the bifurcating period solutions, if
β2 < 0(β2 > 0), then the bifurcation period solutions are orbital stable (unstable);

(iii) The sign of T2 determines the period of the bifurcating period solutions, if
T2 > 0(T2 < 0), then the period increases (decreases).

4 Application to control of chaos
In this section, extensive numerical simulations are carried out to verify the analytical
results of the tri-trophic food web system for a Leslie–Gower type generalist predator
model. Consider the following set of data for system (1.2):

w1 = 1.4, w2 = 5, w3 = 8, w4 = 1, w5 = 0.16, w6 = 0.1,

w7 = 0.1, w8 = 0.5, w9 = 8, w10 = 8.
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Now, we give numerical simulations to confirm our theoretical analysis. According to the
above related parameters, we can obtain

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt = x[1 – x – y

1+1.4x – z
1+5x+8y ] + k1[x – x(t – τ )],

dy
dt = y[–0.16 + x

1+1.4x – 0.1z
1+5x+8y ] + k2[y – y(t – τ )],

dz
dt = 0.1z2 – 0.5z2

1+8x+8y ) + k3[z – z(t – τ )],

(4.1)

which has a positive equilibrium E+ = ( 473
1530 , 146

765 , 1483
653 ). The linearized system of system (4.1)

near E+ takes the form

u̇(t) =

⎛

⎜
⎝

–0.0573 0.1229 –0.0759
0.1060 0.0209 –0.0047
0.8252 0.8252 0

⎞

⎟
⎠u(t) +

⎛

⎜
⎝

–k1 0 0
0 –k2 0
0 0 –k3

⎞

⎟
⎠u(t – τ ), (4.2)

where u(t) = (x(t), y(t), z(t))T . The characteristic equation of system (4.2) is

(
λ3 + a∗

2λ
2 + a∗

1λ + a0
)
eλτ + b∗

2λ
2 + b∗

1λ + b∗
0 +

(
c∗

1λ + c∗
0
)
e–λτ + d∗

0e–2λτ = 0, (4.3)

a∗
2 = 0.0364, a∗

1 = 0.0523, a∗
0 = 0.006, b∗

2 = k1 + k2 + k3,

b∗
1 = –0.0209k1 + 0.0573k2 + 0.0364k3, b∗

0 = 0.0039k1 + 0.0626k2 – 0.0142k3,

c∗
1 = k1k2 + k1k3 + k2k3, c∗

0 = –0.0209k1k3 + 0.0573k2k3, d∗
0 = k1k2k3.

When τ = 0 or k1 = k2 = k3 = 0, then (4.3) becomes

λ3 + 0.0363λ2 + 0.0523λ + 0.006 = 0. (4.4)

It is clear that the positive equilibrium E+ is unstable. System (4.1) has a chaotic attractor
(see Fig. 1).

When τ �= 0 or k1 �= 0, k2 �= 0, k3 �= 0, then Eq. (4.3) becomes

(
λ3 + 0.0364λ2 + 0.0523λ + 0.006

)
eλτ + (k1 + k2 + k3)λ2

+ (0.0364k3 + 0.0573k2 – 0.0209k1)λ + (0.0039k1 + 0.0626k2 – 0.0142k3)

+
(
(k1k2 + k1k3 + k2k3)λ + (0.0573k2k3 – 0.0209k1k3)

)
e–λτ

+ (k1k2k3)e–2λτ = 0.

Set k1 = k2 = k3 = –0.02, we can obtain ω0 ≈ 0.20298, τ0 ≈ 7.739, then Re C1(0) = 1.5562.
When τ passes through the critical values τk , the positive equilibrium E+ loses its stability
and a Hopf bifurcation occurs. Numerical simulation shows the bifurcation diagrams of
system (4.1) (see Fig. 2). Figure 3 shows the positive equilibrium E+ is still chaotic when
τ = 4. And the positive equilibrium is asymptotically stable (see Fig. 4). Notice that μ2 < 0
and β2 > 0, the Hopf bifurcation is subcritical and the bifurcating periodic solutions from
the equilibrium E+ are unstable (see Fig. 5).

From the numerical simulation, it can be seen that when the delay feedback is incorpo-
rated in a Leslie–Gower type generalist predator model in a tri-trophic food web system,
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Figure 2 The bifurcation diagram of system (4.1), where w1 = 1.4, w2 = 5, w3 = 8, w4 = 1, w5 = 0.16, w6 = 0.1,
w7 = 0.1, w8 = 0.5, w9 = 8, w10 = 8, k1 = –0.02, k2 = –0.02, k3 = –0.02

Figure 3 The trajectories and graphs of system (4.1) with τ = 4. The positive equilibrium E+ still has a chaotic
attractor

rich and colorful dynamical behaviors can occur by adjusting the appropriate feedback
strength k and time delay τ . Especially when the time delay reaches a certain value, the
chaotic attractor vanishes. In this sense, delayed feedback successfully implements chaos
control.
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Figure 4 The trajectories and graphs of system (4.1) with τ = 12. The positive equilibrium E+ is asymptotically
stable

Figure 5 The trajectories and graphs of system (4.1) with τ = 16. The positive equilibrium E+ is unstable, and
a stable periodic solution from E+
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5 Conclusions
This paper provides stability and bifurcation analysis in a tri-trophic food web model with
Leslie–Gower type generalist predator with delay feedback. Some conditions are given to
ensure the existence of Hopf bifurcation occurring at the positive equilibrium by inves-
tigating the associated characteristic equation. The properties of Hopf bifurcations, such
as the direction and stability of periodic solutions, are investigated based on the normal
form theory and center manifold theorem. With the help of some numerical simulation,
we show the exact value where chaos appears or vanishes. Our results show that if we
choose some appropriate parameters, the oscillation can be controlled to a stable equilib-
rium or a stable periodic orbit. That is to say, we can achieve the three species coexistence
by adjusting the capture (or release) level. Moreover, the control method used in this paper
can be applicable to other chaotic systems.
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