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Abstract
In this paper, we obtain necessary and sufficient conditions for oscillation of a fourth
order dynamic equation on time scales with deviating arguments. We discuss the
oscillation behavior of solutions for strongly superlinear and strongly sublinear cases
of the dynamic equation at hand. Our results unify and improve some known results
for dynamic equations on time scales.
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1 Introduction
The topic of oscillation and stability of dynamic equations on time scales has been devel-
oped very rapidly in the past two decades. There are some excellent monographs [1–4]
and papers [5–10] containing some interesting works in the field.

The oscillatory behavior of solutions for nonlinear fourth order functional differential
equations of the form

[
r(t)y′′(t)

]′′ + g
(
t, y

(
η(t)

))
= 0, t ≥ t0,

has been discussed by Onose [11], where g is superlinear (sublinear) and strongly superlin-
ear (strongly sublinear); he has extended and improved some interesting results of Kusano
and Naito [12]. Furthermore, Gopalsamy et al. [13] obtained the sufficient and necessary
conditions for oscillation of a fourth order differential equation with multiple deviating
arguments given by

[
r(t)y′′(t)

]′′ + g
(
t, y

(
η1(t)

)
, y

(
η2(t)

)
, . . . , y

(
ηn(t)

))
= 0, t ≥ t0,

where g is strongly superlinear and strongly sublinear.
For some more results on oscillation of solutions for different kinds of fourth order equa-

tions on time scales, see [14–21] and the references cited therein. However, it has been
observed that there is no work in the related literature concerning the sufficient and nec-
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essary conditions for oscillation of fourth order dynamic equations on time scales. Moti-
vated by the aforementioned works, in this paper, we consider the following fourth order
dynamic equation with deviating arguments:

[
r(t)y��(t)

]�� + g
(
t, y

(
η(t)

))
= 0, t ∈ [t0,∞) = T0 ⊆ T, (1)

where y�(t) is the delta (or Hilger) derivative of y at t, r ∈ Crd(T0,R+), η ∈ Crd(T0,T),
g : T0 × R → R is a nonlinear continuous function, and sgn g(t, y) = sgn y for t ∈ T0. In
relation to (1), it is also assumed that

∫ ∞
t0

t/r(t)�t = ∞.
The paper is organized as follows. In Sect. 2, we recall some basic concepts of dynamic

equations on time scales. In Sect. 3, we establish necessary and sufficient criteria for os-
cillation of (1) when g is strongly superlinear as well as strongly sublinear.

2 Preliminaries
A time scale T is a nonempty closed subset of the real numbers R with supT = ∞. For
example, R, hZ for h > 0 and qN := {qk , k ∈N} for q > 1 are time scales. In the forthcoming
analysis, we assume that T has the topology that it inherits from the standard topology
on R. Let the closed interval in T be defined by [c, d] := {t ∈ T, c ≤ t ≤ d}. In a similar
manner, one can define open intervals and half-open intervals, etc.

Definition 2.1 For t ∈ T we define the forward jump operator σ : T→ T by σ (t) := inf{s ∈
T : s > t}; the backward jump operator ρ : T → T is defined by ρ(t) := sup{s ∈ T : s < t}. If
σ (t) > t, then t is called right-scattered, while if ρ(t) < t, it is called left-scattered. Also, if
t < supT and σ (t) = t, then t is called right-dense, and if t > infT and ρ(t) = t, then t is
called left-dense. The graininess function μ(t) : T → [0,∞) is defined by μ(t) := σ (t) – t.

Definition 2.2 A function f : T→R is rd-continuous if it is continuous at all right-dense
points and its left-sided limit exists (and is finite) at a left-dense point. We denote the set
of rd-continuous functions by Crd(T,R).

Definition 2.3 For a function f : T → R, let F�(t) represent the Hilger derivative of f at
t. Assume that t0 ∈ T and f ∈ Crd(T0,R). If F�(t) = f (t), then we define

∫ A

t0

f (s)�s := F(A) – F(t0),
∫ ∞

t0

f (s)�s := lim
A→∞

∫ A

t0

f (s)�s.

Definition 2.4 We say g is strongly superlinear if there exists a constant α > 1 such that

|g(t, u)|
|u|α ≤ |g(t, v)|

|v|α for |u| ≤ |v|, uv > 0, t ∈ T0,

while g is strongly sublinear if there exists a constant α ∈ (0, 1) such that

|g(t, u)|
|u|α ≥ |g(t, v)|

|v|α for |u| ≤ |v|, uv > 0, t ∈ T0.
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3 Main results
In the sequel, we use the following notations:

R(t) =
∫ t

t0

∫ s1

t0

s
r(s)

�s�s1, RT (t) =
∫ t

T

∫ s1

T

s – T
r(s)

�s�s1,

R̃(t) =
∫ t

t0

(t – s)(σ (s) – t0)
r(s)

�s, R̃u(t) =
∫ t

u

(t – s)(σ (s) – u)
r(s)

�s, t > u > t0.
(2)

Lemma 3.1 If y(t) is a nonoscillatory solution of (1), then there are only four cases for all
sufficiently large t ≥ t0:

(i) y(t) > 0, y�(t) > 0, r(t)y��(t) > 0,
[
r(t)y��

]� > 0;

(ii) y(t) > 0, y�(t) > 0, r(t)y��(t) < 0,
[
r(t)y��

]� > 0;

(iii) y(t) < 0, y�(t) < 0, r(t)y��(t) < 0,
[
r(t)y��

]� < 0;

(iv) y(t) < 0, y�(t) < 0, r(t)y��(t) > 0,
[
r(t)y��

]� < 0.

