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Abstract
In this article, we study the existence of positive solutions to a class of two-term
fractional nonlocal boundary value problems. The existence and multiplicity of
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1 Introduction
In this paper, we consider the following two-term fractional differential equation bound-
ary value problems:

⎧
⎨

⎩

–Dα
0+u(t) + bu(t) = f (t, u(t)), 0 < t < 1,

u(0) = 0, u(1) =
∑m–2

i=1 ηiu(ξi),
(1.1)

where Dα
0+ is the standard Riemann–Liouville derivative, 1 < α ≤ 2, b > 0, ηi > 0, 0 < ξ1 <

· · · < ξm–2 < 1,
∑m–2

i=1 ηiξ
α–1
i ≤ 1, f : (0, 1) × (0, +∞) → [0, +∞) is continuous and may be

singular at t = 0, 1 and x = 0.
Fractional differential equation boundary value problems (FBVPs) have attracted a great

deal of attention during the past decades. The literature on boundary value problems of
fractional differential equations is now much enriched (see [1–19]). Multi-term fractional
differential equations appear in the mathematical models of many real world problems.
For example, multi-term fractional differential equations have been used to model vari-
ous types of visco-elastic damping ([20–22]). In [20], the authors introduced the Bagley–
Torvik equation:

a1D2x(t) + a2D
3
2 x(t) + a3x(t) = f (t),

to describe model for the motion of thin plate in Newtonian fluid. In [22], the authors
investigated the endolymph equation:

D2x(t) + a1Dx(t) + a2D
1
2 x(t) + a3x(t) = –g(t),
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which can be used to describe model for the response of the semicircular canals to the an-
gular acceleration. The existing literature on multi-term fractional differential equations
equipped with initial conditions is quite wide. However, the boundary value problems of
multi-term fractional differential equations needs to be investigated. For some recent de-
velopments on Caputo type multi-term FBVPs, we mention the papers [23, 24] and the
references cited therein.

In [9], by using the technique of [25], we rewrite the original resonant problems as an
equivalent non-resonant two-term FBVPs. Combining with the properties of the Green’s
function we derived, the existence and uniqueness results of positive solutions are ob-
tained by using of the fixed point index theory and iterative technique. It is well known
that the suitable cone plays an important role in seeking positive solutions, which is usu-
ally depended on the positive properties of the Green function. However, there are much
more difficulties in dealing with the Green functions of fractional-order boundary value
problems than ordinary-order problems, especially for the case that 1 < α < 2. In [26], we
established some new positive properties of the Green function for a class of two-term
fractional differential equation with Dirichlet-type boundary value conditions. It should
be noted that the properties of the Green function derived in [9] is not suitable for some
methods of nonlinear analysis to be used. By employing height functions of the nonlin-
ear term on special bounded sets together with Leggett–Williams and Krasnosel’skii fixed
point theorems, Zhang and Zhong [27] established the existence of triple positive solu-
tions for a class of fractional differential equations with integral conditions.

Motivated by the above work, in this paper we aim to establish the existence of positive
solutions to the FBVP (1.1). Our work presented in this paper has the following features.
Firstly, we consider few cases of Riemann–Liouville type two-term FBVPs which has been
studied before. Secondly, some new properties of the Green function for the case that
1 < α < 2 have been discovered to deal with the difficulties related to the Green function
for this case. Thirdly, the FBVP (1.1) possesses a singularity, that is, f (t, x) may be singular
at t = 0, 1 and x = 0.

2 Basic definitions and preliminaries
For the convenience of the reader, we present some preliminaries and lemmas.

Definition 2.1 ([28]) The fractional integral of order α > 0 of a function u : (0, +∞) → R
is given by

Iα
0+u(t) =

1
Γ (α)

∫ t

0
(t – s)α–1u(s) ds

provided that the right-hand side is point-wise defined on (0, +∞).

