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Abstract
In this work, new conditions are obtained for the oscillation of solutions of the
even-order equation

(r(ζ )z(n–1)(ζ ))′ +
∫ b

a
q(ζ , s)f (x(g(ζ , s)))ds = 0, ζ ≥ ζ0,

where n ≥ 2 is an even integer and z(ζ ) = xα (ζ ) + p(ζ )x(σ (ζ )). By using the theory of
comparison with first-order delay equations and the technique of Riccati
transformation, we get two various conditions to ensure oscillation of solutions of this
equation. Moreover, the importance of the obtained conditions is illustrated via some
examples.
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1 Introduction
In this work, we establish the oscillatory behavior of the nth-order neutral equation

(
rz(n–1))′(ζ ) +

∫ b

a
q(ζ , s)f

(
x
(
g(ζ , s)

))
ds = 0, ζ ≥ ζ0, (1.1)

where α is a ratio of odd positive integers, n is an even integer, n ≥ 2,

z(ζ ) = xα(ζ ) + p(ζ )x
(
σ (ζ )

)
. (1.2)

Throughout this work, we assume that:
(H1) p, r ∈ C([ζ0,∞)), r(ζ ) > 0, r′(ζ ) ≥ 0, and 0 ≤ p(ζ ) < 1;
(H2) q ∈ C([ζ0,∞) × (a, b),R), q(ζ , s) ≥ 0, and

∫ ∞

ζ0

1
r(s)

ds = ∞;
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(H3) f ∈ C(R,R), |f (x)| ≥ k|xα| for x �= 0, and k is a positive constant;
(H4) σ ∈ C([ζ0,∞), (0,∞)), σ (ζ ) ≤ ζ , and limζ→∞ σ (ζ ) = ∞;
(H5) g ∈ C([ζ0,∞) × (a, b),R), g(ζ , s) ≤ ζ , g has nonnegative partial derivatives, and

limζ→∞ g(ζ , s) = ∞.
By a solution of Eq. (1.1), we purpose a function x(ζ ) ∈ C([ζk ,∞),R) for some ζk ≥ ζ0

such that z(ζ ) ∈ C(n)([ζk ,∞),R) and (r(ζ )z(n–1)(ζ )) ∈ C1([ζk ,∞),R) and satisfies Eq. (1.1)
on [ζk ,∞). If x is neither positive nor negative eventually, then x(ζ ) is called oscillatory, or
it will be non-oscillatory.

The theory of oscillation of differential equation has been the subject of many papers [1–
37]. During the recent decades, a great amount of work has been done on development
the oscillation theory of the nth-order equations with delay and advanced argument, see
[4–12, 23, 25, 27, 28, 31–37]. In the following, we present some related examples:

In [36], Zhang et al. established the conditions of oscillation of the equation

(
r
(
x(n–1))α)′(ζ ) + q(ζ )f

(
x
(
g(ζ )

))
= 0, (1.3)

where f (x) = xβ , β is a ratio of odd positive integers, β ≤ α, and

∫ ∞

ζ0

r–1/α(s) ds < ∞. (1.4)

Moreover, in [35], some oscillation results have been presented, which improves the re-
sults in [36]. As well, Baculikova et al. in [8] studied the properties of oscillation of the
solutions of equation (1.3) under conditions (1.4) and

∫ ∞

ζ0

r–1/α(s) ds = ∞. (1.5)

For more oscillation results about (1.3), see [3–5]. The asymptotic properties and oscilla-
tion of equation

(
r
(
y(n–1))α)′(ζ ) + q(ζ )f

(
x
(
g(ζ )

))
= 0,

where y(ζ ) = x(ζ ) + p(ζ )x(σ (ζ )), have been considered in [7, 23, 32, 37].
In [31], the oscillatory behavior of the neutral differential equation

(
r
(|x|γ –1x + px(σ )

)(n–1))′(ζ ) + q(ζ )f
(
x
(
g(ζ )

))
= 0,

where γ ≥ 1 is a real number, is established.
In this paper, by using the technique of comparison with first order delay equations and

technique of Riccati transformation, we obtain a two different conditions ensure oscilla-
tion of solutions of this equation, which extend and improve results of [31]. Moreover,
we establish some new criterion for oscillation of Eq. (1.1) by using an integral averages
condition of Philos-type. We illustrate the importance of our results by presenting some
examples.

