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Abstract
Environmental fluctuations and toxin-producing phytoplankton are crucial factors
affecting marine ecosystems. In this paper, we propose a stochastic
phytoplankton-toxin phytoplankton–zooplankton model to study the effect of
environmental fluctuations on extinction and persistence of the population. The
results show that large environmental fluctuations may lead to the extinction of the
population, and small environmental fluctuation can keep population weakly
persistent in the mean. We also find that the noise-induced extinction of one
phytoplankton population may lead to the density increase of the other
phytoplankton population in two competitive phytoplankton populations. By
constructing appropriate Lyapunov functions, we obtain the sufficient conditions for
the existence of an ergodic stationary distribution of the model. Finally, numerical
simulations are carried out to support our main results.

Keywords: Toxin-producing phytoplankton; Phytoplankton–zooplankton; Stationary
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1 Introduction
Plankton includes plants and animals that float along at the mercy of the sea’s tides and
currents. There are two main types of plankton, phytoplankton and zooplankton. Phy-
toplankton include microscopic organisms such as diatoms and dinoflagellates as well as
blue-green algae. Zooplankton depends on the phytoplankton and other particulate mat-
ter that is found in the water for food. Phytoplankton is the chief source of food for the
zooplankton. The significance of plankton for the wealth of the ocean ecosystems and
ultimately for the planet itself is nowadays widely recognized. Therefore, many scholars
have studied models of plankton [1, 2]. Caraballo et al. [1] considered a model in which
one predator (zooplankton) has two preys of different sizes (phytoplankton). The authors
first proved the existence of a global pullback attractor and then estimated the fractal di-
mension of the attractor by using Leonov’s theorem and constructing a proper Lyapunov
function. In addition, many science researcher have devoted their efforts to investigating
plankton dynamics through laboratory experiments and field studies. The studies show
that many types of phytoplankton can release toxic chemicals, which have an important
effect on plankton; see [3–8] and the references therein. Mathematical modeling is an
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important tool to study plankton dynamics and to understand the various mechanisms
involved in toxin-producing phytoplankton [9, 10]. For example, Chattopadhayay et al.
[6] using field studies and mathematical models confirmed that toxin-producing plank-
ton may act as a biological control for planktonic blooms. Turner and Tester [7] revealed
that the interplay between toxic phytoplankton and the zooplankton grazing on them
gives rise to various situations, since, in some cases, the toxic phytoplankton does not
cause any harm, but in other cases it causes serious damage if grazed. Therefore, the study
of the toxin-producing phytoplankton population is an interesting and important topic
in marine ecology. Mukhopadhyay et al. [11] investigated a nutrient-plankton model in
an aquatic environment in the context of phytoplankton bloom and they observed that
the zooplankton populations try to avoid the areas where toxin-producing phytoplankton
density is high. Jin and Ma [12] considered the two plankton species having competitive
and allelopathic effects on each other. In particular, Banerjee and Venturino [13] proposed
the following model:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dΠ1
dτ

= ρ1Π1(1 – Π1
K1

) – ãΠ1Π2 – α1Π1ζ ,
dΠ2
dτ

= ρ2Π2(1 – Π2
K2

) – b̃Π1Π2 – α2Π2ζ

β2+Π2
2

,
dζ

dτ
= e1α1Π1ζ – e2α2Π2ζ

β2+Π2
2

– μζ .

(1.1)

Here Π1, Π2 and ζ , respectively, denote the phytoplankton, toxin-producing phyto-
plankton and zooplankton populations. ρi denotes the growth rate of species i (i = 1, 2),
Ki is the environmental carry capacity of species i (i = 1, 2), ã represents the action of the
second population upon the growth rate of the first population, b̃ stands for the action
of the first population upon the growth rate of the second population, α1 is the capture
rate, α2Π2

β2+Π2
2

is the Monod–Haldane function, which represents zooplankton populations
consuming the toxic-phytoplankton populations, e1 denotes the nutrition conversion rate
for the Π1 to the ζ , e2 represents the effect of consuming Π2 on ζ , μ is the death rate of
the zooplankton population. All parameters are assumed to be nonnegative and constant
in time. And we assume that the zooplankton is able to recognize the two phytoplank-
ton populations and when the toxic phytoplankton is ingested too much, and it will kill
too much zooplankton; then the latter will decrease its consumption. This is modeled via a
Monod–Haldane type functional response α2Π2

β2+Π2
2

[14], which increases to a maximum and
then decreases again for larger values of the toxin-producing phytoplankton population.
For more information, see Ref. [13] and the references therein.

Model (1.1) can be simplified to a dimensionless form with a reduced number of param-
eters by means of the transformation P(t) = K1Π1(t), T(t) =

√
β2Π2(t), Z(t) = e2

√
β2ζ (t),

t = τ

e2α2β2
√

β2
, then we obtain the following system:

⎧
⎪⎪⎨

⎪⎪⎩

dP(t)
dt = r1P(t)(1 – P(t)) – aP(t)T(t) – cP(t)Z(t),

dT(t)
dt = r2T(t)(1 – T(t)

H ) – bP(t)T(t) – T(t)Z(t)
1+T2(t) ,

dZ(t)
dt = eP(t)Z(t) – T(t)Z(t)

1+T2(t) – mZ(t).