Definition 2.2 ([28]) The Riemann–Liouville fractional derivative of order α > 0 of a
function u : (0, +∞) → R is given by

Dα
0+u(t) =

1
Γ (n – α)

(
d
dt

)n ∫ t

0
(t – s)n–α–1u(s) ds,

where n = [α] + 1, [α] denotes the integer part of number α, provided that the right-hand
side is point-wise defined on (0, +∞).
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In [9], we have proved that the function

g(t) =:
α – 2

Γ (α – 1)
+

+∞∑

k=1

tk

Γ ((k + 1)α – 2)
,

has a unique positive root b∗. Throughout this paper, we assume that the following con-
ditions hold:

(A1) b ∈ (0, b∗] is a constant.
(A2) f : (0, 1) × (0, +∞) → [0, +∞) is continuous. In addition, for any R ≥ r > 0, there

exists Ψr,R ∈ L1[0, 1] ∩ C(0, 1) such that

f (t, x) ≤ Ψr,R(t), ∀t ∈ (0, 1), x ∈ [
rtα–1, R

]
.

Lemma 2.1 The unique solution of the problem
⎧
⎨

⎩

–Dα
0+u(t) + bu(t) = y(t), 0 < t < 1,

u(0) = 0, u(1) =
∑m–2

i=1 ηiu(ξi),

can be expressed by

u(t) =
∫ 1

0
K(t, s)y(s) ds,

where

K(t, s) = K1(t, s) + tα–1Eα,α
(
btα

)
q(s),

q(s) =
∑m–2

i=1 ηiK1(ξi, s)
Eα,α(b) –

∑m–2
i=1 ηiξ

α–1
i Eα,α(bξα

i )
,

K1(t, s) =

⎧
⎪⎪⎨

⎪⎪⎩

(t–ts)α–1Eα,α (btα )Eα,α (b(1–s)α )
Eα,α (b) , 0 ≤ t ≤ s ≤ 1,

(t–ts)α–1Eα,α (btα )Eα,α (b(1–s)α )
Eα,α (b)

– (t–s)α–1Eα,α (b(t–s)α )Eα,α (b)
Eα,α (b) , 0 ≤ s ≤ t ≤ 1,

here

Eα,α(x) =
+∞∑

k=0

xk

Γ ((k + 1)α)

is the Mittag-Leffler function.

Proof Noticing that ηi > 0, 0 < ξi < 1 and
∑m–2

i=1 ηiξ
α–1
i ≤ 1, we have

Eα,α(b) –
m–2∑

i=1

ηiξ
α–1
i Eα,α

(
bξα

i
)

=
+∞∑

k=0

bk[1 –
∑m–2

i=1 ηiξ
(k+1)α–1
i ]

Γ ((k + 1)α)

≥
+∞∑

k=0

bk ∑m–2
i=1 ηiξ

α–1
i (1 – ξ kα

i )
Γ ((k + 1)α)

> 0.

The proof is similar to Lemma 2.1 in [9], we omit it here. �
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Lemma 2.2 The function K (t, s) satisfies the following properties:
(1) K(t, s) > 0, ∀t, s ∈ (0, 1);
(2) h2(s)tα–1 ≤ K(t, s) ≤ h1(s)tα–1, ∀t, s ∈ [0, 1], where

h1(s) = (1 – s)α–1Eα,α
(
b(1 – s)α

)
+ Eα,α(b)q(s), h2(s) =

q(s)
Γ (α)

.

Proof The proof is similar to Lemma 2.2 in [9], we omit it here. �

Lemma 2.3 ([26]) The function K1(t, s) has the following properties:
(1) K1(t, s) > 0, ∀t, s ∈ (0, 1);
(2) K1(t, s) = K1(1 – s, 1 – t), ∀t, s ∈ [0, 1];
(3) K1(t, s) ≤ Eα,α(b)s(1 – s)α–1tα–2, ∀s ∈ [0, 1], t ∈ (0, 1];
(4) K1(t, s) ≥ M1s(1 – s)α–1(1 – t)tα–1, ∀t, s ∈ [0, 1], where

M1 = min

{
1

[Γ (α)]2Eα,α(b)
, (α – 1)2Eα,α(b)

}

.

