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Abstract
Some similarity solutions of the time-fractional stationary transonic plane-parallel gas
flows (STPPGF) and their generalized space-fractional nonlinear system are obtained
by using scalar similarity transformations, including traveling-wave similarity
solutions. Two approximated solution formulas of the obtained ordinary fractional
differential equations for the generalized space-fractional nonlinear system are
generated as well. Finally, a class of approximated solutions of the time-fractional
nonlinear system of STPPGF with initial-boundary-value conditions are produced by
applying the separated variable method.

PACS Codes: 05.45.Yv; 02.30.Jr; 02.30.Ik

Keywords: Similarity solution; Fractional derivative; Nonlinear equation

1 Introduction
Fractional differential equations (FDEs) have extensive applications in scientific fields,
such as porous media, fractals, acoustics, control theory, and signal processing, and so
on, while Lie-group analysis method is a powerful tool for studying symmetries of ordi-
nary and partial differential equations. Recently, this method has been extended to in-
vestigating fractional partial differential equations (FPDEs) and obtaining efficient cal-
culation formulas of infinitesimal operators, symmetries, and invariant solutions, see the
works in Refs. [1–7]. In Ref. [7] Djordjevic and Atanackovic introduced a type of similarity
transformations to obtain similarity solutions of a generalized heat conduction equation
with time-fractional derivatives and of a generalized Burgers/Korteweg–de Vries equation
with space-fractional derivatives. Dorjgotov et al. [8] adopted the Lie symmetry analysis
method to study different infinitesimal operators, invariant solutions, and classification of
a generalized nonlinear model of STPPGF. In the paper we want to study similarity so-
lutions and other traveling wave solutions as well as separated variable solutions of the
following nonlinear model of STPPGF:

⎧
⎨

⎩

∂αu
∂tα = vx,
∂αv
∂tα = –uux, 0 < α < 1,

(1)
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and further we study similarity solutions of a generalized nonlinear model of STPPGF with
space-fractional derivatives as follows:

⎧
⎨

⎩

∂u
∂t – vxvρ = ∂β u

∂xβ ,
∂v
∂t + uux = ∂β v

∂xβ , 0 ≤ β ≤ 1.
(2)

In Ref. [9], the authors proposed many possible definitions for fractional derivatives and
integrals and provided a fundamental connection with classical fractional calculus by writ-
ing these general fractional operators in terms of the original Riemann–Liouville fractional
integral operator. In Ref. [10], some solutions of the density-dependent diffusion Nagumo
equation were obtained by using a new approach, the Lie symmetry group-preserving
scheme. In Ref. [11], a hot topic which finds the symmetries of a given fractional differen-
tial equation in the field of fractional differentiation was presented; and in the manuscript,
the Lie symmetries of the time fractional gas dynamics (TFGD) equation were analyzed
and new exact solutions were obtained. Hashemi and Baleanu [12] derived the Lie point
symmetries of the time fractional Fisher (TFF) equation using a systematic investigation.
Further, they used the obtained Lie point symmetries, TFF equation has been transformed
into a nonlinear fractional ordinary differential equation with the EK fractional derivative.
Our method is different from the general Lie-group analysis method, which implies that a
deformed transformation of similarity transformation given in [7] is applied to Eqs. (1) and
(2) so that various similarity solutions, including traveling wave solutions, are obtained,
which enriches and supplements the results in [8]. Specially, by applying Volterra integral
equation, system (1) with its initial values transforms to a Volterra integral equation such
that a type of separated variable solutions is produced with the help of separated variable
method. First of all, we recall a few associated notations. For any 0 < α ≤ 1 and an abso-
lutely continuous function f (t), the left Riemann–Liouville fractional derivative of order
α is defined as

dαf
dtα

=
1

Γ (1 – α)
∂

∂t

∫ t

0

f (τ )
(t – τ )α

dτ =
1

Γ (1 – α)

[
f (0)
tα

+
∫ t

0

f (1)(τ )
(t – τ )α

dτ

]

, (3)

where Γ is the Euler gamma function

Γ (α) =
∫ ∞

0
e–zzα–1 dz.

For p – 1 < β ≤ p, the higher-order fractional derivative of function f (t) is defined as

dβ f
dtβ

=
1

Γ (p – β)
∂p

∂tp

∫ t

0

f (τ )
(t – τ )β+1–p dτ . (4)

2 Similarity solutions of Eq. (1)
Consider a similarity transformation by introducing new independent and dependent
variables [7]:

t = λt̃, x = λpx̃, T = λqT̃(x̃, t̃), (5)
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from which we have

t
x1/p =

t̃
x̃1/p ,

T
T̃

=
(

x
x̃

)q/p

. (6)

By using (6), a generalized heat conduction equation was transformed to a time-fractional
ordinary differential equation whose similarity solutions were obtained. Again by rewrit-
ing (5) as follows:

x
tp

=
x̃
t̃p

,
φ

φ̃
=

(
t
t̃

)q

, (7)

a generalized Burgers/Korteweg–de Vries equation was transformed to a space-fractional
differential equation from which a type of similarity solutions was obtained. However, in
the paper we write (5) as follows:

t̃ = λ–1t, x̃ = λ–px, ũ(x̃, t̃) = λ–qu(x, t). (8)

In terms of the method for seeking infinitesimal operators of ordinary or partial differential
equations, we have

dt
t

=
dx
px

=
du
qu

. (9)

Based on the idea as above, assume that

t = λt̃, x = λpx̃, u = λqũ(x̃, t̃), v = λrṽ(x̃, t̃), (10)

and substitute (10) into Eq. (1), one infers that
⎧
⎨

⎩

λq–α ∂α ũ
∂ t̃α = λr–p ∂ ṽ

∂ x̃ ,

λr–α ∂α ṽ
∂ t̃α = –λ2q–pũ ∂ũ

∂ x̃ .
(11)

For Eq. (1) to be invariant under the transformation (10), it is necessary to require that

q – α = r – p, r – α = 2q – p,

that is,

q =
2
3

r, p = α +
1
3

r, (12)

where r is an arbitrary constant. In terms of Eq. (9), transformation (10) leads to a charac-
teristic equation

dt
t

=
dx
px

=
du
qu

=
dv
rv

, (13)

which gives

ξ = x– 1
p t, u = x

q
p U(ξ ), v = x

r
p V (ξ ), (14)
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where U(ξ ), V (ξ ) are arbitrary invariant functions with respect to the invariant variable
ξ . Besides, it is easy to calculate that