(1.2)

Here

r1 =
ρ1

e2α2β2
√

β2
, r2 =

ρ2

e2α2β2
√

β2
, H =

K2√
β2

, b =
b̃K1

α2β2
√

β2e2
,
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a =
ã

α2β2e2
, c =

α1

α2β2
, e =

e1K1α1

e2α2β2
√

β2
, m =

μ

e2α2β2
√

β2
,

are positive constants.
It is well known that environmental fluctuation plays an important role in the study

of ecosystems. Therefore, many authors have introduced stochastic white noise into de-
terministic models to describe the effect of random noise [15–27]. For example, Han et
al. [16] obtained two systems admitting a unique random attractor under some condi-
tions. They also obtained conditions under which coexistence of species exists for the
random system. Yuan et al. [19] considered a nutrient-phytoplankton model with toxin-
producing phytoplankton under environmental fluctuations. The obtained results sug-
gested that toxin-producing phytoplankton and environmental fluctuations play a key role
in the termination of algal blooms. Colucci et al. [20] studied semi-Kolmogorov models
for plankton. For the random semi-Kolmogorov system they also obtained sufficient con-
ditions for the existence of a global random attractor. Therefore, it is meaningful to further
incorporate the environmental fluctuation into the underlying model (1.2), which could
provide us a deeper understanding for the realistic aquatic ecosystems. Inspired by the
above-mentioned facts, we get the following stochastic model:

⎧
⎪⎪⎨

⎪⎪⎩

dP(t) = [r1P(t)(1 – P(t)) – aP(t)T(t) – cP(t)Z(t)] dt + σ1P(t) dB1(t),

dT(t) = [r2T(t)(1 – T(t)
H ) – bP(t)T(t) – T(t)Z(t)

1+T2(t) ] dt + σ2T(t) dB2(t),

dZ(t) = [eP(t)Z(t) – T(t)Z(t)
1+T2(t) – mZ(t)] dt + σ3Z(t) dB3(t),

(1.3)

where Bi(t) are standard Brownian motions. σ 2
i denotes the intensity of the white noise.

Recently, a few studies about the effect of environmental fluctuations on aquatic ecosys-
tems have been carried out, it is worth noting that in this paper, we split the phytoplankton,
identifying the toxic-producing subpopulation, in other words, the considered system in-
cludes three species: phytoplankton, toxic phytoplankton, and zooplankton; we investigate
the effect of the environmental fluctuations on this system. To the best of our knowledge,
the results about the stochastic phytoplankton-toxin phytoplankton–zooplankton model
are few. We will devote our main attention to the analysis of model (1.3). First, we study the
persistence or extinction of the populations. Then we prove the existence of a stationary
distribution.

The rest of this paper is organized as follows. Some related preliminaries are given in the
next section. In Sect. 3, we prove the existence of the global positive solution and establish
the threshold between weakly persistence in the mean and extinction in Sect. 4. Sufficient
conditions for the stationary distribution and its ergodic of model (1.3) are established
by using a Lyapunov function in Sect. 5. Finally, in order to illustrate our results, some
numerical simulations and discussions are presented in Sect. 6.

2 Preliminaries
From now on, unless otherwise specified, let (Ω ,F , {Ft}t≥0, P) denote a complete proba-
bility space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is right continu-
ous and F0 contains all P-null sets). Let us consider an n-dimensional stochastic differen-
tial equation:

dx(t) = f
(
x(t), t

)
dt + g

(
x(t), t

)
dW (t), t ≥ 0,



Chen et al. Advances in Difference Equations        (2019) 2019:347 Page 4 of 18

with the initial x(0) = x0 ∈ Rn, where W (t) denotes an m-dimensional standard Wiener
process. A definite a C2-function V , applying Itõ’s formula, yields

dV
(
x(t), t

)
= (Vt

(
x(t), t

)
+ Vx

(
x(t), t

)
f
(
x(t), t

)

+
1
2

trace
((

gT(
x(t), t

)
Vxx

(
x(t), t

)
g
(
x(t), t

)))
dt

+ Vx
(
x(t), t

)
g
(
x(t), t

)
dW (t)

:= LV
(
x(t), t

)
dt + Vx

(
x(t), t

)
g
(
x(t), t

)
dW (t),

where

Vt =
∂V
∂t

, Vx =
(

∂V
∂x1

, . . . ,
∂V
∂xn

)T

, Vxx =
(

∂2V
∂xi ∂xj

)

n×n
.

Definition 2.1 ([28, 29])
(i) Population x(t) is said to be extinct if limt→∞ x(t) = 0 almost surely.

(ii) Population x(t) is said to be weakly persistent in the mean if there exists a constant
N > 0 such that lim supt→+∞

1
t
∫ t

0 x(s) ds ≤ N almost surely.
(iii) Population x(t) is said to be strongly persistent in the mean if there exists a constant

N > 0 such that lim supt→+∞
1
t
∫ t

0 x(s) ds ≥ N almost surely.
(iv) Population x(t) is said to be persistent in the mean if there exists a constant N > 0

such that limt→+∞ 1
t
∫ t

0 x(s) ds = N almost surely.

Next, we will present some lemmas which will be used in the following sections.

Lemma 2.1 ([30]) Let M = {Mt}t ≥ 0 be a real-valued continuous local martingale, then

lim
t→∞〈M, M〉t = 0 a.s. ⇒ lim

t→∞
Mt

〈M, M〉t
= 0 a.s.,

and

lim sup
t→∞

〈M, M〉t

t
< ∞ a.s. ⇒ lim

t→∞
Mt

t
= 0 a.s.