Lemma 2.4 The function K (t, s) has the following properties:
(1) K(t, s) ≤ tα–2Eα,α(b)[s(1 – s)α–1 + q(s)], ∀s ∈ [0, 1], t ∈ (0, 1];
(2) K(t, s) ≥ Mtα–1[s(1 – s)α–1 + q(s)], ∀t, s ∈ [0, 1], where

M = min

{
1

2Γ (α)
, M1,

M1

2Γ (α)
×

∑m–2
i=1 ηiξ

α–1
i –

∑m–2
i=1 ηiξ

α
i

Eα,α(b) –
∑m–2

i=1 ηiξ
α–1
i Eα,α(bξα

i )

}

.

Proof From (3) of Lemma 2.3, we have

K(t, s) = K1(t, s) + tα–1Eα,α
(
btα

)
q(s)

≤ tα–2Eα,α(b)s(1 – s)α–1 + tα–1Eα,α(b)q(s)

≤ tα–2Eα,α(b)
[
s(1 – s)α–1 + q(s)

]
.

Therefore (1) holds.
On the other hand, it follows from (4) of Lemma 2.3 that

q(s) =
∑m–2

i=1 ηiK1(ξi, s)
Eα,α(b) –

∑m–2
i=1 ηiξ

α–1
i Eα,α(bξα

i )

≥
∑m–2

i=1 ηi(1 – ξi)ξα–1
i

Eα,α(b) –
∑m–2

i=1 ηiξ
α–1
i Eα,α(bξα

i )
M1s(1 – s)α–1

=
∑m–2

i=1 ηiξ
α–1
i –

∑m–2
i=1 ηiξ

α
i

Eα,α(b) –
∑m–2

i=1 ηiξ
α–1
i Eα,α(bξα

i )
M1s(1 – s)α–1. (2.1)

Denote

M2 = min

{
M1

2Γ (α)
×

∑m–2
i=1 ηiξ

α–1
i –

∑m–2
i=1 ηiξ

α
i

Eα,α(b) –
∑m–2

i=1 ηiξ
α–1
i Eα,α(bξα

i )
, M1

}

. (2.2)
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From (2.1) and (2.2), one has

tα–1

2Γ (α)
q(s) – M2s(1 – s)α–1tα ≥ tα–1

2Γ (α)
q(s) – M2s(1 – s)α–1tα–1 ≥ 0.

Then

K(t, s) = K1(t, s) + tα–1Eα,α
(
btα

)
q(s)

≥ M1s(1 – s)α–1(1 – t)tα–1 + tα–1Eα,α
(
btα

)
q(s)

≥ M1s(1 – s)α–1(1 – t)tα–1 + tα–1 1
Γ (α)

q(s)

≥ M2s(1 – s)α–1(1 – t)tα–1 +
tα–1

Γ (α)
q(s)

= M2s(1 – s)α–1tα–1 +
tα–1

2Γ (α)
q(s) +

tα–1

2Γ (α)
q(s) – M2s(1 – s)α–1tα

≥ M2s(1 – s)α–1tα–1 +
tα–1

2Γ (α)
q(s)

≥ min

{
1

2Γ (α)
, M2

}

tα–1[s(1 – s)α–1 + q(s)
]

= Mtα–1[s(1 – s)α–1 + q(s)
]
.

So (2) holds. �

By Lemma 2.2 and Lemma 2.4, we have the following lemma.

Lemma 2.5 The function K∗(t, s) =: t2–αK(t, s) satisfies:
(1) K∗(t, s) > 0, ∀t, s ∈ (0, 1);
(2) K∗(t, s) ≤ h1(s)t, ∀t, s ∈ [0, 1];
(3) K∗(t, s) ≤ Eα,α(b)[s(1 – s)α–1 + q(s)], ∀s ∈ [0, 1], t ∈ (0, 1];
(4) K∗(t, s) ≥ Mt[s(1 – s)α–1 + q(s)], ∀t, s ∈ [0, 1].