During the following sections of our paper, we shall need the next definition and lemmas.
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Definition 1 ([29]) Let

D0 =
{

(ζ , s) : ζ > s > ζ0
}

and D =
{

(ζ , s) : ζ ≥ s ≥ ζ0
}

.

Let H be a continuous real functions on D. It is said that H belongs to the function class
	, written by H ∈ 	, if

(i) H(ζ , ζ ) = 0 for ζ ≥ ζ0, H(ζ , s) > 0 on D0;
(ii) The partial derivative ∂H/∂s ∈ C(D0, [0,∞)) such that the condition

∂H(ζ , s)
∂s

= –h(ζ , s)
√

H(ζ , s),

for all (ζ , s) ∈ D0 is satisfied for some h ∈ C(D,R).

Lemma 1.1 ([3]) Suppose that n be an even, w ∈ Cn([ζ0,∞)), w of constant sign, w(n)(ζ ) �= 0
on [ζ0,∞) and w(ζ )w(n)(ζ ) ≤ 0. Then,

(I) The derivatives w(i)(ζ ), i = 1, 2, . . . , n – 1, are of constant sign on [ζ1,∞) for some
ζ1 ≥ ζ0;

(II) There exists an odd integer l ∈ [1, n), such that, for ζ ≥ ζ1,

y(ζ )y(i)(ζ ) > 0

for all i = 0, 1, . . . , l and

(–1)n+i+1y(ζ )y(i)(ζ ) > 0

for all i = l + 1, . . . , n.

Lemma 1.2 ([3]) Let w be as in Lemma 1.1 and w(n–1)(ζ )w(n)(ζ ) ≤ 0 for ζ ≥ ζ0. Then there
exists a constant M > 0 such that

∣∣y(λζ )
∣∣ ≥ Mζ n–1∣∣y(n–1)(ζ )

∣∣

for all large ζ .

Lemma 1.3 ([3]) Let w be as in Lemma 1.1 and w(n–1)(ζ )w(n)(ζ ) ≤ 0 for ζ ≥ ζ0. If
limζ→∞ w(ζ ) �= 0, then for every μ ∈ (0, 1) there exists a ζμ ≥ ζ0 such that

∣∣y(ζ )
∣∣ ≥ μ

(n – 1)!
ζ n–1∣∣y(n–1)(ζ )

∣∣

for all ζ ≥ ζμ.

2 Main results
Lemma 2.1 Assume that x(ζ ) is an eventually positive solution of equation (1.1). If

ω(ζ ) := ρ(ζ )
r(ζ )z(n–1)(ζ )
z(λg(ζ , a))

,
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where ρ ∈ C′([ζ0,∞),R+) and λ ∈ (0, 1), then

ω′(ζ ) ≤ ρ ′(ζ )
ρ(ζ )

ω(ζ ) – kρ(ζ )Q(ζ ) –
λ

η(ζ )
ω2(ζ ), (2.1)

where M is a positive real constant and

Q(ζ ) :=
∫ b

a
q(ζ , s)

(
1 – p

(
g(ζ , s)

))
ds

and

η(ζ ) :=
r(ζ )ρ(ζ )

Mgn–2(ζ , s)g ′(ζ , a)
.

Proof Let x(ζ ) be an eventually positive solution of equation (1.1). Then we can assume
that x(ζ ) > 0, x(σ (ζ )) > 0, and x(g(ζ , s)) > 0 for ζ ≥ ζ1. Hence, we deduce z(ζ ) > 0 for ζ ≥ ζ1

and

(
rz(n–1))′(ζ ) = –

∫ b

a
q(ζ , s)f

(
x
(
g(ζ , s)

))
ds ≤ 0. (2.2)

Therefore, the function r(ζ )z(n–1)(ζ ) is decreasing and z(n–1)(ζ ) is eventually of one sign.
We claim that z(n–1)(ζ ) ≥ 0. Otherwise, if there exists ζ2 ≥ ζ1 such that z(n–1)(ζ ) < 0 for
ζ ≥ ζ2, and

(
rz(n–1))(ζ ) ≤ (

rz(n–1))(ζ2) = –m,

where m is a positive constant. Integrating the above inequality from ζ2 to ζ , we have

z(n–2)(ζ ) ≤ z(n–2)(ζ2) – m
∫ ζ

ζ2

1
r(s)

ds.