Lemma 2.2 ([31]) Let X(t) ∈ R+ and g(t) be two stochastic process satisfying limt→∞ g(t)
t = 0

a.s.
(i) If there exist three positive constants t0, β and β0 such that, for all t ≥ t0,

ln X(t) ≤ βt – β0

∫ t

0
X(s) ds + g(t),

then

lim sup
t→+∞

1
t

∫ t

0
X(s) ds ≤ β

β0
, a.s.

(ii) If there exist three positive constants t0, β and β0 such that, for all t ≥ t0,

ln X(t) ≥ βt – β0

∫ t

0
X(s) ds + g(t),
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then

lim inf
t→+∞

1
t

∫ t

0
X(s) ds ≥ β

β0
, a.s.

3 Existence and uniqueness of globally positive solution
In this section, we show that there is a unique local positive solution for the system (1.3)
and then we prove that this solution is global by constructing a suitable Lyapunov func-
tion. To the best of our knowledge, in order to guarantee that a stochastic differential
equation has a unique local positive solution, the coefficients of the equation should sat-
isfy the linear growth condition and the local Lipschitz condition. Therefore, we establish
the following theorem.

Theorem 3.1 For any positive initial value (P(0), T(0), Z(0)) ∈ R3
+, there exists a unique

global positive solution of model (1.3), and the solution remains in the region R3
+ with prob-

ability one.

Proof Let u(t) = ln P(t), v(t) = ln T(t), w(t) = ln Z(t), by use of the Itô formula, we get

⎧
⎪⎪⎨

⎪⎪⎩

du(t) = [r1(1 – eu(t)) – aev(t) – cew(t) – σ 2
1
2 ] dt + σ1 dB1(t),

dv(t) = [r2(1 – ev(t)
H ) – beu(t) – ew(t)

1+ev(t) – σ 2
2
2 ] dt + σ2 dB2(t),

dw(t) = [eeu(t) – ev(t)
1+ev(t) – m] dt + σ3 dB3(t),

(3.1)

with initial values u(0) = ln P(0), v(0) = ln T(0), w(0) = ln Z(0). Obviously, model (3.1) meets
the local Lipschitz condition. Hence there exists a unique local solution (u(t), v(t), w(t))
for t ∈ [0, τe), where τe is the explosion time. The system (1.3) is equivalent to the system
(3.1). So, for the system (1.3) there exists a local solution (P(t), T(t), Z(t)) on t ∈ [0, τe),
for an arbitrary initial value (P(0), T(0), Z(0)) ∈ R3

+. Now, we need to prove τe = ∞ a.s. Let
k0 > 0 be sufficiently large such that each component of the initial value (P(0), T(0), Z(0))
lies within the interval [ 1

k0
, k0] when k ≥ k0. Define the stopping time

τk = inf

{

t ∈ [0, τe) : min
{

P(t), T(t), Z(t)
} ≤ 1

k
or max

{
P(t), T(t), Z(t)

} ≥ k
}

.

Throughout this paper we set inf∅ = ∞ (as usual ∅ denotes the empty set). Clearly, τk is
increasing as k → ∞. Set τ∞ = limk→∞ τk , hence τ∞ ≤ τe a.s. If we can show that τ∞ = ∞
a.s., then τe = ∞ a.s. The proof will go by contradiction. If this statement is false, then
there exist a pair of constants T > 0 and ε ∈ (0, 1) such that P{τk ≤ T} ≥ ε for any k ≥ k0.

Define a C2-function V : R3
+ → R+ as follows:

V (P, T , Z) = V1(P, T , Z) + V2(P, T , Z) + V3(P, T , Z),

where V1(P, T , Z) = AP – ln P – 1 – ln A, V2(P, T , Z) = T – 1 – ln T , V3(P, T , Z) = B(Z –
1 – ln Z), A, B are positive constants to be determined later. Obviously, this function is
nonnegative.
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An application of the Itô formula to V1 yields

dV1 =
(

Ar1P – Ar1P2 – AaPT – AcPZ – r1 + r1P + aT + cZ +
σ 2

1
2

)

dt

+ σ1A(P – 1) dB1(t).

Analogously

dV2 =
(

r2T –
r2

H
T2 – bPT –

TZ
1 + T2 – r2 +

r2

H
T + bP +

Z
1 + T2 +

σ 2
2

2

)

dt

+ σ2(T – 1) dB2(t)

and

dV3 =
(

BePZ – B
TZ

1 + T2 – BmZ – BeP + B
T

1 + T2 + Bm +
Bσ 2

3
2

)

dt

+ σ3B(Z – 1) dB3(t).

Hence

LV =
(

Ar1P – Ar1P2 – AaPT – AcPZ – r1 + r1P + aT + cZ +
σ 2

1
2

+ r2T

–
r2

H
T2 – bPT –

TZ
1 + T2 – r2 +

r2

H
T + bP +

Z
1 + T2 +

σ 2
2

2
+ BePZ

– B
TZ

1 + T2 – BmZ – BeP + B
T

1 + T2 + Bm +
Bσ 2

3
2

)

≤ –Ar1P2 + (Ar1 + r1 + b – Be)P –
r2

H
T2 +

(

a + r2 +
r2

H

)

T + (c + 1 – Bm)Z

+
(

–r1 – r2 +
B
2

+ Bm
)

+ (Be – Ac)PZ +
Aσ 2

1 + σ 2
2 + Bσ 2

3
2

.