∂αu
∂tα

=
1

Γ (1 – α)
∂

∂t

∫ t

0

x
q
p U(x– 1

p τ )
(t – τ )α

dτ

=
1

Γ (1 – α)
x– 1

p
∂

∂ξ

∫ ξ

0

x
q
p U(y)

x
α
p (ξ – y)α

x
1
p dy = x

q–α
p

dαU(ξ )
dξα

,

∂αv
∂tα

= x
r–α

p
dαV (ξ )

dξα
,

∂v
∂x

= x
r–p

p

[
r
p

V (ξ ) –
1
p
ξV ′(ξ )

]

,

∂u
∂x

= x
q–p

p

[
q
p

U(ξ ) –
1
p
ξU ′(ξ )

]

.

Inserting the above results into Eq. (1) yields that
⎧
⎨

⎩

dαU(ξ )
dξα = 1

p [rV (ξ ) – ξV ′(ξ )],
dαV (ξ )

dξα = – 1
p U(ξ )[qU(ξ ) – ξU ′(ξ )].

(15)

Set the solutions of (15) to be as follows:

U(ξ ) = U1ξ
β , V (ξ ) = V1ξ

σ , (16)

where U1, V1,β ,σ are constants to be determined later. Substituting (16) into (15) gives
that

⎧
⎨

⎩

U1B(1–α,1+β)
Γ (1–α) (1 – α + β)ξβ–α = 1

p (rV1 – σV1)ξσ ,
V1B(1–α,1+σ )

Γ (1–α) (1 – α + σ )ξσ–α = – 1
p (qU1 – U1β)ξ 2β .

(17)

Therefore, we get

β – α = σ , σ – α = 2β ,

which implies that

β = –2α, σ = –3α. (18)

Equation (17) reduces to
⎧
⎨

⎩

U1B(1–α,1–2α)
Γ (1–α) (1 – 3α) = 1

p (r + 3α)V1,
V1B(1–α,1–3α)

Γ (1–α) (1 – 4α) = – 1
p U2

1 (q + 2α),

from which we have
⎧
⎨

⎩

U1 = (3α–1)(1–4α)p2B(1–α,1–2α)B(1–α,1–3α)
(r+3α)(q+2α)Γ 2(1–α) ,

V1 = (1–3α)2(4α–1)p2B2(1–α,1–2α)B(1–α,1–3α)
(q+2α)(r+3α)2Γ 3(1–α) ,

(19)
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where q, r, p satisfy (12). Thus, we obtain the similarity solutions to Eq. (1):

u(x, t) = U1ξ
–2α , v(x, t) = V1ξ

–3α , (20)

where U1, V1 are presented in (19).
In what follows, we study the traveling-wave similarity solutions of Eq. (1). Hence, we

set

u = x
q
p U(ξ ), v = x

r
p V (ξ ), ξ =

ct
x

– 1. (21)

It is easy to see that

∂αu
∂tα

=
1

Γ (1 – α)
∂

∂t

∫ t

0

x
q
p U( cτ

x – 1)
(t – τ )α

dτ . (22)

Let y = cτ
x – 1, then t – τ = x

c (ξ – y), ∂
∂t = c

x
∂
∂ξ

, Eq. (22) can be written as

∂αu
∂tα

=
1

Γ (1 – α)
c
x

∂

∂ξ

∫ ξ

–1

x
q
p U(y)

( x
c )α(ξ – y)α

x
c

dy = cαx
q–αp

p
d̄αU(ξ )

d̄ξα
.

Similarly, one gets

∂αv
∂tα

= cαx
r–αp

p
d̄αV (ξ )

d̄ξα
,

where

d̄αf (ξ )
d̄ξα

=
1

Γ (1 – α)
∂

∂ξ

∫ ξ

–1

f (y)
(ξ – y)α

dy.

Again we have

ux = x
q–p

p

[
q
p

U(ξ ) – (ξ + 1)U ′(ξ )
]

,

vx = x
r–p

p

[
r
p

V (ξ ) – (ξ + 1)V ′(ξ )
]

.

Substituting the above consequences into Eq. (1) gives

⎧
⎨

⎩

cαx
q–αp

p d̄αU(ξ )
d̄ξα = x

r–p
p [ r

p V (ξ ) – (ξ + 1)V ′(ξ )],

cαx
r–αp

p d̄αV (ξ )
d̄ξα = –x

2q–p
p U(ξ )[ q

p U(ξ ) – (ξ + 1)U ′(ξ )],

from which we get

q – αp = r – p, r – αp = 2q – p,

that is,

q = 2p – 2αp, r = 3p – 3αp. (23)
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The corresponding ordinary time-fractional differential systems are as follows:

⎧
⎨

⎩

d̄αU(ξ )
d̄ξα = r

p V (ξ ) – (ξ + 1)V ′(ξ ),
d̄αV (ξ )

d̄ξα = –U(ξ )[ q
p U(ξ ) – (ξ + 1)U ′(ξ )].

(24)

Let us take special solutions of (24) in the forms

U(ξ ) =

⎧
⎨

⎩

U1ξ
β , ξ ≥ 0,

0, ξ < 0,
V (ξ ) =

⎧
⎨

⎩

V1ξ
γ , ξ ≥ 0,

0, ξ < 0,
(25)

and insert into (24), we have that

⎧
⎨

⎩

cαU1Γ (1+β)
Γ (2–α+β) (1 – α + β)ξβ–α = V1ξ

γ –1[ r
pξ – (ξ + 1)γ ],

cαV1Γ (1+γ )
Γ (2–α+γ ) (1 – α + γ )γ –α = U1ξ

β [U1β(ξ + 1)ξβ–1 – q
p U1ξ

β ].