Letting ζ → ∞, we get limζ→∞ z(n–2)(ζ ) = –∞, which implies z(ζ ) is eventually negative
by Lemma 1.1. This is a contradiction. Hence, we have that z(n–1)(ζ ) ≥ 0 for ζ ≥ ζ1. Fur-
thermore, from Eq. (1.1) and (H1), we get

(
rz(n))(ζ ) = –

(
r′z(n–1))(ζ ) –

∫ b

a
q(ζ , s)f

(
x
(
g(ζ , s)

))
ds ≤ 0,

this implies that z(n)(ζ ) ≤ 0, ζ ≥ ζ1. From Lemma 1.1, we obtain that

z(ζ ) > 0, z′(ζ ) > 0, z(n–1)(ζ ) ≥ 0, and z(n)(ζ ) ≤ 0 (2.3)

for ζ ≥ ζ2 are satisfied.
Next, from definition (1.2), we get

xα(ζ ) = z(ζ ) – p(ζ )x
(
σ (ζ )

) ≥ z(ζ ) – p(ζ )z
(
σ (ζ )

) ≥ z(ζ ) – p(ζ )z(ζ )

≥ (
1 – p(ζ )

)
z(ζ ),
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and so

xα
(
g(ζ , s)

) ≥ z
(
g(ζ , s)

)(
1 – p

(
g(ζ , s)

))
. (2.4)

By (H3) and (2.4), we find

f
(
x
(
g(ζ , s)

)) ≥ kz
(
g(ζ , s)

)(
1 – p

(
g(ζ , s)

))
. (2.5)

Combining (1.1) and (2.5), we have

(
rz(n–1))′(ζ ) ≤ –k

∫ b

a
q(ζ , s)z

(
g(ζ , s)

)(
1 – p

(
g(ζ , s)

))
ds.

Since g(ζ , s) is nondecreasing with respect to s, we get g(ζ , s) ≥ g(ζ , a) for s ∈ (a, b), and so

(
rz(n–1))′(ζ ) ≤ –kz

(
g(ζ , a)

)
Q(ζ ). (2.6)

Using Lemma 1.2 with u = z′, there exists M > 0 such that

z′(λg(ζ , s)
) ≥ Mgn–2(ζ , s)z(n–1)(g(ζ , s)

) ≥ Mgn–2(ζ , s)z(n–1)(ζ ). (2.7)

From the definition of ω, we see that ω(ζ ) > 0 and

ω′(ζ ) =
ρ ′(ζ )
ρ(ζ )

ω(ζ ) + ρ(ζ )
(r(ζ )z(n–1)(ζ ))′

z(λg(ζ , a))
– λρ(ζ )

r(ζ )z(n–1)(ζ )z′(λg(ζ , a))g ′(ζ , a)
(z(λg(ζ , a)))2 .

From (2.6), we obtain

ω′(ζ ) ≤ ρ ′(ζ )
ρ(ζ )

ω(ζ ) – kρ(ζ )Q(ζ ) – λ
z′(λg(ζ , a))g ′(ζ , a)

z(λg(ζ , a))
ω(ζ ).

By using (2.7), we have

ω′(ζ ) ≤ ρ ′(ζ )
ρ(ζ )

ω(ζ ) – kρ(ζ )Q(ζ ) – λ
Mgn–2(ζ , s)z(n–1)(ζ )g ′(ζ , a)

z(λg(ζ , a))
ω(ζ )

≤ ρ ′(ζ )
ρ(ζ )

ω(ζ ) – kρ(ζ )Q(ζ ) –
λ

η(υ)
ω2(ζ ).

This completes the proof. �

Theorem 2.1 If there exist a function ρ ∈ C1([ζ0,∞),R+) and constants λ ∈ (0, 1), M > 0
such that

∫ ∞

ζ0

(
kρ(υ)Q(υ) –

1
4λ

(
ρ ′(υ)
ρ(υ)

)2

η(υ)
)

dυ = ∞, (2.8)

then Eq. (1.1) is oscillatory.
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Proof Suppose that Eq. (1.1) has a nonoscillatory solution in [ζ0,∞). Without loss of gen-
erality, we assume that x(ζ ) is an eventually positive solution of equation (1.1). From
Lemma 2.1, we get that (2.1) holds. Using the inequality

Uy – υy
γ +1
γ ≤ γ γ

(γ + 1)γ +1
Uγ +1

υγ
,

with U = ρ ′/ρ , υ = λMgn–2(ζ , s)g ′(ζ , a)/(r(ζ )ρ(ζ )) and y = ω(ζ ), we find

ω′(ζ ) ≤ –kρ(ζ )Q(ζ ) +
1

4λ

(
ρ ′(ζ )
ρ(ζ )

)2 r(ζ )ρ(ζ )
Mgn–2(ζ , s)g ′(ζ , a)

.