Let E = C[0, 1] be endowed with the maximum norm ‖u‖ = max0≤t≤1 |u(t)|, θ is the zero
element of E, Br = {u ∈ E : ‖u‖ < r}. Define a cone P by

P =
{

u ∈ E : ∃lu > 0, such that lut ≥ u(t) ≥ M‖u‖
Eα,α(b)

t, t ∈ [0, 1]
}

.

Define the height functions as follows:

ψ(t, r) = min

{

f
(
t, tα–2x

)
:

Mr
Eα,α(b)

t ≤ x ≤ r
}

;

Ψ (t, r) = max

{

f
(
t, tα–2x

)
:

Mr
Eα,α(b)

t ≤ x ≤ r
}

.

For convenience, we list here some assumptions to be used later:
(H1) there exist r1 > 0 and a nonnegative function b1 ∈ L1[0, 1] with

∫ 1
0 b1(s) ds > 0, such

that

f
(
t, tα–2x

) ≥ b1(t)x, ∀(t, x) ∈ (0, 1) × (0, r1];
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(H2) there exist r2 > 0 and a nonnegative function b2 ∈ L1[0, 1] with
∫ 1

0 b2(s) ds > 0, such
that

f
(
t, tα–2x

) ≤ b2(t)x, ∀(t, x) ∈ (0, 1) × [r2, +∞);

(H3) there exists r3 > 0 such that

∫ 1

0

[
s(1 – s)α–1 + q(s)

]
ψ(t, r3) >

r3

M
;

(H4) there exist r4 > 0 such that

∫ 1

0

[
s(1 – s)α–1 + q(s)

]
Ψ (t, r4) <

r4

Eα,α(b)
.

Define operators A, L1 and L2 as follows:

A(u)(t) =
∫ 1

0
K∗(t, s)f

(
s, sα–2u(s)

)
ds,

Liu(t) =
∫ 1

0
K∗(t, s)bi(s)u(s) ds, i = 1, 2.

Lemma 2.6 For any r > 0, A : P \ Br → P is completely continuous.

Proof The proof is similar to Lemma 2.3 in [13], we omit it here. �

By the extension theorem of a completely continuous operator (see Theorem 2.7 of [29]),
for any r > 0, there exists an extension operator Ã : P → P, which is still completely contin-
uous. Without loss of the generality, we still write it as A. By virtue of the Krein–Rutmann
theorem and Lemma 2.5, we have the following lemma.

Lemma 2.7 Li : P → P (i = 1, 2) are completely continuous linear operator. Moreover, the
spectral radius r(Li) > 0 and Li has a positive eigenfunction ϕi corresponding to its first
eigenvalue (r(Li))–1, that is, Liϕi = r(Li)ϕi.

Lemma 2.8 ([29]) Let P be a cone in a Banach space E, and Ω be a bounded open set in E.
Suppose that A : Ω ∩ P → P is a completely continuous operator. If there exists u0 ∈ P with
u0 �= θ such that

u – Au �= λu0, ∀λ ≥ 0, x ∈ ∂Ω ∩ P,

then i(A,Ω ∩ P, P) = 0.

Lemma 2.9 ([29]) Let P be a cone in a Banach space E, and Ω be a bounded open set in
E. Suppose that A : Ω ∩ P → P is a completely continuous operator. If

Au �= λu, ∀λ ≥ 1, u ∈ ∂Ω ∩ P,

then i(A,Ω ∩ P, P) = 1.
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Lemma 2.10 ([29]) Let P be a cone in a Banach space E, and Ω be a bounded open set
in E. Suppose that A : Ω ∩ P → P is a completely continuous operator. If

inf
u∈∂Ω∩P

‖Au‖ > 0,

Au �= λu, ∀λ ∈ (0, 1], u ∈ ∂Ω ∩ P,

then i(A,Ω ∩ P, P) = 0.