Set β – α = γ – 1,γ – α = 2β – 1, one infers that

β = 2 – 2α, γ = 3 – 3α,

and
⎧
⎨

⎩

U1cαΓ (3–2α)
Γ (4–3α) (3 – 3α) = V1[ r

pξ – (ξ + 1)(3 – 3α)],
V1cαΓ (4–3α)

Γ (4–3α) (4 – 4α) = U2
1 [(2 – 2α)(ξ + 1) – q

pξ ].
(26)

From (23), we see that

q
p

= 2 – 2α,
r
p

= 3 – 3α.

Thus, Eq. (26) becomes

⎧
⎨

⎩

U1cαΓ (3–2α)
Γ (4–3α) = (3 – 3α)V1,

2cαV1 = U2
1 ,

from which we have that

U1 = V0,
⎧
⎨

⎩

U1 = 2c2α

3α–3
Γ (3–2α)
Γ (4–3α) ,

V1 = 2c3α

(3α–3)2
Γ 2(3–2α)
Γ 2(4–3α) .

Hence, when ξ > 0, we obtain the traveling-wave similarity solutions to Eq. (1) as follows:

⎧
⎨

⎩

u(x, t) = x
q
p U1ξ

β = U1(ct – x)2–2α = 2c2α

3α–3
Γ (3–2α)
Γ (4–3α) (ct – x)2–2α ,

v(x, t) = x
r
p V1ξ

γ = V1(ct – x)3–3α = 2c3α

(3α–3)2
Γ 2(3–2α)
Γ 2(4–3α) (ct – x)3–3α .
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3 Discussion on solutions to Eq. (2)
In the section we shall discuss similarity solutions to Eq. (2) by using the deformed simi-
larity transformation (8). Applying (8), Eq. (2) is transformed to

⎧
⎨

⎩

λq–1 ∂ũ
∂ t̃ – λr–p+ρrṽρ ∂ ṽ

∂ x̃ = λq–βp ∂β ũ
∂ x̃β ,

λr–1 ∂ ṽ
∂ t̃ + λ2q–pũ ∂ũ

∂ x̃ = λr–βp ∂β ṽ
∂ x̃β .

(27)

In order to keep invariant solutions to Eq. (2), we require that

q – 1 = r – p + ρr = q – βp, r – 1 = 2q – p = r – βp,

which gives that

q =
2p – 2 + ρ(p – 1)

1 + 2ρ
, r =

3p – 3
1 + 2ρ

, p =
1
β

. (28)

According to the characteristic equation (9), we get that

ξ = t–px, u = tqU(ξ ), v = tpV (ξ ). (29)

For n – 1 ≤ β ≤ n, by using definition (4), it is easy to compute that

dβφ(x, t)
dxβ

=
1

Γ (n – β)
∂n

∂xn

∫ x

0

φ(x̃, t)
(x – x̃)β+1–n dx̃ =:

∂n

∂xn I(x, t),

where

I(x, t) =
1

Γ (n – β)

∫ x

0

φ(x̃, t)
(x – x̃)β+1–n dx̃.

For φ(x, t) = u(x, t), we have

∂nI(x, t)
∂xn =

1
Γ (n – β)

∂n

∂xn

∫ x

0

tqU(t–px̃)
(x – x̃)β+1–n dx̃. (30)

Set η = t–px̃, then we find that

x – x̃ = tp(ξ – η),
∂n

∂xn = t–np ∂n

∂ξn .

Inserting the above calculations into (30) yields

dβφ(x, t)
dxβ

=
1

Γ (n – β)
t–np ∂n

∂ξn

∫ ξ

0

tqU(η)tp

tp(β+1–n)(ξ – η)β+1–n dη = tq–βp dβU(ξ )
dξβ

.

Similarly, we get

dβv
dxβ

= tr–βp dβV (ξ )
dξβ

.
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Substituting the above results into Eq. (2), we have

⎧
⎨

⎩

tq–1[qU(ξ ) – pξU ′(ξ )] – tr+ρr–p(V (ξ ))ρV ′(ξ ) = tq–βp dβ U(ξ )
dξβ ,

tr–1[rV (ξ ) – pξV ′(ξ )] + t2q–pU(ξ )U ′(ξ ) = tr–βp dβ V (ξ )
dξβ ,

(31)

which requires that

⎧
⎨

⎩

q – 1 = r + ρr – p = q – βp,

r – 1 = 2q – p = r – βp,

which is equivalent to (28). Thus, a space-fractional ordinary differential system is given
by

⎧
⎨

⎩

qU(ξ ) – pξU ′(ξ ) – V ρ(ξ )V ′(ξ ) = dβ U(ξ )
dξβ ,

rV (ξ ) – pξV ′(ξ ) + U(ξ )U ′(ξ ) = dβ V (ξ )
dξβ .

(32)

Next we seek similarity solutions in the form

U(ξ ) = U1ξ
σ , V (ξ ) = V1ξ

s, (33)

where U1, V1,σ , s are constants to be determined. Substituting (33) into (32) gives

⎧
⎨

⎩

qU1ξ
σ – pU1σξσ – V ρ+1

1 sξ sρ+s–1 = U1B(1–β ,1+σ )
Γ (1–β) (1 – β + σ )ξσ–β ,

(rV1 – pV1s)ξ s + U2
1σξ 2σ–1 = V1B(1–β ,1+s)

Γ (1–β) (1 – β + s)ξ s–β .
(34)

Let
⎧
⎨

⎩

σ = sρ + s – 1 = σ – β ,

s = 2σ – 1 = s – β ,

then it is easy to get

β = 0, σ =
2 + ρ

1 + 2ρ
, s =

3
1 + 2ρ

.

Thus, Eq. (34) reduces to

⎧
⎨

⎩

(q – pσ )U1 – sV ρ+1
1 = (1 + σ )B(1, 1 + σ )U1,

(r – ps)V1 + σU2
1 = (1 + s)B(1, 1 + s)V1,

(35)

which has solution as follows:
⎧
⎨

⎩

V1 = ( [(1+σ )B(1,1+σ )–q+pσ ]2[(1+s)B(1,1+s)–r+ps]
σ s2 )

1
2ρ+1 ,

U1 = ±( [(1+s)B(1,1+s)–r+ps]
σ

V1) 1
2 .
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Hence, we only obtain the solutions like (33) of the reduced system (32). That is to say,
when β �= 0, the space-fractional differential system (32) does not have the similarity solu-
tion (33). Therefore, the numerical solutions of (32) could be considered by some numer-
ical methods.