Integrating this inequality from ζ1 to ζ , we obtain

∫ ζ

ζ1

(
kρ(υ)Q(υ) –

1
4λ

(
ρ ′(υ)
ρ(υ)

)2

η(υ)
)

dυ ≤ ω(ζ1) – ω(ζ )

≤ ω(ζ1),

which contradicts (2.8) and this completes the proof. �

Theorem 2.2 If, for some constant μ ∈ (0, 1), the differential equation

u′(ζ ) + Q̂(ζ )u
(
g(ζ , a)

)
= 0 (2.9)

is oscillatory, where

Q̂(ζ ) :=
kμgn–1(ζ , a)

(n – 1)!r(g(ζ , a))
Q(ζ ),

then Eq. (1.1) is oscillatory.

Proof Suppose that Eq. (1.1) has a nonoscillatory solution in [ζ0,∞). Without loss of gen-
erality, we assume that x(ζ ) is an eventually positive solution of equation (1.1). From
Lemma 2.1, we get that (2.3)–(2.6) hold. By using Lemma 1.3, we find

z(ζ ) ≥ μ

(n – 1)!
ζ n–1z(n–1)(ζ )

for all ζ ≥ ζ2 ≥ max{ζ1, ζμ}. Thus, from (2.6), we obtain

(
r(ζ )z(n–1)(ζ )

)′ +
kμgn–1(ζ , a)Q(ζ )
(n – 1)!r(g(ζ , a))

(
r
(
g(ζ , a)

)
z(n–1)(g(ζ , a)

)) ≤ 0.

Therefore, we see that u(ζ ) := r(ζ )z(n–1)(ζ ) is a positive solution of the differential inequal-
ity

u′(ζ ) + Q̂(ζ )u
(
g(ζ , a)

) ≤ 0.

From [29, Corollary 1], we have that Eq. (2.9) also has a positive solution, a contradiction.
This completes the proof. �

By using Theorem 2.1.1 in [20], we get the following corollary.
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Corollary 2.1 If, for some constant μ ∈ (0, 1),

lim inf
ζ→∞

∫ ζ

g(ζ ,a)

gn–1(s, a)
r(g(s, a))

Q(s) ds >
(n – 1)!

kμe
,

then Eq. (1.1) is oscillatory.

Theorem 2.3 If there exist H ∈ 	, ρ ∈ C1([ζ0,∞),R+) and constants λ ∈ (0, 1), M > 0 such
that

lim sup
ζ→∞

1
H(ζ , ζ0)

∫ ζ

ζ0

H(ζ ,υ)
(

kρ(υ)Q(υ) –
1

4λ
η(υ)Φ2(ζ ,υ)

)
dυ = ∞, (2.10)

where

Φ(ζ , s) =
ρ ′(s)
ρ(s)

–
h(ζ , s)√
H(ζ , s)

,

then Eq. (1.1) is oscillatory.

Proof Suppose that Eq. (1.1) has a nonoscillatory solution in [ζ0,∞). Without loss of gen-
erality, we assume that x(ζ ) is an eventually positive solution of equation (1.1). From
Lemma 2.1, we get that (2.1) holds. Multiplying (2.1) by H(ζ , s) and integrating from ζ2

to ζ , we get

ω′(s) ≤ ρ ′(s)
ρ(s)

ω(s) – kρ(s)Q(s) –
λ

η(s)
ω2(s),

k
∫ ζ

ζ2

H(ζ ,υ)ρ(υ)Q(υ) dυ ≤ –
∫ ζ

ζ2

H(ζ ,υ)ω′(υ) dυ –
∫ ζ

ζ2

H(ζ ,υ)
λ

η(υ)
ω2(υ) dυ

+
∫ ζ

ζ2

H(ζ ,υ)
ρ ′(υ)
ρ(υ)

ω(υ) dυ

≤ H(ζ , ζ2)ω(ζ2) –
∫ ζ

ζ2

H(ζ ,υ)
λ

η(υ)
ω2(υ) dυ

+
∫ ζ

ζ2

H(ζ ,υ)ω(υ)�(ζ ,υ) dυ

and hence,

k
∫ ζ

ζ2

H(ζ ,υ)ρ(υ)Q(υ) dυ ≤ H(ζ , ζ2)ω(ζ2)

–
∫ ζ

ζ2

H(ζ ,υ)
λ

η(υ)

(
ω2(υ) –

η(υ)
λ

Φ(ζ ,υ)ω(υ)
)

dυ.