Choose A = ce+2e
cm , B = (c+2)e+m

m2 , then

LV ≤ –Ar1P2 + (Ar1 + r1 + b – Be)P –
r2

H
T2 +

(

a + r2 +
r2

H

)

T

+
(

–r1 – r2 +
B
2

+ Bm
)

+
σ 2

1 + σ 2
2 + Bσ 2

3
2

≤ M.

Then dV ≤ M dt + σ1A(P – 1) dB1(t) + σ2(T – 1) dB2(t) + σ3B(Z – 1) dB3(t).
Integrating both sides from 0 to τk ∧ T , and taking the expectation, we get

EV
(
P(τk ∧ T), T(τk ∧ T), Z(τk ∧ T)

) ≤ V
(
P(0), T(0), Z(0)

)
+ MT .
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By the definition of stopping time, substituting k and 1
k into V (P(0), T(0), Z(0)), which

implies that

V
(
P(τk ∧ T), T(τk ∧ T), Z(τk ∧ T)

)

≥ min

{

Ak – 1 – ln k – ln A,
A
k

– 1 + ln k – ln A,

k – 1 – ln k,
1
k

– 1 + ln k, B(k – 1 – ln k), B
(

1
k

– 1 + ln k
)}

= F(k).

Next,

P(τk ≤ T)F(k) ≤ V
(
P(0), T(0), Z(0)

)
+ MT .

Letting k → ∞ gives

lim
t→∞ P(τk ≤ T) = 0,

which contradicts the assumption; then we must have P(τ∞ = ∞) = 1. Therefore, the so-
lution will not explode in a finite time with probability one. This completes the proof. �

4 Weakly persistent in the mean and extinction
In this section, we will study the long time behavior of stochastic model (1.3) and show
that the population will be weakly persistent in the mean when the intensity of noises is
small. Otherwise, if the intensity of noises is sufficiently large, the population will become
extinct with probability one.

Theorem 4.1 Let (P(t), T(t), Z(t)) be a solution of model (1.3).
(i) If r1 > σ 2

1
2 , r2 > σ 2

2
2 and r1(e – m) > e σ 2

1
2 + r1

σ 2
3
2 , then the populations P(t), T(t) and

Z(t) are weakly persistent in the mean.

(ii) If r1 > σ 2
1
2 , r2 < σ 2

2
2 and r1(e – m) > e σ 2

1
2 + r1

σ 2
3
2 , then the populations P(t) and Z(t) are

weakly persistent in the mean, the population T(t) is extinct.
(iii) If r1 < σ 2

1
2 , r2 > σ 2

2
2 , then the populations P(t) and Z(t) are extinct, the population

T(t) is weakly persistent in the mean.
(iv) If r1 < σ 2

1
2 , r2 < σ 2

2
2 , then the population P(t), T(t) and Z(t) are extinct.

Proof By using Itô’s formula in (1.3), we have

d ln P =
[

r1(1 – P) – aT – cZ –
σ 2

1
2

]

dt + σ1 dB1(t), (4.1)

d ln T =
[

r2

(

1 –
T
H

)

– bP –
Z

1 + T2 –
σ 2

2
2

]

dt + σ2 dB2(t), (4.2)

d ln Z =
(

eP –
T

1 + T2 – m –
σ 2

3
2

)

dt + σ3 dB3(t), (4.3)
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and from (4.1), we furthermore obtain

d ln P ≤
(

r1 –
σ 2

1
2

– r1P
)

dt + σ1 dB1(t), (4.4)

integrating both sides of (4.4) from 0 to t gives the following inequality:

ln P(t) =
(

r1 –
σ 2

1
2

)

t – r1

∫ t

0
P(s) ds + Θ(t), (4.5)

denoting Θ(t) = M1(t) + ln P(0) = σ1B1(t) + ln P(0). We can get limt→∞ Θ(t)
t = 0. By Lem-

mas 2.1 and 2.2, we have

lim sup
t→+∞

1
t

∫ t

0
P(s) ds ≤ r1 – σ 2

1
2

r1
a.s. (4.6)

So, following the above conditions r1 > σ 2
1
2 , we see that the population P(t) is weakly per-

sistent in the mean.
From (4.2), we have

d ln T ≤
(

r2 –
σ 2

2
2

–
r2

H
T

)

dt + σ2 dB2(t), (4.7)

integrating both sides of (4.7) from 0 to t gives the following inequality:

ln T(t) ≤
(

r2 –
σ 2

2
2

)

t –
r2

H

∫ t

0
T(s) ds + f (t), (4.8)

letting f (t) = M2(t) + ln T(0) = σ2B2(t) + ln T(0). It is easy to get limt→∞ f (t)
t = 0. Similarly,

we have

lim sup
t→+∞

1
t

∫ t

0
T(s) ds ≤ (r2 – σ 2

2
2 )H

r2
a.s. (4.9)

For r2 > σ 2
2
2 , the population T(t) is weakly persistent in the mean.