Proof Without loss of generality, let y(t) be an eventually positive solution of (1), that
is, there exists t1 ≥ t0 such that y(t) > 0 for t ≥ t1. Then y(η(t)) > 0 for t ≥ t1. From (1),
it yields that [r(t)y��(t)]�� < 0 for t ≥ t1. Therefore, [r(t)y��(t)]� is eventually of con-
stant sign. Next we suppose that [r(t)y��(t)]� < 0 at some t = t2 ≥ t1. Then, integrating
[r(t)y��(t)]�� < 0 twice from t2 to t, and multiplying the resulting inequality by 1/r(t) and
integrating again from t2 to t, we get

y�(t) < ā
∫ t

t2

s – t2

r(s)
�s + b̄

∫ t

t2

1
r(s)

�s + c̄, t ≥ t2,

where ā = [r(t2)y��(t2)]� < 0, b̄ = r(t2)y��(t2), and c̄ = y�(t2). In consequence, it follows
from the assumption

∫ ∞
t0

s/r(s)�s = ∞ that limt→∞ y�(t) = –∞, which contradicts the pos-
itivity of y(t). Therefore, we have [r(t)y��(t)]� > 0 for all t ≥ t1. It means that r(t)y��(t)
eventually keeps the same sign. On the other hand, let r(t)y��(t) < 0 for t ≥ t1. Then it
can easily be shown that y�(t) is eventually positive. This completes the proof of (i). If
there exists t2 ≥ t1 such that r(t)y��(t) > 0 for t ≥ t2, then r(t)y��(t) ≥ c for t ≥ t2, where
c = r(t2)y�(t2). Multiplying this inequality by t/r(t) and integrating from t2 to t, by using
the integration by parts formula on time scales, we get

ty�(t) – y
(
σ (t)

)
– t2y�(t2) + y

(
σ (t2)

) ≥ c
∫ t

t2

s
r(s)

�s, t ≥ t2,

which, together with
∫ ∞

t0
s/r(s)�s = ∞, implies that limt→∞ ty�(t) = ∞. Thus y�(t) > 0 for

all large t ≥ t0. The proof is completed. �

Lemma 3.2 If t1 ≥ t0 and t > u, then limt→∞
Rt1 (t)
R(t) = 1 and R̃u(t) is nonincreasing for u,

where Rt1 (t), R(t), R̃u(t) are given in (2).
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Proof By applying L’Hôpital’s rule [1, Theorem 1.120], we find that

lim
t→∞

Rt1 (t)
R(t)

= lim
t→∞

∫ t
t1

∫ s1
t1

s–t1
r(s) �s�s1

∫ t
t0

∫ s1
t0

s
r(s)�s�s1

= lim
t→∞

∫ t
t1

s–t1
r(s) �s

∫ t
t0

s
r(s)�s

= lim
t→∞

t–t1
r(t)

t
r(t)

= 1.

On the other hand, let

f (u, s) =
(t – s)(σ (s) – u)

r(s)
, t0 < u < s < t.

Then, using [1, Theorem 1.117] for all u, we obtain

[
R̃u(t)

]� =
∫ t

u

[
f (u, s)

]�
�s – f

(
σ (u), u

)
= –

∫ t

u

t – s
r(s)

�s ≤ 0.

This completes the proof. �

Lemma 3.3 If y(t) is a nonoscillatory solution of (1), then there exist T > t0 and a constant
c̃ > 0 such that

1
2
[
r(t)y��(t)

]�R(t) ≤ ∣∣y(t)
∣∣ ≤ c̃R(t) for t ≥ T .

Proof Without loss of generality, we suppose that y(t) is eventually positive. Then, in view
of Lemma 3.1, there exists t1 ≥ t0 such that

y(t) > 0, y�(t) > 0,
[
r(t)y��(t)

]� > 0,
[
r(t)y��(t)

]�� < 0 for t ≥ t1. (3)

Integrating [r(t)y��(t)]�� < 0 twice from t1 to t, we have

r(t)y��(t) < a0t + a1, where a0 =
[
r(t1)y��(t1)

]� > 0, a1 = r(t1)y��(t1). (4)

Multiplying (4) by 1/r(t) and integrating twice from t1 to t yields

y(t) < a0

∫ t

t1

∫ s1

t1

s
r(s)

�s�s1 + a1

∫ t

t1

∫ s1

t1

1
r(s)

�s�s1 + a2t + a3,

where a2 = y�(t1) and a3 = y(t1) are constants. Noting that
∫ ∞

t0
s/r(s)�s = ∞, we deduce

that there exist t2 ≥ t1 and c̃ > 0 such that y(t) < c̃R(t) for t ≥ t2.
Now let us prove the left-sided inequality in the lemma. In view of (3), observe that

[r(t)y��(t)]� is nonincreasing, and hence

y(t) ≥
∫ t

t1

y�(s)�s ≥
∫ t

t1

∫ s1

t1

y��(s)�s�s1 =
∫ t

t1

∫ s1

t1

1
r(s)

r(s)y��(s)�s�s1

≥
∫ t

t1

∫ s1

t1

1
r(s)

∫ s

t1

[
r(u)y��(u)

]�
�u�s�s1

≥ [
r(t)y��(t)

]�

∫ t

t1

∫ s1

t1

1
r(s)

∫ s

t1

�u�s�s1
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=
[
r(t)y��(t)

]�

∫ t

t1

∫ s1

t1

s – t1

r(s)
�s�s1 =

[
r(t)y��(t)

]�Rt1 (t).

From Lemma 3.2, there exists t3 ≥ t1 such that Rt1 (t) ≥ 1
2 R(t) for t ≥ t3, and hence

y(t) ≥ 1
2
[
r(t)y��(t)

]�R(t).

