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Abstract
This paper is devoted to seeking the representation of solutions to a linear fractional
delay differential equation of Hadamard type. By introducing the Mittag-Leffler delay
matrix functions with logarithmic functions and analyzing their properties, we derive
the representation of solutions via the constant variation method.
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1 Introduction
In the recent decades, fractional differential equations have been applied in engineering,
physics, finance, and signal analysis. The researchers focused on the investigation of the
existence, asymptotic stability, and finite-time stability of solutions of fractional linear and
non-linear differential equations of Caputo type, Riemann–Liouville type, and Hadamard
type [1–11].

Recently, the representation of solutions to delay differential equations has been con-
sidered. Klusainov and Shukin [12], Diblik and Klusainov [13, 14] derived the exact ex-
pressions of solutions of linear time invariant continuous and discrete delay equations
by proposing the concepts of delay matrix functions. Next, stability and controllability
problems of linear delay differential equations were studied extensively in [15–17]. For the
literature on the related topic of linear fractional delay equations of Caputo and Riemann–
Liouville type, we refer the reader to [18–25]. However, we find that there exists very lim-
ited work on the representation of solutions of fractional order delay differential equations
of Hadamard type, even for linear case.

Motivated by the above-mentioned works, we try to introduce a new concept on frac-
tional delay matrix function with a logarithmic function and use it to study the following
linear fractional delay differential equations of Hadamard type:

⎧
⎪⎪⎨

⎪⎪⎩

(HD
α
1+ y)(x) = By(x – τ ), B ∈ Rn×n, x ∈ (τ , T], τ > 0,

y(x) = ϕ(x), ϕ(x) ∈ Rn, 1 < x ≤ τ ,

(HI
1–α
1+ y)(1+) = b, b ∈ Rn,

(1)
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where HD
α
1+ y denotes the α order Hadamard derivative, HI

1–α
1+ y denotes 1 – α order

Hadamard fractional integral, α ∈ (0, 1). T = k∗τ , k∗ ∈ N+ = {1, 2, . . .}, τ is a fixed moment.
ϕ(·) is an arbitrary Hadamard differentiable function, i.e., HD

α
1+ϕ exists.

We use the idea from [19] and introduce a fractional delay matrix function with a log-
arithmic function that is used to seek a representation of solution of (1) by utilizing the
constant variation method.

2 Preliminaries
Let a, b ∈ R, a < b, and C((a, b], Rn) denotes a Banach space composed of continuous
vector-valued functions. Θ denotes zero matrix, I denotes the standard identity matrix.

Definition 2.1 (see [1]) For a function y : (a, b) → Rn, the α order Hadamard integral of y
is defined by

(
HI

α
a+ y

)
(x) =

1
Γ (α)

∫ x

a

(

ln
x
t

)α–1

y(t)
dt
t

, α ∈ (0, 1).

Definition 2.2 (see [1]) For a function y : (a, b) → Rn, the α order Hadamard derivative
of y is defined by

(
HD

α
a+ y

)
(x) =

1
Γ (1 – α)

(

x
d

dx

)∫ x

a

(

ln
x
t

)–α

y(t)
dt
t

, α ∈ (0, 1).

Now we propose a new concept of fractional delay matrix function with logarithmic
function.

Definition 2.3 Let α ∈ (0, 1). Fractional delay matrix function E
B(ln x)α
τ ,α with logarithmic

function is defined by

E
B(ln x)α
τ ,α =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Θ , –∞ < x ≤ 1,

I (ln x)α–1

Γ (α) , 1 < x ≤ τ ,

I (ln x)α–1

Γ (α) + B (ln x–ln τ )2α–1

Γ (2α) + · · ·
+ Bk (ln x–ln kτ )(k+1)α–1

Γ ((k+1)α) , kτ < x ≤ (k + 1)τ , k ∈ N+.

Lemma 2.4 For kτ < x ≤ (k + 1)τ , k ∈ N+, one has

∫ x

kτ

(ln x – ln t)–α(ln t – ln kτ )(k+1)α–1 dt
t

= (ln x – ln kτ )kα
B

[
1 – α, (k + 1)α

]
,

where B[ξ ,η] =
∫ 1

0 sξ–1(1 – s)η–1 ds is a beta function.