According to a similar method in [32], we can get

lim sup
t→+∞

ln P(t)
t

= 0 a.s. (4.10)

and

lim sup
t→+∞

ln Z(t)
t

= 0 a.s. (4.11)

From (4.1), we can get

ln P(t) – ln P(0)
t

=
(

r1 –
σ 2

1
2

)

–
r1

t

∫ t

0
P(s) ds –

a
t

∫ t

0
T(s) ds –

c
t

∫ t

0
Z(s) ds +

σ1B1

t
.
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Applying Lemma 2.1, combining with (4.10), yields

lim
t→∞

1
t

∫ t

0
P(s) ds = lim

t→∞
1
r1

[(

r1 –
σ 2

1
2

)

–
a
t

∫ t

0
T(s) ds –

c
t

∫ t

0
Z(s) ds

]

a.s. (4.12)

Similarly, from (4.3), we have

lim
t→∞

e
t

∫ t

0
P(s) ds = lim

t→∞
1
t

∫ t

0

T(s) ds
1 + T2(s)

+ m +
σ 2

3
2

a.s. (4.13)

Together with (4.12) and (4.13), this yields

lim sup
t→+∞

1
t

∫ t

0
Z(s) ds ≤ 1

c

(

r1 –
σ 2

1
2

)

–
r1

ce

(

m +
σ 2

3
2

)

a.s.

The condition r1(e – m) > e σ 2
1
2 + r1

σ 2
3
2 implies that 1

c (r1 – σ 2
1
2 ) – r1

ce (m + σ 2
3
2 ) > 0, hence, the

population Z(t) is weakly persistent in the mean, thus we complete the proof of (i).
In (ii), we have only to prove that r2 < σ 2

2
2 implies limt→+∞ T(t) = 0 a.s.

If r2 < σ 2
2
2 , from (4.8), we can obtain

ln T(t) <
(

r2 –
σ 2

2
2

)

t + f (t), (4.14)

dividing both sides of (4.14) by t and taking the limit, by Lemma 2.1, we have
limt→+∞ ln T(t)

t < 0 a.s.; thus the population T(t) is extinct.

(iii) If r1 < σ 2
1
2 , r2 > σ 2

2
2 , from the above proof, we know that the population P(t) is extinct,

the population T(t) is weakly persistent in the mean. From (4.3), it is easy to see that

ln Z(t) < e
∫ t

0
P(s) ds –

(

m +
σ 2

3
2

)

t + G(t). (4.15)

We denote G(t) = σ3B3(t) + ln Z(0). We get limt→∞ G(t)
t = 0. Dividing both sides of (4.15) by

t and taking the limit, we have limt→+∞ ln Z(t)
t < 0 a.s., that is, the population Z(t) is extinct.

The result of (iv) comes from the proofs (ii) and (iii), so we omit it. The proof is com-
plete. �

Remark 4.1 From (i), (ii) of Theorem 4.1, we know all populations preserve some stability
under small noise and large noise may lead to the extinction of the toxic-phytoplankton
population. From (iii) of Theorem 4.1, we find that the noise-induced extinction of P(t)
contributes the density increase of T(t), thus noise-induced extinction of nontoxic phyto-
plankton may lead to more serious outbreaks of the toxic phytoplankton and furthermore
if there is excessive consumption of toxin phytoplankton by zooplankton this will lead to
its extinction. The results also reflect that if the reproduction rate of the population is
dominated by the environmental noise, the population will go in extinction. Otherwise,
the population will be weakly persistent in the mean.

Remark 4.2 By r1 = ρ1
e2α2β2

√
β2

, r2 = ρ2
e2α2β2

√
β2

, e = e1K1α1
e2α2β2

√
β2

, m = μ

e2α2β2
√

β2
, we can know

that the ri (i = 1, 2) are proportional to ρi (the growth rate of species i), respectively; m
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is proportional to μ (the death rate); e is proportional to the product of e1 (the nutrition
conversion rate) and α1 (the capture rate). From (i), (ii), (iii) and (iv) of Theorem 4.1, one
can see that a small noise (σi) and a large growth rate (ρi) lead to the persistence of phyto-
plankton populations. Meanwhile, a high nutrient conversion rate (e1) from P to Z, a high
predation rate (α1) of Z to P, a small death rate (μ) and a small noise (σ1 and σ3) contribute
to the persistence of the zooplankton population.

5 Existence of an ergodic stationary distribution
In the study of a zooplankton and phytoplankton deterministic model, the stability of
each equilibrium is our main concern. For a stochastic model, we concentrate on the ex-
istence of the unique stationary distribution. For the plankton system, one of the most
important things is to investigate the persistence of the population. Meanwhile, the ex-
istence of stationary distribution implies that the populations are persistent. Therefore,
it is very meaningful to obtain the unique ergodic stationary distribution. In the follow-
ing, based on the theory of Has’minskii [33], we will prove that the system (1.3) has a
stationary distribution which is ergodic when the white noises are not particularly large.
Let X(t) be a homogeneous Markov process in Rd of the stochastic differential equation
dX(t) = b(X) dt +

∑k
r=1 gr(X) dBr(t), then the diffusion matrix is defined as A(x) = (aij(x)),

aij(x) =
∑k

r=1 gi
r(x)gj

r(x).

Lemma 5.1 ([33]) The Markov process X(t) has a unique ergodic stationary distribution
μ(·) if there exists a bounded open domain U ⊂ Rn with regular boundary Γ , having the
following properties:

A1: the diffusion matrix A(x) is strictly positive definite for all x ∈ U ;
A2: there exists a nonnegative C2-function V such that LV is negative for any Rd\U .