Letting T = max(t2, t3), the proof is complete. �

Lemma 3.4 If y(t) is a nonoscillatory solution of (1), then there exists t∗ ≥ t0 such that, for
any T ≥ t∗,

y(t) ≥
∫ t

t1

R̃t1

(
σ (s)

)
g
(
s, y

(
η(s)

))
�s, t ≥ T . (5)

Proof Without loss of generality, we suppose that y(t) is eventually positive. Firstly, if y(t)
is a solution of type-(i), then there exists t1 ≥ t0 such that

y(t) > 0, y�(t) > 0, r(t)y��(t) > 0,
[
r(t)y��(t)

]� > 0 for t ≥ t1.

Let

h(t) = y(t) –
∫ t

t1

∫ ∞

s3

1
r(s2)

∫ ∞

s2

∫ ∞

s1

g
(
s, y

(
η(s)

))
�s�s1�s2.

Obviously, h��(t) > 0 for t ≥ t1. Indeed, differentiating the above equation twice, we get

h��(t) = y��(t) +
1

r(t)

∫ ∞

t

∫ ∞

s1

g
(
s, y

(
η(s)

))
�s�s1�s2 > 0.

In view of (1), we obtain [r(t)h��(t)]�� = 0 and hence [r(t)h��(t)]� = c. Integrating (1)
from t to T , we have

[
r(t)y��(t)

]� –
∫ T

t
g
(
s, y

(
η(s)

))
�s =

[
r(T)y��(T)

]� > 0.

In the limit T → ∞, we note that [r(t)h��(t)]� > 0 for t ≥ t1. Then there exists c > 0 such
that h��(t) = ct/r(t) > 0 for t ≥ t1, which, on integrating from t1 to t, yields

h�(t) = h�(t1) + c
∫ t

t1

s/r(s)�s. (6)

Taking the limit t → ∞ and using the assumption
∫ ∞

t0
s/r(s)�s = ∞ in (6), we get h�(t) > 0

for all large t. Therefore, there exists t2 ≥ t1 such that h�(t) > c
∫ t

t1
s/r(s)�s for t ≥ t2. Next,

integrating (6) from t1 to t, we get

h(t) = h(t1) + c
∫ t

t1

∫ s1

t1

s/r(s)�s�s1, t ≥ t2,



Zhou et al. Advances in Difference Equations        (2019) 2019:308 Page 6 of 17

which implies that h(t) > 0 for large values of t (i.e., t → ∞). Thus, there exists T ≥ t2 such
that

y(t) ≥
∫ t

t1

∫ ∞

s3

1
r(s2)

∫ ∞

s2

∫ ∞

s1

g
(
s, y

(
η(s)

))
�s�s1�s2�s3, t ≥ T .

Now, by interchanging the order of integration, we get

y(t) ≥
∫ t

t1

∫ σ (s2)

t1

1
r(s2)

∫ ∞

s2

(
σ (s) – s2

)
g
(
s, y

(
η(s)

))
�s�s3�s2

+
∫ ∞

t

∫ t

T

1
r(s2)

∫ ∞

s2

(
σ (s) – s2

)
g
(
s, y

(
η(s)

))
�s�s3�s2

≥
∫ t

t1

σ (s2) – t1

r(s2)

∫ ∞

s2

(
σ (s) – s2

)
g
(
s, y

(
η(s)

))
�s�s2

=
∫ t

t1

∫ σ (s)

t1

(σ (s) – s2)(σ (s2) – t1)
r(s2)

g
(
s, y

(
η(s)

))
�s2�s

+
∫ ∞

t

∫ t

t1

(σ (s) – s2)(σ (s2) – t1)
r(s2)

g
(
s, y

(
η(s)

))
�s2�s

≥
∫ t

t1

R̃t1

(
σ (s)

)
g
(
s, y

(
η(s)

))
�s. (7)

On the other hand, if y(t) is a solution of type-(ii), then there exists t3 ≥ t0 such that

y(t) > 0, y�(t) > 0, r(t)y��(t) < 0,
[
r(t)y��(t)

]� > 0 for t ≥ t3.

Integrating (1) from t to T , we get

[
r(T)y��(T)

]� –
[
r(t)y��(t)

]� +
∫ T

t
g
(
s, y

(
η(s)

))
�s = 0,

which takes the following form after taking the limit T → ∞:

[
r(t)y��(t)

]� ≥
∫ ∞

t
g
(
s, y

(
η(s)

))
�s, t ≥ t3.

Integrating the above inequality from t to T , we have

r(T)y��(T) – r(t)y��(t) ≥
∫ T

t

∫ ∞

s1

g
(
s, y

(
η(s)

))
�s�s1.

Multiplying the above inequality by 1/r(t), and then integrating from t to T , we get

y�(t) ≥ y�(T) + r(T)y��(T)(t – T) +
∫ T

t

1
r(s2)

∫ T

s2

∫ ∞

s1

g
(
s, y

(
η(s)

))
�s�s1�s2,

which, on taking the limit T → ∞, yields

y�(t) ≥
∫ ∞

t

1
r(s2)

∫ ∞

s2

∫ ∞

s1

g
(
s, y

(
η(s)

))
�s�s1�s2, t ≥ t3.
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Integrating the above inequality from t1 to t, we get

y(t) ≥
∫ t

t1

∫ ∞

s3

1
r(s2)

∫ ∞

s2

∫ ∞

s1

g
(
s, y

(
η(s)

))
�s�s1�s2, t ≥ t3.