Proof Using the formula of integration by parts, we can obtain

∫ x

kτ

(ln x – ln t)–α(ln t – ln kτ )(k+1)α–1 dt
t

=
∫ ln x–kτ

0
(ln x – z – ln kτ )–αz(k+1)α–1 dz
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=
∫ ln x–kτ

0
(ln x – ln kτ )–α

(

1 –
z

ln x – ln kτ

)–α

z(k+1)α–1 dz

= (ln x – ln kτ )kα
B

[
1 – α, (k + 1)α

]
.

The proof is completed. �

3 Representation of the solutions
In the section, we adopt the general method of solving linear fractional differential equa-
tions to seek the exact solutions by using the notation of EB(ln ·)α

τ ,α .
We establish the following fundamental result.

Theorem 3.1 If EB(ln ·)α
τ ,α : (kτ , (k + 1)τ ] −→ Rn×n, k ∈ N+ satisfies

(
HD

α
1+E

B(ln t)α
τ ,α

)
(x) = BEB(ln x–ln kτ )α

τ ,α , (2)

then E
B(ln x)α
τ ,α is a solution of (HD

α
1+ y)(x) = By(x – τ ) with the initial value EB(ln x)α

τ ,α = I (ln x)α–1

Γ (α) ,
1 < x ≤ τ .

Proof If x ∈ (–∞, 1], according to Definition 2.3, we have EB(ln x)α
τ ,α = Θ , obviously, (2) holds.

Next, for x ∈ (kτ , (k + 1)τ ], k ∈ N+, we use mathematical induction to prove that the con-
clusion is also valid.

(i) When k = 1, τ < x ≤ 2τ , we have

y(x) = E
B(ln x)α
τ ,α = I

(ln x)α–1

Γ (α)
+ B

(ln x – ln τ )2α–1

Γ (2α)
. (3)

According to (3) and Lemma 2.4, we can get

(
HD

α
1+E

B(ln t)α
τ ,α

)
(x)

=
1

Γ (1 – α)

(

x
d

dx

)∫ x

1

(

ln
x
t

)–α

y(t)
dt
t

=
1

Γ (1 – α)

(

x
d

dx

)(
I

Γ (α)

∫ x

1

(

ln
x
t

)–α

(ln t)α–1 dt
t

+
B

Γ (2α)

∫ x

τ

(

ln
x
t

)–α

(ln t – ln τ )2α–1 dt
t

)

=
1

Γ (1 – α)

(

x
d

dx

)(

B[1 – α,α] +
B

Γ (2α)
(ln x – ln τ )B[1 – α, 2α]

)

= B
(ln x – ln τ )α–1

Γ (α)
.

(ii) When k = 2, 2τ < x ≤ 3τ , we have

y(x) = E
B(ln x)α
τ ,α = I

(ln x)α–1

Γ (α)
+ B

(ln x – ln τ )2α–1

Γ (2α)
+ B2 (ln x – ln 2τ )3α–1

Γ (3α)
. (4)
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According to (4) and Lemma 2.4, we can get

(
HD

α
1+E

B(ln t)α
τ ,α

)
(x)

=
1

Γ (1 – α)

(

x
d

dx

)(∫ 2τ

1
(ln x – ln t)–αy(t)

dt
t

+
∫ x

2τ

(ln x – ln t)–αy(t)
dt
t

)

=
1

Γ (1 – α)

(

x
d

dx

)(
I

Γ (α)

∫ x

1

(

ln
x
t

)–α

(ln t)α–1 dt
t

+
B

Γ (2α)

∫ x

τ

(ln x – ln t)–α(ln t – ln τ )2α–1 dt
t

+
B2

Γ (3α)

∫ x

2τ

(ln x – ln t)–α(ln x – ln 2τ )3α–1 dt
t

)

= B
(ln x – ln t)α–1

Γ (α)
+

B2

Γ (3α)
1

Γ (1 – α)

(

x
d

dx

)∫ x

2τ

(ln x – ln t)–α(ln x – ln 2τ )3α–1 dt
t

= B
(ln x – ln τ )α–1

Γ (α)
+ B2 (ln x – ln 2τ )2α–1

Γ (2α)
.