Assumption 5.1 Assume that

Π = r1 –
σ 2

1
2

+ r2 –
σ 2

2
2

–
1
2

– m –
σ 2

3
2

–
(H(r2 + a + r2

H )2

4r2
+

( ec+2e+cm
cm r1 + b)2cm
4(c + 2)er1

)

= M – M1 – M2 > 0,

where M = r1 – σ 2
1
2 + r2 – σ 2

2
2 – 1

2 – m – σ 2
3
2 , M1 = H(r2+a+ r2

H )2

4r2
, M2 = ( ec+2e+cm

cm r1+b)2cm
4(c+2)er1

.

Theorem 5.1 Under Assumption 5.1, the system (1.3) has a unique ergodic stationary dis-
tribution μ(·) for any initial value (P(0), T(0), Z(0)) ∈ R3

+.

Proof In order to prove Theorem 5.1, one only needs to validate conditions A1 and A2 of
Lemma 5.1. The diffusion matrix of the system (1.3) is given by

A =

⎛

⎜
⎝

σ 2
1 P2 0 0
0 σ 2

2 T2 0
0 0 σ 2

3 Z2

⎞

⎟
⎠ . (5.1)

Clearly, the matrix A is positive definite for any compact R3
+, so the condition A1 of

Lemma 5.1 holds.
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Construct a C2-function W : R3
+ → R

W (P, T , Z) = (c1P + T + c2Z) – (ln P – 1 + ln c1 + ln T + ln Z – 1 + ln c2)

:= W1(P, T , Z) + W2(P, T , Z),

where c1 and c2 are positive constants which will be determined later. Obviously,
W (P, T , Z) is a nonnegative function. According to the Itô formula, then

LW1 = c1r1P – c1r1P2 – c1aPT – c1cPZ + r2T –
r2

H
T2 – bPT –

TZ
1 + T2

+ c2ePZ – c2
TZ

1 + T2 – c2mZ

≤ –c1r1P2 + c1r1P –
r2

H
T2 + r2T – c2mZ – (c1c – c2e)PZ

and

LW2 = –r1 + r1P + aT + cZ +
σ 2

1
2

– r2 +
r2

H
T + bP +

Z
1 + T2 +

σ 2
2

2
– eP

+
T

1 + T2 + m +
σ 2

3
2

≤ (r1 + b)P +
(

a +
r2

H

)

T + (c + 1)Z +
(

–r1 – r2 +
1
2

+ m +
σ 2

1 + σ 2
2 + σ 2

3
2

)

.

Hence, we get

LW ≤ –c1r1P2 +
[
(c1 + 1)r1 + b

]
P –

r2

H
T2 +

(

r2 + a +
r2

H

)

T

+ (–c2m + c + 1)Z – (c1c – c2e)PZ –
(

r1 –
σ 2

1
2

+ r2 –
σ 2

2
2

–
1
2

– m –
σ 2

3
2

)

.

Choose c1 = e
c c2 and c2 = c+2

m , then

LW ≤ –
ce + 2e

cm
r1P2 +

(
ce + cm + 2e

cm
r1 + b

)

P –
r2

H
T2 +

(

r2 + a +
r2

H

)

T – Z

–
(

r1 –
σ 2

1
2

+ r2 –
σ 2

2
2

–
1
2

– m –
σ 2

3
2

)

. (5.2)

Now, we define a closed set

Dε =
{

(P, T , Z) ∈ R3
+ : ε ≤ P ≤ 1

ε
, ε ≤ T ≤ 1

ε
, ε ≤ Z ≤ 1

ε

}

, (5.3)

where 0 < ε < 1 is a sufficiently small number such that

(
ce + cm + 2e

cm
r1 + b

)

ε <
1
2

[

M –
(r2 + a + r2

H )2H
4r2

]

, (5.4)

(

r2 + a +
r2

H

)

ε <
1
2

[

M –
( ec+2e+cm

cm r1 + b)2cm
4(c + 2)er1

]

, (5.5)
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–ε <
1
2

(M – M1 – M2), (5.6)

–
ce + 2e

2cm
r1

1
ε2 + K4 ≤ –1, (5.7)

–
r2

2Hε2 + K5 ≤ –1, (5.8)

–
1
ε

+ K6 ≤ –1. (5.9)

In addition, we denote

D1
ε =

{
(P, T , Z) ∈ R3

+ : 0 < P < ε
}

, D2
ε =

{
(P, T , Z) ∈ R3

+ : 0 < T < ε
}

,

D3
ε =

{
(P, T , Z) ∈ R3

+ : 0 < Z < ε
}

, D4
ε =

{

(P, T , Z) ∈ R3
+ : P >

1
ε

}

,

D5
ε =

{

(P, T , Z) ∈ R3
+ : T >

1
ε

}

, D6
ε =

{

(P, T , Z) ∈ R3
+ : Z >

1
ε

}

.

Then R3
+ \ Uε = D1

ε ∪ D2
ε ∪ D3

ε ∪ D4
ε ∪ D5

ε ∪ D6
ε and on each Di

ε we have the following.
Case 1. On D1

ε , we have 0 < P < ε,

LW ≤ –
r2

H

(

T –
H(r2 + a + r2

H )
2r2

)2

+
H(r2 + a + r2

H )2

4r2
+

(
ce + cm + 2e

cm
r1 + b

)

ε – M

≤
(H(r2 + a + r2

H )2

4r2

)

+
(

ce + cm + 2e
cm

r1 + b
)

ε – M

≤ K1,

where K1 = 1
2 [ H(r2+a+ r2

H )2

4r2
– M] < 0. In fact, it follows from (5.4) and Assumption 5.1 that

K1 < 0.
Case 2. On D2

ε , we have 0 < T < ε,

LW ≤ –
ce + 2e

cm
r1

[

P –
( ec+cm+2e

cm r1 + b)cm
2(c + 2)er1

]2

+
( ec+cm+2e

cm r1 + b)2cm
4(c + 2)er1

–
r2

H
T2 +

(

r2 + a +
r2

H

)

T – M

≤ ( ec+cm+2e
cm r1 + b)2cm
4(c + 2)er1

+
(

r2 + a +
r2

H

)

ε – M

≤ K2,

where K2 = 1
2 [ ( ec+2e+cm

cm r1+b)2cm
4(c+2)er1

– M] < 0. In fact, it follows from (5.5) and Assumption 5.1
that K2 < 0.