Using the argument employed in (7) and defining t∗ = max(t2, t3), we deduce that the con-
clusion of the lemma holds. �

Lemma 3.5 Let f and g be �-differentiable on T. Assume that g(t), g�(t) are not equal to
zero for all t ∈ T and have the same sign. Then

lim
t→∞

f (σ (t))
g(σ (t))

= ξ ,

if

lim
t→∞

f (t)
g(t)

= lim
t→∞

f �(t)
g�(t)

= ξ ∈R.

Proof Since g(t) and g�(t) are not equal to zero for all t ∈ T, it follows from the identity
g(σ (t)) = μ(t)g�(t) + g(t) that g(σ (t)) is not equal to zero for all t ∈ T. Hence, for any ε > 0,
there exists T > t0 such that, for t ≥ T , we have

∣
∣∣∣
f (t)
g(t)

– ξ

∣
∣∣∣ ≤ ε and

∣
∣∣∣
f �(t)
g�(t)

– ξ

∣
∣∣∣ ≤ ε.

If sgn g(t) = sgn g�(t) > 0, then

ξg(t) – εg(t) ≤ f (t) ≤ ξg(t) + εg(t) and ξg�(t) – εg�(t) ≤ f �(t) ≤ ξg�(t) + εg�(t).

Hence, noticing that f (σ (t)) = μ(t)f �(t) + f (t) and g(σ (t)) > 0, we get

ξg
(
σ (t)

)
– εg

(
σ (t)

) ≤ f
(
σ (t)

) ≤ξg
(
σ (t)

)
+ εg

(
σ (t)

)
, t ≥ T .

Consequently, we have

∣∣
∣∣
f (σ (t))
g(σ (t))

– ξ

∣∣
∣∣ ≤ ε, t ≥ T .

Also one can observe that the above expression holds for sgn g(t) = sgn g�(t) < 0. Thus, in
view of the arbitrariness of ε, we obtain the desired result. �

Theorem 3.6 Assume that g is strongly superlinear and η(t) ≥ σ (t). Then every solution
of (1) is oscillatory if and only if

∫ ∞

t0

R̃
(
σ (t)

)∣∣g(t, c)
∣∣�t = ∞ for all c 
= 0. (8)



Zhou et al. Advances in Difference Equations        (2019) 2019:308 Page 8 of 17

Proof We first prove the necessity by contradiction. Let us suppose that condition (8) does
not hold true. Then there exists a positive constant c such that

∫ ∞

t0

R̃
(
σ (t)

)∣∣g(t, c)
∣∣�t < ∞. (9)

So we can choose a sufficiently large T > t0 such that

∫ ∞

T
R̃

(
σ (t)

)∣∣g(t, c)
∣
∣�t <

c
4

.

Let

U =
{

y
∣∣y ∈ Crd(T0,R), sup

t∈T0

∣∣y(t)
∣∣ < ∞

}
.

It is clear that U is a Banach space with the norm ‖y‖ = supt∈T0 |y(t)|. Let us introduce a
closed, bounded, and convex subset of U defined by

Ω =
{

y = y(t) : y ∈ U ,
c
2

≤ ∣∣y(t)
∣∣ ≤ c, t ∈ T0

}
.

Define a map P on Ω as follows:

(Py)(t) =

⎧
⎨

⎩

c
2 +

∫ t
T

∫ ∞
s3

1
r(s2)

∫ ∞
s2

∫ ∞
s1

g(s, y(η(s)))�s�s1�s2�s3, t ≥ T ,

(Py)(T), t0 ≤ t ≤ T .

In the sequel, we will show that P has a fixed point in Ω .
Step I. P maps Ω into Ω . Let y ∈ Ω . Then c/2 ≤ |y(t)| ≤ c for t ≥ t0. In view of

Lemma 3.2, we have that R̃T (t) ≤ R̃(t) for T ≥ t0. Then, for t ≥ T , we obtain

∣
∣(Py)(t)

∣
∣ ≤ c

2
+

∫ t

T

∫ ∞

s3

1
r(s2)

∫ ∞

s2

∫ ∞

s1

∣
∣g

(
s, y

(
η(s)

))∣∣�s�s1�s2�s3

=
c
2

+
∫ t

T

∫ σ (s2)

T

1
r(s2)

∫ ∞

s2

(
σ (s) – s2

)∣∣g
(
s, y

(
η(s)

))∣∣�s�s3�s2

+
∫ ∞

t

∫ t

T

1
r(s2)

∫ ∞

s2

(
σ (s) – s2

)∣∣g
(
s, y

(
η(s)

))∣∣�s�s3�s2

≤ c
2

+ 2
∫ ∞

T

σ (s2) – T
r(s2)

∫ ∞

s2

(
σ (s) – s2

)∣∣g
(
s, y

(
η(s)

))∣∣�s�s2

=
c
2

+ 2
∫ ∞

T

∫ σ (s)

T

σ (s2) – T
r(s2)

(
σ (s) – s2

)
g
(
s, y

(
η(s)

))
�s2�s

≤ c
2

+ 2
∫ ∞

T
R̃

(
σ (s)

)∣∣g
(
s, y

(
η(s)

))∣∣�s.