4 Approximated solution formulas for solving ordinary fractional differential
equations

Based on the works in [13–20], we want to present two approximated formulas for solving
Eq. (32) so that the corresponding numerical solutions to Eq. (2) could be generated. The
approach also suits for the ordinary fractional differential equations (15) and (24). From
the binomial expansion formula

(1 – z)–α = 1 +
∞∑

p=1

Γ (α + p)
Γ (α)p!

zp = 1 +
Γ (α + 1)

Γ (α)
z + o

(
z2),

we find that

dαϕ(ξ )
dξα

=
1

Γ (1 – α)
∂

∂ξ

∫ ξ

0

ϕ(y)
(ξ – y)α

dy ≈ 1
Γ (1 – α)

∂

∂ξ

∫ ξ

0

1
ξα

(

1 + α
y
ξ

)

ϕ(y) dy

=
αξ–α

Γ (1 – α)

[
1
ξ

∫ ξ

0
ϕ(y) dy – (α + 1)ξ–2

∫ ξ

0
yϕ(y) dy –

α + 1
α

ϕ(y)
]

. (36)

It follows from (36) that Eq. (32) reduces to the following integer-order ordinary differen-
tial equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

βξ–α

Γ (1–α) [ 1
ξ

V0(ξ ) – (α + 1)ξ–2V1(ξ ) – α+1
α

U(ξ )]

= qU(ξ ) – pξU ′(ξ ) – V ρ(ξ )V ′(ξ ),
βξ–α

Γ (1–α) [ 1
ξ

w0(ξ ) – (α + 1)ξ–2w1(ξ ) – α+1
α

V (ξ )]

= rV (ξ ) – pξV ′(ξ ) + U(ξ )U ′(ξ ),

(37)

where

Vi(ξ ) =
∫ ξ

0
τ iU(τ ) dτ , wi(ξ ) =

∫ ξ

0
τ iV (τ ) dτ , i = 0, 1, . . . .

Taking x1 = x1(ξ ) = U(ξ ), y1 = y1(ξ ) = V (ξ ), then (37) becomes

⎧
⎨

⎩

pξx′
1 + yρ

1 y′
1 = qx1 – βξ–α

Γ (1–α) [ 1
ξ

V0(ξ ) – (α + 1)ξ–2V1(ξ ) – α+1
α

x1],

pξy′
1 – x1x′

1 = ry1 – βξ–α

Γ (1–α) [ 1
ξ

w0(ξ ) – (α + 1)ξ–2w1(ξ ) – α+1
α

y1],
(38)

subject to the initial conditions

x1(0) = x0, y1(0) = y0, V0(0) = V1(0) = 0, w0(0) = w1(0) = 0. (39)

By utilizing (38) and (39) we could obtain some numerical solutions of Eq. (2) through fol-
lowing the works in [10–15]. Here we only generate the approximated formula of Eq. (32).
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For an open and boundary set G ⊂ R, any absolutely continuous function φ(x) : G → R,
the left Riemann–Liouville fractional derivative of order α (0 < α ≤ 1) can be written as

∂αφ(ξ )
∂ξα

=
1

Γ (1 – α)
∂

∂ξ

∫ ξ

0

φ(τ )
(ξ – τ )α

dτ =
1

Γ (1 – α)

(
φ(0)
ξα

+
∫ ξ

0
(ξ – τ )–αφ(1)(τ ) dτ

)

=
1

ξαΓ (1 – α)

∫ ξ

0
φ(1)(τ )

(

1 +
∞∑

i=1

Γ (α + i)
Γ (α)i!

(
τ

ξ

)i
)

+
φ(0)

ξαΓ (1 – α)

=
1
ξα

∫ ξ

0

φ(1)(τ )
Γ (1 – α)

dτ +
φ(0)

ξαΓ (1 – α)
+

∞∑

i=1

1
ξα

∫ ξ

0

Γ (α + i)( τ
ξ

)i

Γ (α)Γ (1 – α)i!
dτ

=
1

ξαΓ (1 – α)
φ(ξ ) +

1
ξα

sin(πα)
π

∞∑

i=1

Γ (i + α)
i!

∫ ξ

0
φ(1)(τ )

(
τ

ξ

)i

dτ . (40)

Since

∫ ξ

0
φ(1)(τ )

(
τ

ξ

)i

dτ = ξ–i
∫ ξ

0
dφ(τ ) = φ(ξ ) – iξ–α

∫ ξ

0
τ i–1φ(τ ) dτ ,

(40) can be written as

∂αφ(ξ )
∂ξα

=
φ(ξ )

Γ (1 – α)ξα

[

1 +
sin(πα)

π

∞∑

i=1

Γ (i + α)
i!

]

–
sin(πα)

πξα

∞∑

i=1

Γ (i + α)
(i – 1)!

ξ–i
∫ ξ

0
τ i–1φ(τ ) dτ

=
φ(ξ )

Γ (1 – α)ξα

[

1 +
sin(πα)

π

m∑

i=1

Γ (i + α)
i!

]

–
sin(πα)

πξα

m∑

i=1

Γ (i + α)
(i – 1)!

ξ–i
∫ ξ

0
τ i–1φ(τ ) dτ

+ Rm+1(ξ ), (41)

where

Rm+1(ξ ) =
φ(ξ )

Γ (1 – α)ξα

∞∑

i=m+1

Γ (i + α)
i!

–
sin(πα)

πξα

∞∑

i=m+1

Γ (i + α)
(i – 1)!

ξ–i
∫ ξ

0
τ i–1φ(τ ) dτ .

When i → ∞, i ∈ N ,α ∈ R, |α| → ∞, we have

Γ (i + α)
i!

≈ i + 1
i2–α

,
∣
∣
∣
∣
∣

∞∑

i=m+1

Γ (i + α)
i!

∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣

∞∑

i=m+1

i + 1
i2–α

∣
∣
∣
∣
∣
≤ 2

∑

i=m+1

1
i2–α

1
m + 1

.