Case 3. On D3
ε , we have 0 < Z < ε,

LW ≤ M1 + M2 – ε – M

≤ K3,

where K3 = 1
2 (M1 + M2 – M) < 0. In fact, it follows from (5.6) and Assumption 5.1 that

K3 < 0.
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Case 4. On D4
ε , we have P > 1

ε
,

LW ≤ –
ce + 2e

cm
r1P2 +

(
ce + cm + 2e

cm
r1 + b

)

P –
r2

H
T2 +

(

r2 + a +
r2

H

)

T – Z – M

≤ –
ce + 2e

2cm
r1

1
ε2 + K4,

where K4 = sup(P,T ,Z)∈R3
+
{– ce+2e

2cm r1P2 + ( ce+cm+2e
cm r1 + b)P – r2

H T2 + (r2 + a + r2
H )T – Z – M}. In

fact, it follows from (5.7) that LW ≤ –1.
Case 5. On D5

ε , we have T > 1
ε

,

LW ≤ –
r2

2H
T2 –

ce + 2e
cm

r1P2 +
(

ce + cm + 2e
cm

r1 + b
)

P –
r2

2H
T2

+
(

r2 + a +
r2

H

)

T – Z – M

≤ –
r2

2Hε2 + K5,

where K5 = sup(P,T ,Z)∈R3
+
{– ce+2e

cm r1P2 + ( ce+cm+2e
cm r1 + b)P – r2

2H T2 + (r2 + a + r2
H )T – Z – M}. In

fact, it follows from (5.8) that LW ≤ –1.
Case 6. On D5

ε , we have Z > 1
ε

,

LW ≤ M1 + M2 – Z – M

≤ –
1
ε

+ M1 + M2 – M

≤ –
1
ε

+ K6,

where K6 = M1 + M2 – M. In fact, it follows from (5.9) that LW ≤ –1.
In conclusion, we can obtain that LW ≤ min{K1, K2, K3, –1}, (P, T , Z) ∈ R3

+ \ Dε . Then,
the conclusion follows from A2 of Lemma 5.1.

Thus, according to Lemma 5.1, the system (1.3) admits a unique ergodic stationary dis-
tribution μ(·). This completes the proof. �

Remark 5.1 From the expression of Π , we can see that, as σi gets smaller, Π gets bigger.
When σi (i = 1, 2, 3) is big enough, Π is less than 0. Hence, environmental noise plays an
important role in population persistence.

6 Numerical analysis and discussions
In this paper, according to the fact that the environmental fluctuation has a great effect
on the aquatic ecosystem, we propose and investigate a stochastic phytoplankton-toxin
phytoplankton–zooplankton model. Without the effects of environmental fluctuations,
Banerjee and Venturino [13] gave a comprehensive analysis and showed that the toxic
phytoplankton does not drive the zooplankton population towards extinction. With the
effects of environmental fluctuations, we have proved the existence of global positive solu-
tion of the investigated model and obtain the sufficient conditions for weakly persistence in
the mean and extinction of the plankton. We also investigate the existence of ergodic sta-
tionary distribution by constructing a suitable Lyapunov function. The results show that
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a large environmental fluctuation may lead to the extinction of the population, and small
environmental fluctuation can keep population weakly persistent in the mean. We also
find that the noise-induced extinction of one phytoplankton population may lead to the
density increase of the other phytoplankton population in two competitive phytoplankton
populations. Thus noise-induced extinction of non-toxic-phytoplankton population may
lead to an outburst of toxic-phytoplankton population. In the following, we will verify our
main results with the help of a numerical method which is based on the work of [34, 35].

The following example concerns the extinction and weakly persistent in the mean of the
populations.

Example 6.1 Let the parameters be r1 = 0.6, r2 = 0.7, a = 0.1, b = 0.9, c = 1.35, e = 1.63,
m = 0.3, H = 0.33.

(i) Fix σ1 = 0.1 and σ3 = 0.05, let σ2 vary to see the effect of noise on the dynam-
ics of model (1.3). We first take σ2 = 0.1, it is easy to compute that r1 – σ 2

1
2 = 0.595 > 0,

r2 – σ 2
2
2 = 0.695 > 0 and r1(e – m) – (e σ 2

1
2 + r1

σ 2
3
2 ) = 0.7891 > 0, in view of (i) of Theorem 4.1,

the populations P(t), T(t) and Z(t) are weakly persistent in the mean (see Fig. 1). Chang-
ing σ2 from σ2 = 0.1 to σ2 = 1.2, we obtain that r1 – σ 2