Then it follows from the strong superlinearity of g that

c
2

≤ ∣∣(Py)(t)
∣∣ ≤ c

2
+ 2

∫ ∞

T
R̃

(
σ (s)

)∣∣g
(
s, y

(
η(s)

))∣∣�s <
c
2

+ 2
∫ ∞

T
R̃

(
σ (s)

)∣∣g(s, c)
∣∣�s ≤ c,

which implies that c/2 ≤ (Py)(t) ≤ c for t ∈ T0. This shows that PΩ ⊆ Ω .
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Step II. P is completely continuous.
We first show that P is continuous. Let yn ∈ Ω (n = 1, 2, . . .) such that ‖yn – y‖ → 0 as

n → ∞. Hence we get y ∈ Ω since Ω is a closed set. Then

∣
∣(Pyn)(t) – (Py)(t)

∣
∣

≤
∫ t

T

∫ ∞

s3

1
r(s2)

∫ ∞

s2

∫ ∞

s1

∣
∣g

(
s, yn

(
η(s)

))
– g

(
s, y

(
η(s)

))∣∣�s�s1�s2�s3

≤ 2
∫ ∞

T

σ (s2) – T
r(s2)

∫ ∞

s2

(
σ (s) – s2

)∣∣g
(
s, yn

(
η(s)

))
– g

(
s, y

(
η(s)

))∣∣�s�s2

≤ 2
∫ ∞

T
R̃

(
σ (s)

)∣∣g
(
s, yn

(
η(s)

))
– g

(
s, y

(
η(s)

))∣∣�s,

which, by the strong superlinearity of g , yields

∣∣g
(
s, y

(
η(s)

))∣∣ ≤ ∣∣g(s, c)
∣∣, and

∣∣g
(
s, yn

(
η(s)

))∣∣ ≤ ∣∣g(s, c)
∣∣, n = 1, 2 . . . .

In consequence, we get

∣∣g
(
s, yn

(
η(s)

))
– g

(
s, y

(
η(s)

))∣∣ ≤ 2
∣∣g(s, c)

∣∣.

Since |g(s, yn(η(s))) – g(s, y(η(s)))| → 0 as n → ∞, the Lebesgue dominated convergence
theorem implies that limn→∞ ‖Pyn – Py‖ = 0, and hence we obtain that P is continuous
in Ω .

Next, we show that PΩ is relatively compact. According to the Arzela–Ascoli theorem
on time scales (see [6]), we just need to verify that the family of functions {Py : y ∈ Ω} is
bounded and uniformly Cauchy, and {Py : y ∈ Ω} is equi-continuous on [t0, T1] for any
T1 ∈ T0. Firstly, the boundedness is obvious. Secondly, in view of (9), for any ε > 0, we can
choose a sufficiently large number T∗ ≥ T so that

∫ ∞

T∗
R̃

(
σ (s)

)∣∣g(s, c)
∣
∣�s <

ε

4
.

Hence, for y ∈ Ω , t2 > t1 ≥ T∗, we get

∣
∣(Py)(t2) – (Py)(t1)

∣
∣ =

∣∣
∣∣

∫ t2

T

∫ ∞

s3

1
r(s2)

∫ ∞

s2

∫ ∞

s1

g
(
s, y

(
η(s)

))
�s�s1�s2�s3

–
∫ t1

T

∫ ∞

s3

1
r(s2)

∫ ∞

s2

∫ ∞

s1

g
(
s, y

(
η(s)

))
�s�s1�s2�s3

∣
∣∣
∣

≤ 4
∫ ∞

T∗
R̃

(
σ (s)

)∣∣g
(
s, y

(
η(s)

))∣∣�s

≤ 4
∫ ∞

T∗
R̃

(
σ (s)

)∣∣g(s, c)
∣∣�s < ε,

which implies that {Py : y ∈ Ω} is uniformly Cauchy.
For any T1 ∈ T0 and y ∈ Ω , if T ≤ t1 < t2 ≤ T1, then

∣
∣(Py)(t2) – (Py)(t1)

∣
∣ ≤

∣∣
∣∣

∫ t2

t1

∫ ∞

s3

1
r(s2)

∫ ∞

s2

∫ ∞

s1

g
(
s, y

(
η(s)

))
�s�s1�s2�s3

∣∣
∣∣
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≤
∫ t2

t1

σ (s2) – t1

r(s2)

∫ ∞

s2

(
σ (s) – s2

)∣∣g
(
s, y

(
η(s)

))∣∣�s�s2

+
∫ ∞

t2

t2 – t1

r(s2)

∫ ∞

s2

(
σ (s) – s2

)∣∣g
(
s, y

(
η(s)

))∣∣�s�s2

≤ (t2 – t1)
[∫ t2

t1

1
r(s2)

∫ ∞

s2

(
σ (s) – s2

)∣∣g
(
s, y

(
η(s)

))∣∣�s�s2

+
∫ ∞

t2

1
r(s2)

∫ ∞

s2

(
σ (s) – s2

)∣∣g
(
s, y

(
η(s)

))∣∣�s�s2

]

= (t2 – t1)
∫ ∞

t1

Rt1

(
σ (s)

)∣∣g
(
s, y

(
η(s)

))∣∣�s,

where

Rt1 (t) =
∫ t

t1

t – s
r(s)

�s =
∫ t

t1

∫ σ (s1)

t1

1
r(s)

�s�s1.

On the other hand, by L’Hôpital’s rule, we get

lim
t→∞

Kt1 (t)
K̃t1 (t)

= lim
t→∞

1
σ (t) – t1

= 0,

which, in view of Lemma 3.5, implies that limt→∞
Kt1 (σ (t))
K̃t1 (σ (t)) = 0, where

Kt1 (t) =
∫ t

t1

1
r(s)

�s and K̃t1 (t) =
∫ t

t1

σ (s) – t1

r(s)
�s.

Furthermore, by using the earlier argument, we find that limt→∞
Rt1 (σ (t))
R̃t1 (σ (t)) = 0. Hence, for

any ε > 0, there exists T∗
1 ≥ t1 such that Rt1 (σ (t)) < εR̃t1 (σ (t)) for t ≥ T∗

1 . This means that

∣
∣(Py)(t2) – (Py)(t1)

∣
∣ ≤ (t2 – t1)ε

∫ ∞

T∗
1

R̃t1

(
σ (s)

)∣∣g
(
s, y

(
η(s)

))∣∣�s

+ (t2 – t1)
∫ T∗

1

t1

Rt1

(
σ (s)

)∣∣g
(
s, y

(
η(s)

))∣∣�s.