Choose 2 – α – α1 > 1, then the series
∑∞

i=m+1
Γ (i+α)

i! is convergent and tends to zero when
m → ∞. Since φ(t) is absolutely continuous, there exists a positive constant M such that
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|φ(t)| ≤ M, t ∈ [0, ξ ]. For ξ ∈ [0, T], it holds that

∣
∣
∣
∣
∣

∞∑

i=m+1

Γ (i + α)
(i – 1)!

ξ–i
∫ ξ

0
τ i–1φ(τ ) dτ

∣
∣
∣
∣
∣
≤ M

∞∑

i=m+1

∣
∣
∣
∣
Γ (i + α)

i!

∣
∣
∣
∣.

When m → ∞, |Rm+1(ξ )| → 0. Thus, an approximated formula of system (32) is given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

U(ξ )
Γ (1–α)ξα [1 + sin(πα)

π

∑m
i=1

Γ (i+α)
i! ] – sin(πα)

πξα

∑m
i=1

Γ (i+α)
(i–1)! ξ–i ∫ ξ

0 τ i–1U(τ ) dτ

= qU(ξ ) – pξU ′(ξ ) – V ρ(ξ )V ′(ξ ),
V (ξ )

Γ (1–α)ξα [1 + sin(πα)
π

∑m
i=1

Γ (i+α)
i! ] – sin(πα)

πξα

∑m
i=1

Γ (i+α)
(i–1)! ξ–i ∫ ξ

0 τ i–1V (τ ) dτ

= rV (ξ ) – pξV ′(ξ ) + U(ξ )U ′(ξ ).

(42)

Taking x = x(ξ ) = U(ξ ), y = y(ξ ) = V (ξ ), system (42) is rewritten as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pξx′ + V ρ(ξ )y′

= qx + x
Γ (1–α)ξα [1 + sin(πα)

π

∑m
i=1

Γ (i+α)
i! ] – sin(πα)

πξα

∑m
i=1

Γ (i+α)
(i–1)! ξ–iVi(ξ ),

pξy′ – xx′

= ry – x
Γ (1–α)ξα [1 + sin(πα)

π

∑m
i=1

Γ (i+α)
i! ] + sin(πα)

πξα

∑m
i=1

γ (i+α)
(i–1)! ξ–iwi(ξ ),

(43)

where

Vi(ξ ) =
∫ ξ

0
τ i–1U(τ ) dτ , wi(ξ ) =

∫ ξ

0
τ i–1V (τ ) dτ ,

subject to the initial conditions

x(0) = x0, y(0) = y0,

V0(0) = V1(0) = 0, . . . , w0(0) = w1(0) = 0, . . . .

Similarly, with the help of (43) and its initial values, we could generate some numerical
solutions of system (2) just like those presented in [10–15], here we also skip them.

5 Separated variable solutions
Luchko [16] introduced a generalized time-fractional diffusion equation

(
Dα

t
)
u(t) = –L(u) + F(x, t), 0 < α ≤ 1, (x, t) ∈ G × (0, T), G ⊂ R2, (44)

where

L(u) = – div
(
p(x) grad u

)
+ q(x)u, p(x) ≥ 0, q(x) ≥ 0, x ∈ Ḡ.

Dα
t is the Caputo–Dzherbashyan fractional derivative. An initial-boundary-value problem

is introduced by

u|t=0 = u0(x), x ∈ Ḡ, (45)
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u|S = v(x, t), (x, t) ∈ S × [0, T], (46)

here S stands for the surface of Ḡ. A classical solution of (44)–(46) u = u(x, t) is defined in
the domain Ω̄T =: Ḡ × [0, T] that belongs to the space C(Ω̄T ) ∩ W ′

t ((0, T]) ∩ C2
x (G), where

W ′
t ((0, T]) represents a space of the functions f ∈ C′((0, T]) so that f ′ ∈ L((0, T)), u0, v be-

long to the spaces C(Ω̄), C(S × [0, T]), respectively. Luchko presented two results of clas-
sical solutions to (44)–(46) as follows.

Theorem 1 If u is a classical solution of Eqs. (44)–(46), and F ∈ C(Ω̄T ) with the norm
M = ‖F‖CΩ̄T

, then the estimate

‖u‖C(Ω̄T ) ≤ max{M0, M1} +
Tα

Γ (1 + α)
M

holds true, where M0 = ‖u0‖C(Ḡ), M1 = ‖v‖C(S×[0,T]).

Theorem 2 The initial-boundary-value problem (45), (46) possesses at most one classical
solution, which continuously depends on the data given in problem (44)–(46).

Definition ([16]) Assume Fk ∈ C(Ω̄T ), u0k ∈ C(Ḡ), vk ∈ (S × [0, T]), k = 1, 2, . . . , satisfy the
following items:

(1) There exist the functions F , u0, and v such that
‖Fk – F‖C(Ω̄T ) → 0, as k → ∞,
‖u0k – u0‖C(Ḡ) → 0, as k → ∞,
‖vk – v‖C(S×[0,T]) → 0, as k → ∞.

(2) For any k = 1, 2, . . . , there exist the classical solutions uk of the
initial-boundary-value problem

uk|t=0 = u0k(x), xḠ,
uk|S = vk(x, t), (x, t) ∈ S × ]0, T],

for the generalized time-fractional diffusion equation

(
Dα

t uk
)
(t) = –L(uk) + Fk(x, t).

If there exists a function u ∈ C(Ω̄T ) such that ‖uk – u‖C(Ḡ) → 0, as k → ∞, the
function u is called a generalized solution of problem (44)–(46).

Based on the definition, Luchko showed us the following result.

Theorem 3 Problem (44)–(46) possesses at most one generalized solution. If it exists, then
it continuously depends on the data given in the problem in the sense of Theorem 2.