(iii) Assume k = n, nτ < x ≤ (n + 1)τ , the following equality holds:

(
HD

α
1+E

B(ln t)α
τ ,α

)
(x) = B

(ln x)α–1

Γ (α)
+ B2 (ln x – ln τ )2α–1

Γ (2α)
+ · · · + Bn (ln x – ln nτ )nα–1

Γ (nα)
.

For k = n + 1, (n + 1)τ < x ≤ (n + 2)τ , we can get

y(x) = E
B(ln x)α
τ ,α

= I
(ln x)α–1

Γ (α)
+ B

(ln x – ln τ )2α–1

Γ (2α)
+ · · · + Bn+1 (ln x – ln(n + 1)τ )(n+2)α–1

Γ ((n + 1)α) + α
. (5)

According to (5) and Lemma 2.4, we can get

(
HD

α
1+E

B(ln t)α
τ ,α

)
(x)

=
1

Γ (1 – α)

(

x
d

dx

)(∫ τ

1
(ln x – ln t)–αy(t)

dt
t

+
∫ 2τ

τ

(ln x – ln t)–αy(t)
dt
t

+ · · ·

+
∫ x

(n+1)τ
(ln x – ln t)–αy(t)

dt
t

)

= B
(ln x – ln τ )α–1

Γ (α)
+ B2 (ln x – ln 2τ )2α–1

Γ (2α)
+ · · · + Bn (ln x – ln nτ )nα–1

Γ (nα)

+
1

Γ (1 – α)

(

x
d

dx

)

×
(

Bn+1

Γ ((n + 1)α) + α

∫ x

nτ

(ln x – ln t)–α
(
ln x – ln(n + 1)τ

)(n+2)α–1 dt
t

)

= B
(ln x – ln τ )α–1

Γ (α)
+ B2 (ln x – ln 2τ )2α–1

Γ (2α)
+ · · · + Bn+1 (ln x – ln(n + 1)τ )(n+1)α–1

Γ ((n + 1)α)
.
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Then, for ∀k ∈ N+, kτ < x ≤ (k + 1)τ ,

(
HD

α
1+E

B(ln t)α
τ ,α

)
(x)

= B
(

(ln x – ln τ )α–1

Γ (α)
+ B

(ln x – ln 2τ )2α–1

Γ (2α)
+ · · · + Bk–1 (ln x – ln kτ )kα–1

Γ (kα)

)

= BEB(ln x–ln kτ )α
τ ,α .

The proof is completed. �

In what follows, we give the main result of this paper.

Theorem 3.2 For kτ < x ≤ (k + 1)τ , k ∈ N+, the solution y ∈ C(X, Rn) of (1) can be written
to

y(x) = E
B(ln x)α
τ ,α b +

∫ τ

1
E

B(ln x–ln s)α
τ ,α

(
HD

α
1+ϕ

)
(s)

ds
s

, (6)

where X = (kτ , (k +1)τ ]∩(1, (k +1)τ ], 0 < α < 1
n+1 or X = [kτ , (k +1)τ ]∩[1, (k +1)τ ], α ≥ 1

n+1 .

Proof Assume that Y0(x) = BEB(ln x)α
τ ,α satisfies Theorem 3.1, and the solution of (1) is given

by

y(x) = BEB(ln x)α
τ ,α C +

∫ τ

1
E

B(ln x–ln s)α
τ ,α z(s)

ds
s

, (7)

where C ∈ Rn is an unknown constant vector, z(·) is an unknown Hadamard differentiable
function. Since Y0(x) is the solution of Equation (1) and E

B(ln x)α
τ ,α = I (ln x)α–1

Γ (α) , 1 < x ≤ τ , thus
we can choose C such that (HI

1–α
1+ y)(1+) = b.