Therefore, there exists δ > 0 such that

∣∣(Py)(t2) – (Py)(t1)
∣∣ < ε, if |t2 – t1| < δ.

Moreover, we have

∣∣(Py)(t2) – (Py)(t1)
∣∣ = 0 < ε, if t0 ≤ t1 < t2 ≤ T .

From the preceding arguments, we conclude that {Py : y ∈ Ω} is equi-continuous on
[t0, T1]. Hence, PΩ is relatively compact. Thus, P is completely continuous. Hence, by
Schauder’s fixed point theorem, P has a fixed point y0 ∈ Ω , which is a nonoscillatory so-
lution of (1). This is a contradiction.
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We next prove the sufficiency by contradiction. Without loss of generality, let y(t) be an
eventually positive solution of (1). Then, from Lemma 3.4, there exists t1 ≥ t0 such that,
for any T ≥ t1, we have

y
(
σ (t)

) ≥
∫ σ (t)

t1

R̃t1

(
σ (s)

)
g
(
s, y

(
η(s)

))
�s, t ≥ T .

It follows from y�(t) > 0 for t ≥ t1 that there exists a constant c1 > 0 such that y(η(t)) ≥ c1

for t ≥ t1. Then, by the strong superlinearity of g , we have

g
(
t, y

(
η(t)

)) ≥ c–α
1 yα

(
η(t)

)
g(t, c1) ≥ c–α

1 yα
(
σ (t)

)
g(t, c1).

Hence

y
(
σ (t)

) ≥ c–α
1

∫ σ (t)

t1

R̃t1

(
σ (s)

)
yα

(
σ (s)

)
g(s, c1)�s, t ≥ T ,

that is,

(
y
(
σ (t)

))–α ≤ cα2
1

(∫ σ (t)

t1

R̃t1

(
σ (s)

)
yα

(
σ (s)

)
g(s, c1)�s

)–α

, t ≥ T . (10)

Notice that there exists ζ ∈ [s,σ (s)] such that

[(∫ s

t1

R̃t1

(
σ (θ )

)
yα

(
σ (θ )

)
g(θ , c1)�θ

)1–α]�

= (1 – α)R̃t1

(
σ (s)

)
yα

(
σ (s)

)
g(s, c1)

×
(∫ ζ

t1

R̃t1

(
σ (θ )

)
yα

(
σ (θ )

)
g(θ , c1)�θ

)–α

.

Multiplying (10) by R̃t1 (σ (t))yα(σ (t))g(t, c1) and then integrating from t2 (t2 > T ) to t, we
get

∫ t

t2

R̃t1

(
σ (s)

)
g(s, c1)�s

≤ cα2
1

∫ t

t2

R̃t1

(
σ (s)

)
yα

(
σ (s)

)
g(s, c1)

(∫ ζ

t1

R̃t1

(
σ (θ )

)
yα(θ )g(θ , c1)�θ

)–α

�s

=
cα2

1
(α – 1)

(∫ s

t1

R̃t1

(
σ (θ )

)
yα

(
σ (θ )

)
g(θ , c1)�θ

)1–α∣∣
∣∣

t2

t
.

This means that
∫ t

t2

R̃t1

(
σ (s)

)
g(s, c1)�s < ∞.

On the other hand, we have

R̃(t) =
∫ t

t0

(t – s)(σ (s) – t0)
r(s)

�s =
∫ t

t0

∫ σ (s1)

t0

σ (s) – t0

r(s)
�s�s1.
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Now, we show that limt→∞
R̃t1 (σ (t))
R̃(σ (t)) = 1. In fact, from L’Hôpital’s rule and Lemma 3.5, we

need to prove that

lim
t→∞

R̃t1 (t)
R̃(t)

= lim
t→∞

R̃�
t1 (t)

R̃�(t)
= 1,

i.e., it is sufficient to show that

lim
t→∞

K̃t1 (σ (t))
K̃t0 (σ (t))

= 1. (11)

Furthermore, one can see that expression (11) is true. Indeed, from L’Hôpital’s rule and
Lemma 3.5 again, we just need to show that

lim
t→∞

K̃t1 (t)
K̃t0 (t)

= lim
t→∞

K̃�
t1 (t)

K̃�
t0 (t)

= 1. (12)

Obviously, (12) is satisfied. Thus, there exists t3 ≥ T such that R̃t1 (σ (t)) > 1
2 R̃(σ (t)) for

t ≥ t3. It means that

∫ ∞

t2

R̃
(
σ (s)

)
g(s, c1)�s < ∞,

which contradicts (3). The proof is complete. �

Theorem 3.7 Assume that g is strongly sublinear and η(t) ≤ t. Then every solution of (1)
is oscillatory if and only if

∫ ∞

t0

∣
∣g

(
t, cR

(
η(t)

))∣∣�t = ∞ for all c 
= 0. (13)

Proof We first prove the necessity by contradiction. Suppose that condition (13) does not
hold true. Then there exists c > 0 such that

∫ ∞

t0

∣∣g
(
t, cR

(
η(t)

))∣∣�t < ∞.

Let T > t0 be so large that

∫ ∞

T

∣∣g
(
t, cR

(
η(t)

))∣∣�t <
c
2

.

Let

U =
{

y
∣∣
∣y ∈ Crd(T0,R), sup

t∈T0

|y(t)|
R2(t)

< ∞
}

.