It is easy to find that the Caputo–Dzhershyan fractional derivative is a special case of
the left Riemann–Liouville fractional derivative (3), that is, when f (0) = 0, the Riemann–
Liouville fractional derivative (3) is reduced to the Caputo–Dzherbashyan fractional
derivative. For the nonlinear model of STPPGF (1), we assume u(x, t), v(x, t) ∈ GT ⊂
G × [0, T], here GT is an open and boundary subset, G ⊂ R is an open interval of R. Given
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an initial-boundary-value condition of system (1):

u|t=0 = u0(x), v|t=0 = v0(x), u|S = ū(x, t),

v|S = v̄(x, t), (x, t) ∈ S × [0, T].
(47)

If there exist positive constants M1 and M2 such that

0 ≤ u0(x) ≤ M1tα , 0 ≤ v0(x) ≤ M2tα ,

and u(x, t), v(x, t) at t0 ∈ [0, T] attain their maximums, then the Riemann–Liouville frac-
tional derivative satisfies

∂αu
∂tα

0
≥ 0,

∂αv
∂tα

0
≥ 0. (48)

Actually, according to definition (3), we find that

∂αu
∂tα

0
=

1
Γ (1 – α)

[
u0(x)

tα
+

∫ t

0

u(x, τ )
(t – τ )α

dτ

]

=
u0(x)

Γ (1 – α)tα
+ Dα

t0 u(x, τ ).

By introducing an auxiliary function [16]

U(τ ) = u(x, t0) – u(x, τ ), V (τ ) = v(x, t0) – v(x, τ ), τ ∈ [0, T],

it is easy to see for the fixed x that

U(τ ) ≥ 0, (49)

DαU(t) = –
(
Dαu

)
(x, t), t ∈ [0, T], (50)

DαV (t) = –
(
Dαv

)
(x, t), t ∈ [0, T], (51)

∣
∣U(τ )

∣
∣ ≤ c1|t0 – τ |, ∣

∣V (τ )
∣
∣ ≤ c2|t0 – τ |, (52)

where c1 = c1(x, ε), c2 = c2(x, ε) are constants with respect to variable t for the fixed x. (50)
and (51) indicate that (48) holds true. According to Theorems 1 and 2, we can prove the
following.

Proposition If u, ũ are the classical solutions of (1) and (47), the initial conditions u0, ũ0

and the boundary conditions v and ṽ satisfy

‖u0 – ũ0‖C(G̃) ≤ ε0, ‖v0 – ṽ0‖C(G̃) ≤ ε1,

‖ū – ũ‖C(S×[0,T]) ≤ ε2, ‖v̄ – ṽ‖C(S×[0,T]) ≤ ε3,

then the normal estimates hold:

‖u – ũ‖C(Ω̄T ) ≤ max{ε0, ε2},
‖v – ṽ‖C(Ω̄T ) ≤ max{ε1, ε3}.
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For the generalized solutions to system (2) with (47), the above proposition still holds true.
In what follows, we apply the variable separation method to investigate generalized so-

lutions of system (1) with (47). Set

u(x, t) = f (x)g(t), v(x, t) = p(x)r(t), (53)

and substitute into system (1), we have

⎧
⎨

⎩

f (x) ∂αg(t)
∂tα = p′(x)r(t),

p(x) ∂αr(t)
∂tα = –g2(t)f (x)f ′(x),

which can be written as

∂αg(t)
∂tα

r(t)
=

p′(x)
f (x)

= λ, (54)

∂αr(t)
∂tα

g2(t)
= –

f (x)f ′(x)
p(x)

= μ. (55)

(54) and (55) can be written as again

∂α

∂tα

(
∂α

∂tα
g
)

(t) = λμg2(t), (56)

(
f ′(x)

)2 + f (x)f ′′(x) = –λμf (x), (57)

or

p′(x)p′′(x) = –μλ2p(x), (58)

subject to the initial values

u0(x) = f (x)g(0), v0(x) = p(x)r(0),

u|S = ū(x, t) = f (x)g(t)|S, v|S = v̄(x, t) = p(x)r(t)|S.

Assume that

g(0) = g0,
∂α–1

∂tα–1 g(0) = x0, p(0) = 0, p′(0) = 0, (59)

then Eq. (58) can be transformed to

y2 dy
dp

= –λ2μp =:
K
2

(
p2(x)

)′,

dp
dx

= y =
(

3K
2

p2
) 1

3
,

(60)
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where y(x) = p′(x), and we have taken the integral constant to be zero. A solution of (60)
is given by

p(x) =
1

27

(
3K
2

) 1
3

x3, (61)

where we also took integral constant zero. For the different Ki (i = 1, 2, . . .), we assume that
K1 < K2 < · · · , then Eq. (61) can be written as

pi(x) =
1

27

(
3Ki

2

) 1
3

x3, Ki = –λ2
i μi, i = 1, 2, . . . . (62)

In terms of Ref. [13], we find that Eq. (56) with its initial value conditions (59) can be
written as

∂α

∂tα

(
∂α

∂tα
g(t)

)

=
∂2α

∂t2α
g(t) –

(
∂α–1

∂tα–1 g(t)|t=0

)
t–α

Γ (1 – α)
=

∂2α

∂t2α
g(t) – x0

t–α

Γ (1 – α)
.

Thus, we have

∂2αg(t)
∂t2α

=
x0

Γ (1 – α)
t–α + λμg2(t) =: G

(
t, g(t)

)
. (63)

In terms of definition of the Riemann–Liouville type of fractional integral of order α > 0
of a function f : (0,∞) → R:

Iαf (t) =
1

Γ (α)

∫ t

0
(t – τ )α–1f (τ ) dτ ,

where 0 < α ≤ 1, it holds

Iα
(
Dαf

)
(t) = f (t). (64)

Hence, Eq. (63) can be expressed by the following Volterra fractional integral equation:

g(t) = g0 +
1

Γ (2α)

∫ t

0
(t – τ )2α–1G

(
τ , g(τ )

)
dτ – I2α

(
g0t–2α

Γ (1 – 2α)

)

. (65)

Demirci and Ozalp [18] discussed the initial value problem (IVP) with Caputo type FDE
as follows:

Dαx(t) = f
(
t, x(t)

)
, x(0) = x0, 0 < α ≤ 1, (66)

and transformed (66) into a Volterra fractional integral equation. Then, based on an exis-
tence theorem presented in [18], a resulting extended result was obtained which was given
by the following theorem.

