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Abstract
In this paper, we study n-variable mappings that are quartic in each variable. We show
that the conditions defining such mappings can be unified in a single functional
equation. Furthermore, we apply an alternative fixed point method to prove the
Hyers–Ulam stability for the multiquartic functional equations in the normed spaces.
We also prove that under some mild conditions, every approximately multiquartic
mapping is a multiquartic mapping.
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1 Introduction
A fundamental question in the theory of functional equations is as follows:

When is it true that a function that approximately satisfies a functional equation is
close to an exact solution of the equation?

If this is the case, then we say that the equation is stable. The stability problem for the
group homomorphisms was introduced by Ulam [1] in 1940. The first partial answer to
Ulam’s question in the case of Cauchy’s equation or additive equation A(x+y) = A(x)+A(y)
in Banach spaces was given by Hyers [2] (stability involving a positive constant). Later
the result of Hyers was significantly generalized by Aoki [3], T.M. Rassias [4] (stability
incorporated with sum of powers of norms), Găvruţa [5] (stability controlled by a general
control function) and J.M. Rassias [6] (stability including mixed product-sum of powers
of norms).

Let V be a commutative group, let W be a linear space, and let n ≥ 2 be an integer. Recall
from [7] that a mapping f : V n −→ W is called multiadditive if it is additive (i.e., it satisfies
Cauchy’s functional equation) in each variable. Furthermore, f is said to be multiquadratic
if it is quadratic (i.e., it satisfies quadratic the functional equation Q(x + y) + Q(x – y) =
2Q(x) + 2Q(y)) in each variable [8]. Zhao et al. [9], showed that the system of functional
equations defining a multiquadratic mapping can be unified in a single equation. Indeed,
they proved that the mentioned mapping f is multiquadratic if and only if the following
relation holds:

∑

s∈{–1,1}n

f (x1 + sx2) = 2n
∑

j1,j2,...,jn∈{1,2}
f (x1j1 , x2j2 , . . . , xnjn ), (1.1)
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where xj = (x1j, x2j, . . . , xnj) ∈ V n and j ∈ {1, 2}. Ciepliński [7, 8] studied the Hyers–Ulam
stability of multiadditive and multiquadratic mappings in Banach spaces (see also [9]). For
more remarks on the Hyers–Ulam stability of some systems of functional equations, we
refer to [10].

A mapping f : V n −→ W is called multicubic if it is cubic (i.e., it satisfies the cubic func-
tional equation C(2x + y) + C(2x – y) = 2C(x + y) + 2C(x – y) + 12C(x)) in each variable
[11]). In [12], the first author and Shojaee studied the Hyers–Ulam stability for multicubic
mappings on normed spaces and also proved that a multicubic functional equation can
be hyperstable, that is, every approximately multicubic mapping is multicubic. For other
forms of cubic functional equations and their stabilities, we refer to [13–18].

The quartic functional equation

Q(x + 2y) + Q(x – 2y) = 4Q(x + y) + 4Q(x – y) – 6Q(x) + 24Q(y) (1.2)

was introduced for the first time by Rassias [19]. It is easy to see that the function Q(x) =
ax4 satisfies (1.2). Thus, every solution of the quartic functional equation (1.2) is said to be
a quartic function. The functional equation (1.2) was generalized by the first author and
Kang in [20] and [21], respectively.

Motivated by definitions of multiadditive, multiqudratic, and multicubic mappings, we
define multiquartic mappings and provide their characterization. In fact, we prove that
every multiquartic mapping can be characterized by a single functional equation and vice
versa. In addition, we investigate the Hyers–Ulam stability for multiquartic functional
equations by applying the fixed point method, which was used for the first time by Baker
in [22]. For more applications of this approach to the stability of multiadditive-quadratic
mappings and multi-Cauchy–Jensen mappings in non-Archimedean spaces and Banach
spaces, see [23–25].

2 Characterization of multiquartic mappings
Throughout this paper, N stands for the set of all positive integers, N0 := N ∪ {0}, R+ :=
[0,∞), n ∈ N. For any l ∈ N0, m ∈ N, t = (t1, . . . , tm) ∈ {–2, 2}m, and x = (x1, . . . , xm) ∈ V m,
we write lx := (lx1, . . . , lxm) and tx := (t1x1, . . . , tmxm), where ra stands, as usual, for the rth
power of an element a of the commutative group V .

Let n ∈ N with n ≥ 2, and let xn
i = (xi1, xi2, . . . , xin) ∈ V n, i ∈ {1, 2}. We denote xn

i by xi

when there is no risk of ambiguity. For x1, x2 ∈ V n and pi ∈ N0 with 0 ≤ pi ≤ n, put N =
{(N1, N2, . . . , Nn) | Nj ∈ {x1j ± x2j, x1j, x2j}}, where j ∈ {1, . . . , n} and i ∈ {1, 2}. Consider the
following subset of N :

N n
(p1,p2) :=

{
Nn = (N1, N2, . . . , Nn) ∈N | Card{Nj : Nj = xij} = pi

(
i ∈ {1, 2})}.

For r ∈ R, we put rN n
(p1,p2) = {rNn : Nn ∈ N n

(p1,p2)}. In this section, we assume that V and
W are vector spaces over the rationals. We say a mapping f : V n −→ W is n-multiquartic
or multiquartic if f is quartic in each variable (see equation (1.2)). For such mappings, we
use the following notations:

f
(
N n

(p1,p2)
)

:=
∑

Nn∈N n
(p1,p2)

f (Nn),

f
(
N n

(p1,p2), z
)

:=
∑

Nn∈N n
(p1,p2)

f (Nn, z) (z ∈ V ).