Obviously, U is a Banach space with the norm ‖y‖ = supt∈T0
|y(t)|
R2(t) . Define a closed and

convex subset of U as follows:

Ω =
{

y = y(t) : y ∈ U , cR(t) ≤ ∣∣y(t)
∣∣ ≤ 2cR(t), t ∈ T0

}
.
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We define a map P on Ω by

(Py)(t) =

⎧
⎨

⎩
cR(t) +

∫ t
T

∫ s3
T

1
r(s2)

∫ s2
T

∫ ∞
s1

g(s, y(η(s)))�s�s1�s2�s3, t ≥ T ,

(Py)(T), t0 ≤ t ≤ T .

In order to show that P has a fixed point in Ω , we proceed as follows.
Step I. P maps Ω into Ω . Let y ∈ Ω . Then cR(t) ≤ |y(t)| ≤ 2cR(t) for t ≥ t0. Furthermore,

we have

∣∣(Py)(t)
∣∣ ≤ cR(t) +

∫ t

T

∫ s3

T

1
r(s2)

[∫ s2

T

(
σ (s) – T

)∣∣g
(
s, y

(
η(s)

))∣∣�s

+
∫ ∞

s2

(s2 – T)
∣∣g

(
s, y

(
η(s)

))∣∣�s
]
�s2�s3

≤ cR(t) +
∫ t

T

∫ s3

T

s2 – T
r(s2)

[
c
2

+
c
2

]
�s2�s3

≤ cR(t) + cR(t) = 2cR(t),

which implies that cR(t) ≤ |(Py)(t)| ≤ 2cR(t) for t ∈ T0. This shows that PΩ ⊆ Ω .
Step II. P is completely continuous.
Firstly, we show that P is continuous. Set yn ∈ Ω and ‖yn – y‖ → 0 as n → ∞. Hence,

we have y ∈ Ω since Ω is a closed set. Then

∣∣(Pyn)(t) – (Py)(t)
∣∣

≤
∫ t

T

∫ s3

T

1
r(s2)

∫ s2

T

∫ ∞

s1

∣∣g
(
s, yn

(
η(s)

))
– g

(
s, y

(
η(s)

))∣∣�s�s1�s2�s3

≤
∫ t

T

∫ s3

T

1
r(s2)

[∫ s2

T

(
σ (s) – T

)∣∣g
(
s, yn

(
η(s)

))
– g

(
s, y

(
η(s)

))∣∣�s

+
∫ ∞

s2

(s2 – T)
∣∣g

(
s, yn

(
η(s)

))
– g

(
s, y

(
η(s)

))∣∣�s
]
�s2�s3

≤
∫ t

T

∫ s3

T

(s2 – T)
r(s2)

�s2�s3

∫ ∞

T

∣
∣g

(
s, yn

(
η(s)

))
– g

(
s, y

(
η(s)

))∣∣�s

≤
∫ ∞

T

∣∣g
(
s, yn

(
η(s)

))
– g

(
s, y

(
η(s)

))∣∣�s × R(t).

By the strong sublinearity of g , we have

∣
∣g

(
s, y

(
η(s)

))∣∣ ≤ 2α|g(s, cR
((

η(s)
))|, and

∣∣g
(
s, yn

(
η(s)

))∣∣ ≤ 2α
∣∣g

(
s, cR

(
η(s)

))∣∣, n = 1, 2 . . . .

Then

∣∣g
(
s, yn

(
η(s)

))
– g

(
s, y

(
η(s)

))∣∣ ≤ 2α+1∣∣g
(
s, cR

((
η(s)

)))∣∣.

Since |g(s, yn(η(s))) – g(s, y(η(s)))| → 0 as n → ∞, the Lebesgue dominated convergence
theorem implies that limn→∞ ‖Pyn – Py‖ = 0, and thus P is continuous in Ω .
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We next show that PΩ is relatively compact. The boundedness is obvious. For any ε > 0,
let T∗ ≥ T be so large that

∣∣∣
∣

1
R(t)

∣∣∣
∣ <

ε

4c
for t ≥ T∗.

Hence, for y ∈ Ω , t2 > t1 ≥ T∗,

∣∣(R–2Py
)
(t2) –

(
R–2Py

)
(t1)

∣∣

≤ c
R(t2)

+
1

R2(t2)

∫ t2

T

∫ s3

T

1
r(s2)

∫ s2

T

∫ ∞

s1

∣∣g
(
s, y

(
η(s)

))∣∣�s�s1�s2�s3

+
c

R(t1)
+

1
R2(t1)

∫ t1

T

∫ s3

T

1
r(s2)

∫ s2

T

∫ ∞

s1

∣∣g
(
s, y

(
η(s)

))∣∣�s�s1�s2�s3

≤ c
R(t2)

+
c

R(t1)
+

c
R2(t2)

∫ t2

T

∫ s3

T

s2 – T
r(s2)

�s2�s3 +
c

R2(t1)

∫ t1

T

∫ s3

T

s2 – T
r(s2)

�s2�s3

≤ c
R(t2)

+
c

R(t1)
+

c
R(t2)

+
c

R(t1)
< ε,

which implies that {Py : y ∈ Ω} is uniformly Cauchy. Furthermore, for any y ∈ Ω and
T1 ∈ T0, if T ≤ t1 < t2 ≤ T1, then

∣∣(R–2Py
)
(t2) –

(
R–2Py

)
(t1)

∣∣

≤
∣∣
∣∣

c
R(t2)

–
c

R(t1)

∣∣
∣∣

+
∣∣
∣∣

1
R2(t2)

∫ t2

T

∫ s3

T

1
r(s2)

∫ s2

T

∫ ∞

s1

g
(
s, y

(
η(s)

))
�s�s1�s2�s3

–
1

R2(t1)

∫ t1

T

∫ s3

T

1
r(s2)