3 Main results
Theorem 3.1 Assume that there exist r2 > r1 > 0 such that (H1) and (H2) hold, and

0 < r(L2) < 1 ≤ r(L1).

Then FBVP (1.1) has at least one positive solution.

Proof For any u ∈ ∂Br1 ∩ P, it follows from (H1) that

Au(t) =
∫ 1

0
K∗(t, s)f

(
s, sα–2u(s)

)
ds ≥

∫ 1

0
K∗(t, s)b1(s)u(s) ds = L1u(t).

Suppose that A has no fixed points on ∂Br1 ∩ P (otherwise, the proof is finished). In the
following, we will show that

u – Au �= μϕ1, ∀u ∈ ∂Br1 ∩ P,μ > 0, (3.1)

in which ϕ1 is the positive eigenfunction of L1 satisfying L1ϕ1 = r(L1)ϕ1. If otherwise, there
exist μ0 > 0 and u1 ∈ ∂Br1 ∩ P such that

u1 – Au1 = μ0ϕ1.

Therefore,

u1 = Au1 + μ0ϕ1 ≥ μ0ϕ1.

Set

μ∗ = sup{μ : u1 ≥ μϕ1}.

It is clear that μ∗ ≥ μ0, and u1 ≥ μ∗ϕ1. Since L1 is nondecreasing linear operator, one has

L1u1 ≥ μ∗L1ϕ1 = μ∗r(L1)ϕ1 ≥ μ∗ϕ1.

Then

u1 = Au1 + μ0ϕ1 ≥ L1u1 + μ0ϕ1 ≥ (
μ∗ + μ0

)
ϕ1,
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which contradicts the definition of μ∗. So (3.1) holds. It follows from Lemma 2.8 that

i(A, Br1 ∩ P, P) = 0. (3.2)

Denote

W = {u ∈ P\Br1 | u = μAu, 0 ≤ μ ≤ 1}.

Next, we will prove that W is bounded.
For any u ∈ W , one has

f
(
t, tα–2u(t)

) ≤ b2(t)u(t) + f
(
t, tα–2ũ(t)

)
,

in which ũ(t) = min{u(t), r2}. It is easy to see that

Mr1

Eα,α(b)
t ≤ ũ(t) ≤ u(t) ≤ lut.

Therefore,

lu ≥ lutα–1 ≥ tα–2ũ(t) ≥ Mr1

Eα,α(b)
tα–1 =: r0tα–1.

Then

u(t) = μAu(t) ≤ Au(t) ≤ L2u(t) + Aũ(t) ≤ L2u(t) + M3,

here

M3 =
∫ 1

0
h1(s)Ψr0,lu (s) ds.

Then

(I – L2)u(t) ≤ M3, t ∈ [0, 1]. (3.3)

By r(L2) < 1, the inverse operator of (I – L2) can be expressed by

(I – L2)–1 = I + L2 + L2
2 + · · · + Ln

2 + · · · .

Therefore, (3.3) yields u(t) ≤ (I – L2)–1M3 ≤ M3‖(I – L2)–1‖, t ∈ [0, 1], so W is bounded.
Choose R > max{r2, M3‖(I – L2)–1‖}. From Lemma 2.9, one has

i(A, BR ∩ P, P) = 1. (3.4)

It follows from (3.2) and (3.4) that

i
(
A, (BR\B̄r1 ) ∩ P, P

)
= i(A, BR ∩ P, P) – i(A, Br1 ∩ P, P) = 1.
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Then A has a fixed point u∗ ∈ (BR\B̄r1 ) ∩ P, that is,

u∗(t) = Au∗(t) =
∫ 1

0
K∗(t, s)f

(
s, sα–2u∗(s)

)
ds.

It is easy to check that tα–2u∗(t) is a positive solution of FBVP (1.1). �

Theorem 3.2 Assume that there exist r4 > r3 > 0 such that (H3) and (H4) hold. Then FBVP
(1.1) has at least one positive solution.