1
2 = 0.595 > 0, r2 – σ 2

2
2 = –0.02 < 0 and

r1(e – m) – (e σ 2
1
2 + r1

σ 2
3
2 ) = 0.7891 > 0 which satisfy the conditions (ii) of Theorem 4.1, the

populations P(t) and Z(t) are weakly persistent in the mean and the population T(t) goes
to extinction (see Fig. 2). From Fig. 1, we can find that phytoplankton, toxic-phytoplankton
and zooplankton population reach the steady state value after some transient oscillations

Figure 1 The figure shows the sample path of P(t), T (t) and Z(t) for deterministic model (1.2) and
corresponding stochastic model (1.3) with the initial value (P(0), T (0),Z(0)) = (0.6, 0.3, 0.5), and σ1 = 0.1, σ2 = 0.1
and σ3 = 0.05

Figure 2 The figure shows the sample path of P(t), T (t) and Z(t) for deterministic model (1.2) and
corresponding stochastic model (1.3) with the initial value (P(0), T (0),Z(0)) = (0.6, 0.3, 0.5), and σ1 = 0.1, σ2 = 1.2
and σ3 = 0.05
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Figure 3 The figure shows the sample path of P(t), T (t) and Z(t) for deterministic model (1.2) and
corresponding stochastic model (1.3) with the initial value (P(0), T (0),Z(0)) = (0.6, 0.3, 0.5), and σ1 = 1.1, σ2 = 0.1
and σ3 = 0.05

for the deterministic model, while all populations fluctuate around the steady state values
of the corresponding deterministic models for a stochastic model. Figures 1 and 2 show
that, under small noise, all populations preserve some stability and large noise may lead
to the extinction of the toxic-phytoplankton population. The results also reflect that if the
reproduction rate of the population is dominated by the environmental noise, the pop-
ulation will go to extinction. Otherwise, the population will be weakly persistent in the
mean.

Next, we focus on Figs. 1 and 5, the populations P(t), T(t) and Z(t) are persistent for
corresponding deterministic model of model (1.3). From Fig. 1, we can see that the popu-
lations P(t), T(t) and Z(t) are weakly persistent for stochastic model (1.3). However, if we
only increase the values of σi (i = 1, 2, 3) from 0.1, 0.1, 0.05 to 1.1, 1.2, 1, respectively, all
the other parameters being the same as for Fig. 1 (see Fig. 5), we can find that all the popu-
lations P(t), T(t) and Z(t) go extinct, which furthermore indicates that a large fluctuation
plus conditions that ensure the persistence of the deterministic model allow extinction for
the solutions of the stochastic model.

(ii) Fix σ2 = 0.1 and σ3 = 0.05, letting σ1 vary from σ1 = 0.1 to σ1 = 1.1, when σ1 = 0.1, we
check that r1 – σ 2

1
2 = –0.005 < 0, r2 – σ 2

2
2 = 0.695 > 0 and by (iii) of Theorem 4.1, both the

populations P(t) and Z(t) are in extinction, the population T(t) is weakly persistent in the
mean (see Fig. 3). The results imply that if zooplankton feeds enough on the toxin phyto-
plankton, it is driven to extinction. Figure 3 also shows that the noise-induced extinction
of P(t) contributes the density increase of T(t), which fluctuates around a much higher
density level than that of the deterministic counterpart. Thus a noise-induced extinction
of nontoxic phytoplankton may lead to more serious outbreaks of the toxic phytoplank-
ton. From Figs. 2 and 3, we also find the interesting phenomenon that the noise-induced
extinction of one phytoplankton population may lead to a density increase of the other
phytoplankton population in two competitive phytoplankton populations. Furthermore,
if we fix σ1 = 1.1 and σ3 = 0.05 and change σ2 from σ2 = 0.1 to σ2 = 1.2, we can easily de-
rive that r1 – σ 2

1
2 = –0.005 < 0, r2 – σ 2

2
2 = –0.02 < 0; according to (iv) of Theorem 4.1, the

populations P(t), T(t) and Z(t) are in extinction, which is shown in Fig. 4.

To further illustrate the existence of a stationary distribution, we consider the following
example.
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Figure 4 The figure shows the sample path of P(t), T (t) and Z(t) for deterministic model (1.2) and
corresponding stochastic model (1.3) with the initial value (P(0), T (0),Z(0)) = (0.6, 0.3, 0.5), and σ1 = 1.1, σ2 = 1.2
and σ3 = 0.05

Figure 5 The figure shows the sample path of P(t), T (t) and Z(t) for deterministic model (1.2) and
corresponding stochastic model (1.3) with the initial value (P(0), T (0),Z(0)) = (0.6, 0.3, 0.5), and σ1 = 1.1, σ2 = 1.2
and σ3 = 1

Figure 6 The figure shows the frequency histogram of P(t), T (t) and Z(t) for model (1.3) with the initial value
(P(0), T (0),Z(0)) = (0.2, 0.1, 0.4), and σ1 = 0.1, σ2 = 0.1, σ3 = 0.05

Example 6.2 We choose the parameters as r1 = 0.6, r2 = 0.7, a = 0.1, b = 0.9, c = 1.35,
e = 1.63, m = 0.3, H = 0.33, σ1 = 0.1, σ2 = 0.1, σ3 = 0.05. By a simple computation, we obtain
M = 0.4887, M1 = 0.1626, and M2 = 0.0874. Furthermore, Π = 0.2387 > 0. That is to say,
the condition of Theorem 5.1 holds, for the system (1.3) exists a unique ergodic stationary
distribution μ(·) (see Fig. 5).
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