It follows that

1
H(ζ , ζ2)

∫ ζ

ζ2

H(ζ ,υ)
(

kρ(υ)Q(υ) –
1

4λ
η(υ)Φ2(ζ ,υ)

)
dυ

≤ ω(ζ2) –
1

H(ζ , ζ2)

∫ ζ

ζ2

H(ζ ,υ)
λ

η(υ)

(
ω(υ) –

1
2λ

η(υ)Φ(ζ ,υ)
)2

dυ,
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which implies

lim sup
ζ→∞

1
H(ζ , ζ2)

∫ ζ

ζ2

H(ζ ,υ)
(

kρ(υ)Q(υ) –
1

4λ
η(υ)Φ2(ζ ,υ)

)
dυ ≤ ω(ζ2).

From (2.10), we have a contradiction. This completes the proof. �

The following oscillation criteria treat the cases when it is not possible to verify easily
conditions (2.10).

Theorem 2.4 Assume that

0 < inf
s≥ζ

(
lim inf
ζ→∞

H(ζ , s)
H(ζ , ζ0)

)
≤ ∞

and

lim sup
ζ→∞

1
H(ζ , ζ0)

∫ ζ

ζ0

H(ζ ,υ)η(υ)Φ2(ζ ,υ) dυ < ∞.

If there exists ψ ∈ C([ζ0,∞),R) such that, for ζ ≥ ζ0,

lim sup
ζ→∞

∫ ζ

ζ0

ψ2
+(s)

η(s)
ds = ∞

and

lim sup
ζ→∞

1
H(ζ , ζ0)

∫ ζ

ζ0

H(ζ ,υ)
(

kρ(υ)Q(υ) –
1

4λ
η(υ)Φ2(ζ ,υ)

)
dυ ≥ sup

ζ≥ζ0
ψ(ζ ),

where ψ+(ζ ) = max{ψ(ζ ), 0}, then every solution of Eq. (1.1) is oscillatory.

The proof of Theorem 2.4 is similar to the proof of Theorem 2.5 in [18] and hence is
omitted.

Example 2.1 Consider the following nth-order neutral differential equation:

((
x3(ζ ) +

(
1 –

1
ζ

)
x(ζ – σ )

)′)′
+

∫ 1

1/2
ζ 2sx3(ζ s) ds = 0, (2.11)

where n = 2, α = 3, r(ζ ) = 1, p(ζ ) = 1 – 1
ζ

, σ (ζ ) = ζ – σ , q(ζ , s) = ζ 2s, f (x) = x3, g(ζ , s) = ζ s,
and let ρ(ζ ) = 1, then for any constants λ ∈ (0, 1) and M > 0 we have

∫ ∞

ζ0

(
kρ(υ)Q(υ) –

1
4λ

(
ρ ′(υ)
ρ(υ)

)2

η(υ)
)

dυ = ∞.

From Theorem 2.1, it follows that Eq. (2.11) is oscillatory.

Example 2.2 Consider the equation

(
ζ
(
xα(ζ ) + p0x(δσ )

)n–1)′ +
q0

ζ n–1 xα(βζ ) = 0, (2.12)
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where p0 ∈ [0, 1), δ,β ∈ (0, 1), and q0 > 0. We note that a = 0, b = 1, r(ζ ) := ζ , q(ζ ) :=
q0/ζ n–1, and f (x) := xα . Hence,

Q(ζ ) := q0(1 – p0)ζ 1–n.

Let ρ(ζ ) := ζ n. Then we have (2.8) holds if

q0(1 – p0)βn–1 >
n2

4λM
(2.13)

for every positive constant M. By using Theorem 2.1, Eq. (2.11) is oscillatory if (2.13) holds.
Note that there is difficulty in applying Condition (2.13) due to a constant M. But, by using
Corollary 2.1, we get that Eq. (2.11) is oscillatory if

lim inf
ζ→∞

∫ ζ

g(ζ ,a)
βn–2q0(1 – p0)

1
s

ds >
(n – 1)!

kμe
,

that is,

q0(1 – p0)βn–2 ln
1
β

>
(n – 1)!

μe
. (2.14)
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