Proof For any u ∈ ∂Br3 ∩ P, it follows from (H3) and Lemma 2.5 that

Au ≥ Mt
∫ 1

0

[
s(1 – s)α–1 + q(s)

]
f
(
s, sα–2u(s)

)
ds

≥ Mt
∫ 1

0

[
s(1 – s)α–1 + q(s)

]
ψ(t, r3) ds > r3t. (3.5)

Therefore,

inf
u∈∂Br3 ∩P

‖Au‖ ≥ r3 > 0.

∀λ ∈ (0, 1], u ∈ ∂Br3 ∩ P, we have λu ≤ u ≤ r3. This with (3.5) implies

Au �= λu, ∀λ ∈ (0, 1], u ∈ ∂Br3 ∩ P.

It follows from Lemma 2.10 that

i(A, Br3 ∩ P, P) = 0. (3.6)

Next, we prove that

Au �= μu, ∀u ∈ ∂Br4 ∩ P,μ ≥ 1.

If otherwise, there exists u1 ∈ ∂Br4 ∩ P, μ0 ≥ 1 such that Au1 = μ0u1. From (H4) and
Lemma 2.5, we have

u1 ≤ μ0u1 = Au1 ≤ Eα,α(b)
∫ 1

0

[
s(1 – s)α–1 + q(s)

]
f
(
s, sα–2u1(s)

)
ds

≤ Eα,α(b)
∫ 1

0

[
s(1 – s)α–1 + q(s)

]
ψ(t, r4) ds < r4,

which contradicts ‖u1‖ = r4. Then, by Lemma 2.9, we have

i(A, Br4 ∩ P, P) = 1. (3.7)

Equations (3.6) and (3.7) yield

i
(
A, (Br4\B̄r3 ) ∩ P, P

)
= i(A, Br4 ∩ P, P) – i(A, Br3 ∩ P, P) = 1.
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Then A has a fixed point u∗ ∈ (BR\B̄r1 )∩P. Clearly, tα–2u∗(t) is a positive solution of FBVP
(1.1). �

Theorem 3.3 Assume that there exist r3 > r4 > r1 > 0 such that (H1), (H3) and (H4) hold
with r(L1) ≥ 1. Then FBVP (1.1) has at least two positive solutions.

Proof Suppose that ∃r′
1 ∈ (0, r1) such that A has no fixed points on ∂Br′1 ∩ P (otherwise,

the proof is finished). By the proof of Theorem 3.1 and Theorem 3.2, we have

i(A, Br′1 ∩ P, P) = 0, i(A, Br4 ∩ P, P) = 1, i(A, Br3 ∩ Q, Q) = 0.

Therefore,

i
(
A, (Br4\B̄r′1 ) ∩ P, P

)
= i(A, Br4 ∩ P, P) – i(A, Br′1 ∩ P, P) = 1,

i
(
A, (Br3\B̄r4 ) ∩ P, P

)
= i(A, Br3 ∩ P, P) – i(A, Br4 ∩ P, P) = –1.

Then FBVP (1.1) has at least two positive solutions. �

Theorem 3.4 Assume that there exist r2 > r3 > r4 > r1 > 0 such that (H1)–(H4) hold with
r(L1) ≥ 1 > r(L2) > 0. Then FBVP (1.1) has at least three positive solutions.

Proof By Theorem 3.3 and (3.4), we get

i(A, Br′1 ∩ P, P) = 0, i(A, Br4 ∩ P, P) = 1,

i(A, Br3 ∩ Q, Q) = 0, i(A, BR ∩ P, P) = 1.

Therefore,

i
(
A, (Br4\B̄r′1 ) ∩ P, P

)
= i(A, Br4 ∩ P, P) – i(A, Br′1 ∩ P, P) = 1,

i
(
A, (Br3\B̄r4 ) ∩ P, P

)
= i(A, Br3 ∩ P, P) – i(A, Br4 ∩ P, P) = –1,

i
(
A, (BR\B̄r3 ) ∩ P, P

)
= i(A, BR ∩ P, P) – i(A, Br3 ∩ P, P) = 1.