Let x → 1+, by Definition 2.3, we have E
B(– ln τ–ln s)α
τ ,α = Θ , 1 < s ≤ τ . For 1 < x ≤ τ , we

obtain

b =
(

HI
1–α
1+ y

)(
1+)

= lim
x→1+

(
HI

1–α
1+ y

)
(x)

= lim
x→1+

(
1

Γ (1 – α)

∫ x

1
(ln x – ln t)–αY0(t)C

dt
t

)

=
C

Γ (1 – α)
lim

x→1+

(∫ x

1
(ln x – ln t)–α(ln t)α–1 dt

t

)

= lim
x→1+

C = C.

It indicates that (7) has the form

y(x) = BEB(ln x)α
τ ,α b +

∫ τ

1
E

B(ln x–ln s)α
τ ,α z(s)

ds
s

.

By Definition 2.3, we divide (0, τ ] into two subintervals, we can get:
(i) For 1 < s ≤ x and 0 ≤ ln x – ln s ≤ ln x, we have

E
B(ln x–ln s)α
τ ,α = I

(ln x – ln s)α–1

Γ (α)
.
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(ii) For x < s ≤ τ and ln x– ln τ ≤ ln x– ln s ≤ 0, then E
B(– ln τ–ln s)α
τ ,α = Θ . Thus, for 1 < x ≤ τ ,

we have

ϕ(x) = I
(ln x)α–1

Γ (α)
b +

∫ τ

1
E

B(ln x–ln s)α
τ ,α z(s)

ds
s

. (8)

By calculating Hadamard type fractional order derivatives on both sides of (8), we can get

(
HD

α
1+ϕ

)
(x)

=
1

Γ (1 – α)

(

x
d

dx

)∫ x

1
(ln x – ln t)–α

(

I
(ln t)α–1

Γ (α)
ϕ(1) +

∫ x

1
I

(ln t – ln s)α–1

Γ (α)
z(s)

ds
s

)
dt
t

=
1

Γ (1 – α)

(

x
d

dx

)∫ x

1

z(s)
Γ (α)

(∫ x

s
(ln x – ln t)–α(ln t – ln s)α–1 dt

t

)
ds
s

= x
d

dx

∫ x

–τ

z(s)
ds
s

= z(s).

The proof is completed. �

To end this paper, we give an example to illustrate the above theoretical result.
Let α = 0.3, τ = 1.2, k∗ = 4. Consider

⎧
⎪⎪⎨

⎪⎪⎩

(HD
0.3
1+ y)(x) = By(x – 1.2), x ∈ (1.2, 6], τ > 0,

y(x) = (0.1, 0.2), 1 < x ≤ 1.2,

(HI
0.7
1+ y)(1+) = b,

(9)

where y(x) = (y1(x), y2(x))T , b = (1, 2)T , and

B =

(
2 1
3 5

)

.

By Theorem 3.2, for every x ∈ (1.2k, 1.2(k + 1)], k = {0, 1, 2, 3, 4}, the solution of (9) can be
represented by

y(x) = E
B(ln x)α
1,2,0.3 b +

∫ 1.2

1
E

B(ln x–ln s)0.3

1,2,0.3
(

HD
0.3
1+ ϕ

)
(s)

ds
s

,

where

E
B(ln x)α
1,2,0.3 b =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, –∞ < x ≤ 1,

I (ln x)–0.7

Γ (0.3) (1, 2)T , 1 < x ≤ 1.2,

(I (ln x)–0.7

Γ (0.3) + B (ln x–ln 1.2)–0.4

Γ (0.6) )(1, 2)T , 1.2 < x ≤ 2.4,

(I (ln x)–0.7

Γ (0.3) + B (ln x–ln 1.2)–0.4

Γ (0.6) + B2 (ln x–ln 2.4)–0.1

Γ (0.9) )(1, 2)T , 2.4 < x ≤ 3.6,

(I (ln x)–0.7

Γ (0.3) + B (ln x–ln 1.2)–0.4

Γ (0.6) + B2 (ln x–ln 2.4)–0.1

Γ (0.9)

+ B3 (ln x–ln 3.6)0.2

Γ (1.2) )(1, 2)T , 3.6 < x ≤ 4.8,

(I (ln x)–0.7

Γ (0.3) + B (ln x–ln 1.2)–0.4

Γ (0.6) + B2 (ln x–ln 2.4)–0.1

Γ (0.9)

+ B3 (ln x–ln 3.6)0.2

Γ (1.2) + B3 (ln x–ln 3.6)0.5

Γ (1.5) )(1, 2)T , 4.8 < x ≤ 6.