Theorem 4 Set ‖ · ‖ denoting a convenient norm on Rn. If f ∈ C[R0], R0 = {(t, x) : 0 ≤ t ≤
a,‖X –X0‖ ≤ b}, f = (f1, . . . , fn)T , X = (x1, . . . , xn)T , and ‖f (t, x)‖ ≤ M on R0, then there exists
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at least one solution for the system of FDE given by

DαX(t) = f
(
t, X(t)

)
, X(0) = X0, (67)

on 0 ≤ t ≤ β , 0 < α < 1,β = min(a, [ b
M Γ (1 + α)] 1

α ). The solutions of the initial problem (67)
are given by the following theorem.

Theorem 5 Let

g
(
v, X∗(v)

)
= f

(
t –

(
tα – vΓ (α + 1)

) 1
α , X

(
t –

(
tα – vΓ (α + 1)

) 1
α
))

,

and assume that the conditions of Theorem 4 hold. Then a solution of (67) can be given by

X(t) = X∗
(

tα

Γ (α + 1)

)

, (68)

where X∗(v) is a solution of the system of integer order differential equations

d(X∗(v))
dv

= g
(
v, X∗(v)

)
, (69)

with the initial conditions

X∗(0) = X0. (70)

For the Riemann–Liouville type derivative, Theorems 4 and 5 suit the IVP in the form

∂α

∂tα

(
X(t) – X0

)
= f

(
t, X(t)

)
, X(0) = X0. (71)

Therefore, to apply the variable separation method to IVP (71), one sets

H
(
t, X(t)

)
= f

(
t, X(t)

)
–

X0t–α

Γ (1 – α)
,

and solves the initial value problem

Dα
(
X(t) – X0

)
= H

(
t, X(t)

)
, X(0) = X0. (72)

In order to apply Theorem 5 to solve (72), we only consider the following equation:

Dα
(
X(t) – X0

)
= H

(
t, X(t)

)
, (73)

where Dα stands for the Caputo fractional derivative, 0 < α < 1. Actually, when 0 < α < 1,
the Caputo fractional derivative is in essence the Caputo–Dzherbashyan fractional deriva-
tive. The Volterra fractional integral equation (65) was generated by (64) and (71)–(73).
Since

I2α

(
g0t–2α

Γ (1 – 2α)

)

=
1

Γ (2α)

∫ t

0

g0τ
–2α

Γ (1 – 2α)
(t – τ )2α–1 dτ
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=
g0

Γ (2α)Γ (1 – 2α)

∫ t

0
τ–2αt2α–1

(

1 –
τ

t

)2α–1

dτ . (74)

Set y = τ
t , τ = 0 → y = 0; τ = t → y = 1. Hence, (74) can be written as

I2α

(
g0t–2α

Γ (1 – 2α)

)

=
g0

Γ (2α)Γ (1 – 2α)

∫ 1

0
y–2α(1 – y)1–2α dy

=
g0

Γ (2α)Γ (1 – 2α)
B(1 – 2α, 2 – 2α), (75)

where B(1–2α, 2–2α) is the beta function with parameter α. Thus, Eq. (65) can be written
as

g(t) = g0 +
1

Γ (2α)

∫ t

0
(t – τ )2α–1G

(
τ , g(τ )

)
dτ –

g0

Γ (2α)Γ (1 – 2α)
B(1 – 2α, 2 – 2α), (76)

where G(t, g(t)) is given by (63). Set (t – τ )2α = t2α – vΓ (1 + 2α), then t = τ + (t2α – vΓ (1 +
2α)) 1

2α . When τ = 0 → v = 0; τ = t → v = t2α

Γ (1+2α) . Hence, Eq. (76) becomes

g(t) =
(

1 –
B(1 – 2α, 2 – 2α)
Γ (2α)Γ (1 – 2α)

)

g0 +
1

Γ (2α)

∫ t

0
(t – τ )2α–1G

(
τ , g(τ )

)
dτ

=: mg0 +
1

Γ (2α)

∫ t

0
(t – τ )2α–1G

(
τ , g(τ )

)
dτ . (77)

Let us consider the integer order differential equation with initial value based on Theo-
rem 5:

⎧
⎨

⎩

dg∗(v)
dv = w(v, g∗(v)),

g∗(0) = mg0,
(78)

where

w
(
v, g∗(v)

)
=: w(v) = G

[
t –

(
t2α – vΓ (1 + 2α)

) 1
2α , g

(
t –

(
t2α – vΓ (1 + 2α)

) 1
2α

)]
.

(77) can be written as

g(t) = mg0 +
∫ t2α

Γ (1+2α)

0
G

[
t –

(
t2α – vΓ (1 + 2α)

) 1
2α , g

(
t –

(
t2α – vΓ (1 + 2α)

) 1
2α

)]
dv

=: mg0 +
∫ t2α

Γ (1+2α)

0
w

(
v, g∗(v)

)
dv. (79)

Every solution of IVP (78) is given by

g∗(v) = mg0 +
∫ v

0
w

(
s, g∗(s)

)
ds. (80)

Therefore, when v = t2α

Γ (1+2α) , we find that g∗( t2α

Γ (1+2α) ) = g(t).
For a given α, we can get explicit solutions of Eq. (79) by using (80) and (63). For example,

let α = 1
4 , then w(v) = G[t – (t 1

2 – vΓ ( 3
2 ))2, g(t – (t 1

2 – vΓ ( 3
2 ))2)] = x0

Γ ( 3
2 )

[t – (t 1
2 – vΓ ( 3

2 ))2]– 1
4 +
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λμg2(t – (t 1
2 – vΓ ( 3

2 )2) = x0
Γ ( 3

2 )
(2vΓ ( 3

2 )t 1
2 – v2Γ 2( 3

2 ))– 1
4 + λμg2[2vΓ ( 3

2 )t 1
2 – v2Γ 2( 3

2 )] =:
x0

Γ ( 3
2 )

[Γ ( 1
2 )vt 1

2 – v2Γ 2( 3
2 )]– 1

4 + λμg2(v).
Thus, we have

dg1(v)
dv

=
x0

Γ ( 3
2 )

[

Γ

(
1
2

)

t
1
2 v – Γ 2

(
3
2

)

v2
]– 1

4
+ λμg2

1 (v) =: λμg2
1 (v) + P(v), (81)

with initial value g1(0) = mg0, where P(v) = x0
Γ ( 3

2 )
[Γ ( 1

2 )t 1
2 v –Γ 2( 3

2 )v2]– 1
4 . Equation (81) pos-

sesses the general solution as follows:

g1(v) =
2P(v) – cP(v)(

∫
P(v) dv)3

λμ[
∫

P(v) dv + c(
∫

P(v) dv)4]
,

where c is an arbitrary constant, with the constraint λμ = 2( 1∫
P(v) dv )′. It is easy to see that

∫

P(v) dv =
2

λμv
, lim

v→0

2P(v) – cP(v)(
∫

P(v) dv)3

λμ[
∫

P(v) dv + c(
∫

P(v) dv)4]
=

1
λμ

.