Then FBVP (1.1) has at least three positive solutions. �

4 Example
Example 4.1 Consider the following problem:

⎧
⎨

⎩

–D
3
2
0+u(t) + 1

5 u(t) = f (t, u(t)), 0 < t < 1,

u(0) = 0, u(1) = 3u( 1
9 ),

(4.1)

where

f (t, x) =
(t – 1

2 )2
√

t(1 – t)
[
x

1
2 + x– 1

2
]
.
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For any t ∈ [0, +∞), noticing the function Γ (·) is strictly increasing on [2, +∞), we have

g(t) = –
1

2
√

π
+ t +

+∞∑

k=2

tk

Γ ( 3
2 k – 1

2 )

≤ –
1

2
√

π
+ t +

+∞∑

k=2

tk

Γ (k)
= –

1
2
√

π
+ t

[

1 +
+∞∑

k=1

tk

k!

]

= –
1

2
√

π
+ tet .

Therefore g( 1
5 ) ≤ – 1

2
√

π
+ 1

5 e
1
5 ≈ –0.282 + 0.243 = –0.039 < 0, which implies 1

5 < b∗.
For any R ≥ r > 0, ∀t ∈ (0, 1), x ∈ [r

√
t, R], we have

f (t, x) ≤ (t – 1
2 )2

√
t(1 – t)

[√
R + r– 1

2 t– 1
4
]
.

It is clear that

f
(
t, t– 1

2 x
)

=
(t – 1

2 )2
√

t(1 – t)
[
t– 1

4 x
1
2 + t

1
4 x– 1

2
]
, ∀(t, x) ∈ (0, 1) × (0, +∞).

Therefore, we have

f
(
t, t– 1

2 x
) ≥ (1 – t)– 1

2

(

t –
1
2

)2

t– 1
4 x– 1

2 , ∀(t, x) ∈ (0, 1) × (0, 1];

f
(
t, t– 1

2 x
) ≤ (t – 1

2 )2
√

t(1 – t)
[
t– 1

4 + t
1
4
]
x

1
2 , ∀(t, x) ∈ (0, 1) × [1, +∞).

Denote

b3(t) = (1 – t)– 1
2

(

t –
1
2

)2

t– 1
4 , b4(t) =

(t – 1
2 )2

√
t(1 – t)

(
t– 1

4 + t
1
4
)
.

Let

L3u(t) =
∫ 1

0
K∗(t, s)b3(s)u(s) ds,

L4u(t) =
∫ 1

0
K∗(t, s)b4(s)u(s) ds.

It follows from Lemma 2.7 that r(L3), r(L4) > 0.
Set

r1 = min
{[

r(L3)
] 2

3 , 1
}

, r2 = 1 +
[
r(L4)

]2,

and

b1(t) = r– 3
2

1 b3(t), b2(t) = r– 1
2

2 b4(t).
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Then

f
(
t, t– 1

2 x
) ≥ b1(t)x, ∀(t, x) ∈ (0, 1) × (

0, r1];

f
(
t, t– 1

2 x
) ≤ b2(t)x, ∀(t, x) ∈ (0, 1) × [r2, +∞)

.

It is easy to see that

r(L1) = r– 3
2

1 r(L3) ≥ 1,

0 < r(L2) = r– 1
2

2 r(L4) < 1.

So the assumptions of Theorem 3.1 are satisfied. Thus Theorem 3.1 ensures that FBVP
(4.1) has at least one positive solution.

5 Conclusions
In this article, we consider a class of Riemann–Liouville type two-term fractional nonlocal
boundary value problems for the case that 1 < α < 2. Some new properties of the Green
function have been discovered to construct an exact cone. By using fixed point index the-
ory on the exact cone, the existence and multiplicity of positive solutions are established.
The nonlinearity f (t, x) permits a singularity at t = 0, 1 and x = 0.
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