Yang et al. Advances in Difference Equations        (2019) 2019:300 Page 7 of 7

Acknowledgements
The authors acknowledge the support by the National Natural Science Foundation of China (11661016; 11271309).

Funding
This work is partially supported by the National Natural Science Foundation of China (11661016; 11271309).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors read and approved the final manuscript.

Author details
1Department of Mathematics, Guizhou University, Guiyang, P.R. China. 2School of Mathematical Sciences, Qufu Normal
University, Qufu, China. 3Department of Mathematics, Xiangtan University, Xiangtan, P.R. China. 4Nonlinear Analysis and
Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 28 March 2019 Accepted: 16 July 2019

References
1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier,

Amsterdam (2006)
2. Zhu, B., Liu, L., Wu, Y.: Local and global existence of mild solutions for a class of nonlinear fractional reaction–diffusion

equation with delay. Appl. Math. Lett. 61, 73–79 (2016)
3. Wang, Y., Liu, L., Wu, Y.: Positive solutions for a nonlocal fractional differential equation. Nonlinear Anal. 74, 3599–3605

(2011)
4. Zhang, X., Liu, L., Wu, Y.: Existence results for multiple positive solutions of nonlinear higher order perturbed fractional

differential equations with derivatives. Appl. Math. Comput. 219, 1420–1433 (2012)
5. Wang, Y., Liu, L., Zhang, X., Wu, Y.: Positive solutions of a fractional semipositone differential system arising from the

study of HIV infection models. Appl. Math. Comput. 258, 312–324 (2015)
6. Zhang, X., Liu, L., Wu, Y.: Variational structure and multiple solutions for a fractional advection–dispersion equation.

Comput. Math. Appl. 68, 1794–1805 (2014)
7. Zhang, X., Mao, C., Liu, L., Wu, Y.: Exact iterative solution for an abstract fractional dynamic system model for

bioprocess. Qual. Theory Dyn. Syst. 16, 205–222 (2017)
8. Zhang, X., Liu, L., Wu, Y., Wiwatanapataphee, B.: Nontrivial solutions for a fractional advection dispersion equation in

anomalous diffusion. Appl. Math. Lett. 66, 1–8 (2017)
9. Jiang, J., Liu, L., Wu, Y.: Multiple positive solutions of singular fractional differential system involving Stieltjes integral

conditions. Electron. J. Qual. Theory Differ. Equ. 2012, 43 (2012)
10. Klimek, M.: Sequential fractional differential equations with Hadamard derivative. Commun. Nonlinear Sci. Numer.

Simul. 16, 4689–4697 (2011)
11. Ma, Q., Wang, R., Wang, J., Ma, Y.: Qualitative analysis for solutions of a certain more generalized two-dimensional

fractional differential system with Hadamard derivative. Appl. Math. Comput. 257, 436–445 (2014)
12. Khusainov, D.Y., Shuklin, G.V.: Linear autonomous time-delay system with permutation matrices solving. Stud. Univ.

Žilina Math. Ser. 17, 101–108 (2003)
13. Diblík, J., Khusainov, D.Y.: Representation of solutions of discrete delayed system x(k + 1) = Ax(k) + Bx(k –m) + f (k) with

commutative matrices. J. Math. Anal. Appl. 318, 63–76 (2006)
14. Diblík, J., Khusainov, D.Y.: Representation of solutions of linear discrete systems with constant coefficients and pure

delay. Adv. Differ. Equ. 2006, Article ID 80825 (2006)
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