∫ s2

T

∫ ∞

s1

g
(
s, y

(
η(s)

))
�s�s1�s2�s3

∣∣
∣∣

≤
∣∣∣
∣

c
R(t2)

–
c

R(t1)

∣∣∣
∣

+
∣
∣∣
∣

1
R2(t2)

–
1

R2(t1)

∣
∣∣
∣

∫ t2

T

∫ s3

T

1
r(s2)

∫ s2

T

∫ ∞

s1

∣∣g
(
s, y

(
η(s)

))∣∣�s�s1�s2�s3

+
1

R2(t1)

∫ t2

t1

∫ s3

T

1
r(s2)

∫ s2

T

∫ ∞

s1

∣∣g
(
s, y

(
η(s)

))∣∣�s�s1�s2�s3

≤
∣
∣∣
∣

c
R(t2)

–
c

R(t1)

∣
∣∣
∣ +

∣
∣∣
∣

1
R2(t2)

–
1

R2(t1)

∣
∣∣
∣ × cR(t2)

+
c

R2(t1)

∫ t2

t1

∫ s3

T

s2

r(s2)
�s2�s3.

Hence, there exists δ > 0 such that

∣∣(R–2Py
)
(t2) –

(
R–2Py

)
(t1)

∣∣ < ε, if |t2 – t1| < δ.

Moreover, we have

∣∣(R–2Py
)
(t2) –

(
R–2Py

)
(t1)

∣∣ = 0 < ε, if t0 ≤ t1 < t2 ≤ T .
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In consequence, {Py : y ∈ Ω} is equi-continuous on [t0, T1]. According to the Arzela–
Ascoli theorem on time scales, we know that P is a compact operator. Hence P is com-
pletely continuous. Therefore, P has a fixed point y0 ∈ Ω according to Schauder’s fixed
point theorem, which is a nonoscillatory solution of (1). This is a contradiction.

Now, we prove the sufficiency by contradiction. Without loss of generality, let y(t) be
an eventually positive solution of (1). From Lemmas 3.1 and 3.3, there exist t1 ≥ t0 and a
positive constant c1 such that

y(t) > 0, y�(t) > 0, and
[
r(t)y��(t)

]� > 0, t ≥ t1,

and

1
2
[
r(t)y��(t)

]�R(t) ≤ y(t) ≤ c1R(t), t ≥ t1. (14)

Noting that [r(t)y��(t)]�� < 0, we have

y
(
η(t)

) ≥ 1
2
[
r(s)y��(s)

]�

∣∣
∣∣
s=η(t)

R
(
η(t)

) ≥ 1
2
[
r(t)y��(t)

]�R
(
η(t)

)
. (15)

From (14), (15), and the strong sublinearity of g , there exists ζ ∈ [t,σ (t)] such that

(
–
([

r(t)y��(t)
]�)1–α)� = –(1 – α)

([
r(ζ )y��(ζ )

]�)–α[
r(ζ )y��(ζ )

]��

= (1 – α)
([

r(ζ )y��(ζ )
]�)–αg

(
t, y

(
η(t)

))

≥ (1 – α)
([

r(t)y��(t)
]�)–α (y(η(t)))α

(c1R(η(t)))α
g
(
t, c1R

(
η(t)

))

≥ (1 – α)
1

(2c1)α
g
(
t, c1R

(
η(t)

))
.

Integrating the inequalities above from t2 to t, we get

(1 – α)
1

(2c1)α

∫ t

t2

g
(
s, c1R

(
η(s)

))
�s ≤ ([

r(t2)y��(t2)
]�)1–α –

([
r(t)y��(t)

]�)1–α < ∞,

and so
∫ ∞

t2

g
(
s, c1R

(
η(s)

))
�s < ∞,

which contradicts (13). This completes the proof. �

Remark 3.8 It is noteworthy that the results given in the aforementioned theorems are the
same as those in [13] where the dynamic equation on time scales is reduced to a differential
equation when T = R+, σ (t) = t, and x� = x′. If further we set r(t) = 1 and η(t) = sin t in
(1), we conclude that R(t) = R̃(t) = t3/6, and every solution of (1) is oscillatory in view of
Theorem 3.7 whenever (13) holds under a suitable strongly sublinear function g . However,
for the case of T = N, we know that σ (t) = t +1 and x�(t) = �x(t) = x(t +1)–x(t), there is no
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work concerning the sufficient and necessary conditions for the following corresponding
difference equation:

�2[r(t)�2x(t)
]

+ g
(
t, x

(
η(t)

))
= 0. (16)

Example 3.9 Let T = {t : t ∈ N}, r(t) = t+1
2t , η(t) = λt for λ > 2, and g(t, x(t)) = x3(t) in (16).

It is easy to see that
∑∞

t=1 t/r(t) = ∞ and
∑∞

t=1 R̃(t + 1)|c3| = ∞ for c 
= 0, and then all the
conditions of Theorem 3.6 are satisfied. Thus every solution of (16) is oscillatory.

Example 3.10 Consider the fourth order dynamic equation

[
ty��(t)

]�� +
1
t

y5(4t) = 0, t ∈ 2N, t ≥ t0 = 2. (17)

Here, T = 2N, η(t) = 4t and g(t, y(t)) = 1
t y5(t). Hence we have σ (t) = 2t. In this case r(t) = t,

one can check that
∫ ∞

2 t/r(t)�t = ∞ and R̃(t) = 4
3 t2 – 4

3 –2t ln t
ln 2 . Hence

∫ ∞
2 R̃(2t)|g(t, c)|�t =

∞. It means that all the conditions of Theorem 3.6 are satisfied. Then every solution of
(17) is oscillatory.
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