Therefore, under the constrained conditions

(

1 –
B( 1

2 , 3
2 )

Γ 2( 1
2 )

)

g0 =
1

λμ
,

x0

Γ ( 3
2 )

[

Γ

(
1
2

)

t
1
2 v – Γ 2

(
3
2

)

v2
]– 1

4
= –

2
λμv2 ,

the above solution g1(v) can be expressed by

g1(v) =
8 – 2(λμ)3v3

λμ[8 + (λμ)3v3]
.

Thus, we get that

gi(t) = g1

(
t2α

Γ (1 + 2α)

)

= g1

(
t 1

2

Γ ( 3
2 )

)

=
8Γ 3( 3

2 ) – 2(λμ)3t 3
2

λiμi[8Γ 3( 3
2 ) + (λiμi)3t 3

2 ]
, i = 1, 2, . . . . (82)

From (54), we see that

fi(x) =
1
λi

p′
i(x), (83)

that is,

fi(x) =
1

9λi

(
3
2

K
) 1

3
x2, i = 1, 2, . . . . (84)

In order to seek r(t), we have in terms of (55) that

∂αr(t)
∂tα

= μg2(t) =
1

λ2μ

(8Γ 3( 3
2 ) – 2(λμ)3t 3

2

8Γ 3( 3
2 ) + (λμ)3t 3

2

)2

. (85)
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For the Riemann–Liouville fractional derivative, we usually have the initial value problem

∂αr(t)
∂tα

= μg2(t) –
r0t–α

Γ (1 – α)
, r(0) = r0, (86)

which can be transformed to a Volterra integral equation

∂αr(t)
∂tα

= r0 +
μ

Γ (α)

∫ t

0
(t – τ )α–1g2(τ ) dτ –

r0

Γ (α)

∫ t

0
(t – τ )α–1 τ–α

Γ (1 – α)
dτ . (87)

To calculate conveniently, we set r0 = 0. Equation (86) reduces to

∂αr(t)
∂tα

= μg2(t), r(0) = 0. (88)

Specially, when α = 1
4 , in terms of (86), we find that

r(t) =
1

Γ (α)

∫ t

0
(t – τ )α–1μg2(τ ) dτ =

μ

Γ (α)

∫ t
(t – τ )α–1g2(τ ) dτ

=
1

λ2Γ ( 1
4 )

∫ t

0
(t – τ )– 3

4

(8Γ 3( 3
2 ) – 2(λμ)3t 3

2

8Γ 3( 3
2 ) + (λμ)3t 3

2

)2

dτ

=
t 3

4

λ2Γ ( 1
4 )

∫ t

0

(
A – 2Bτ

3
2

A + Bτ
3
2

)2 1
(1 – τ

t ) 3
4

dτ

=
t 7

4

λ2Γ ( 1
4 )

∫ 1

0

[

1 –
6Bt 3

2 y 3
2

A + Bt 3
2 y 3

2
+

9B2t3y3

(A + Bt 3
2 y 3

2 )2

]

(1 – y)– 3
4 dy, (89)

where A = 8Γ 3( 3
2 ), B = (λμ)3. Obviously, it is difficult to compute integral (89). However,

when A + Bt 3
2 y 3

2 � 3Bt 3
2 y 3

2 , i.e., 2Bt 3
2 y 3

2 � A, we can get an approximated solution of (89)
as follows:

r(t) =
t 7

4

λ2Γ ( 1
4 )

∫ 1

0
(1 – y)– 3

4 dy =
4t 7

4

λ2Γ ( 1
4 )

. (90)

Thus, substituting (82)–(84) and (90) into (53), we can obtain the special approximated
solutions of system (1) with (47) when α = 1

4 . Of course, if α = 1
2 , 3

4 , . . . , we could generate
different special solutions (53), here we omit the further discussions in the paper.

It was remarked that the solutions of (81) are not satisfied because there exists a case
where a constrained condition on the solutions appears. In addition, we still have another
approach for obtaining solutions of Eq. (81). Actually, if y1(v), y2(v) are two linear indepen-
dent solutions to the following equation

y′′(v) + λμP(v)e–λμ
∫

y(v) dv = 0, (91)

then we can prove that a general solution to Eq. (81) is given by

g1(v) =
c1y′

1 + c2y′
2

λμ(c1y1 + c2y2)
, (92)
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where c1, c2 are arbitrary constants. Although there is not a constrained condition on the
solutions (92) of Eq. (81), it is not easy to solve Eq. (91). For this problem, we shall discuss it
in another paper. For the separated variable solution to system (2) by the separated variable
method, similar considerations as above can be investigated, here we omit them again.

6 Conclusions
We have investigated some different solutions of the time-fractional stationary transonic
plane-parallel gas flows (STPPGF) and its generalized space-fractional nonlinear sys-
tem. Ma and Zhou [21, 22] have explored the existence of diverse lump and interaction
solutions to linear partial differential equations in both (2 + 1)-dimension and (3 + 1)-
dimension. The remarkable richness of exact solutions to a class of linear partial differen-
tial equations through Maple symbolic computations yielded exact lump, lump-periodic,
and lump-soliton solutions. They also analyzed a class of lump solutions, generated from
quadratic functions, to nonlinear partial differential equations based on the Hirota bilinear
formulations. Can we follow the approaches to study the lump solutions and the rational
solutions to the STPPGF and its generalized space-fractional nonlinear system? This will
be further discussed in the future.
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