(2.1)
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For all x1, x2 ∈ V n, we consider the equation

∑

t∈{–2,2}n

f (x1 + tx2) =
n∑

p2=0

n–p2∑

p1=0

4n–p1–p2 (–6)p1 24p2 f
(
N n

(p1,p2)
)
. (2.2)

By a mathematical computation we can check that the mapping f : Rn −→ R defined as
f (z1, . . . , zn) =

∏n
j=1 ajz4

j satisfies (2.2). Thus this equation is said to be the multiquartic
functional equation.

We denote
(n

k
)

= n!/(k!(n – k)!) (the binomial coefficients) for all n, k ∈ N with n ≥ k.
Let 0 ≤ k ≤ n – 1. Put Kk = {kx := (0, . . . , 0, xj1 , 0, . . . , 0, xjk , 0, . . . , 0) ∈ V n}, where 1 ≤ j1 <

· · · < jk ≤ n. In other words, Kk is the set of all vectors in V n whose exactly k components
are nonzero.

We will show that a mapping f : V n −→ W satisfies the functional equation (2.2) if and
only if it is multiquartic. For this, we need the following lemma.

Lemma 2.1 If a mapping f : V n −→ W satisfies equation (2.2), then f (x) = 0 for any x ∈ V n

with at least one component equal to zero.

Proof We argue by induction on k that for each kx ∈ Kk , f (kx) = 0 for 0 ≤ k ≤ n – 1. For
k = 0, by putting x1 = x2 = (0, . . . , 0) in (2.2) we have

2nf (0, . . . , 0)

=
n∑

p2=0

n–p2∑

p1=0

4n–p1–p2 (–6)p1 24p2

(
n

n – p1 – p2

)(
p1 + p2

p1

)
2n–p1–p2 f (0, . . . , 0). (2.3)

It is easily verified that

(
n – k

n – k – p1 – p2

)(
p1 + p2

p1

)
=

(
n – k

p2

)(
n – k – p2

p1

)
(2.4)

for 0 ≤ k ≤ n – 1. Using (2.4) for k = 0, we compute the right-hand side of (2.3) as follows:

n∑

p2=0

n–p2∑

p1=0

4n–p1–p2 (–6)p1 24p2

(
n

n – p1 – p2

)(
p1 + p2

p1

)
2n–p1–p2 f (0, . . . , 0)

= 2n

⎡

⎣
n∑

p2=0

(
n
p2

)
12p2

n–p2∑

p1=0

(
n – p2

p1

)
4n–p1–p2 (–3)p1

⎤

⎦ f (0, . . . , 0)

= 2n

⎡

⎣
n∑

p2=0

(
n
p2

)
12p2 (4 – 3)n–p2

⎤

⎦ f (0, . . . , 0)

= 2n(12 + 1)nf (0, . . . , 0) = 26nf (0, . . . , 0). (2.5)

From relations (2.3) an (2.5) it follows that f (0, . . . , 0) = 0. Assume that for each k–1x ∈Kk–1,
f (k–1x) = 0. We show that if kx ∈ Kk , then f (kx) = 0. By a suitable replacement in (2.2) we
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get

2nf (kx) =
n–k∑

p2=0

n–k–p2∑

p1=0

4n–p1–p2 (–6)p1 24p2

(
n – k

n – k – p1 – p2

)(
p1 + p2

p1

)
2n–p1–p2 f (kx)

= 2n4k

⎡

⎣
n–k∑

p2=0

(
n – k

p2

)
12p2

n–k–p2∑

p1=0

(
n – k – p2

p1

)
4n–k–p1–p2 (–3)p1

⎤

⎦ f (kx)

= 2n4k

⎡

⎣
n–k∑

p2=0

(
n – k

p2

)
12p2 (4 – 3)n–k–p2

⎤

⎦ f (kx)

= 2n4k(12 + 1)n–kf (kx) = 2n+2k13n–kf (kx). (2.6)

Hence f (kx) = 0. This shows that f (x) = 0 for any x ∈ V n with at least one component equal
to zero. �

We now prove the main result of this section.

Theorem 2.2 A mapping f : V n −→ W is multiquartic if and only if it satisfies the func-
tional equation (2.2).

Proof Let f be multiquartic. We prove that f satisfies the functional equation (2.2) by
induction on n. For n = 1, it is trivial that f satisfies the functional equation (1.2). If (2.2)
is valid for some positive integer n > 1, then

∑

t∈{–2,2}n+1

f
(
xn+1

1 + txn+1
2

)

= 4
∑

t∈{–2,2}n

f
(
xn

1 + txn
2, x1n+1 + x2n+1

)
+ 4

∑

t∈{–2,2}n

f
(
xn

1 + txn
2, x1n+1 – x2n+1

)

– 6
∑

t∈{–2,2}n

f
(
xn

1 + txn
2, x1n+1

)
+ 24

∑

t∈{–2,2}n

f
(
xn

1 + txn
2, x2n+1

)

= 4
n∑

p2=0

n–p2∑

p1=0

∑

t∈{–2,2}
4n–p1–p2 (–6)p1 24p2 f

(
N n

(p1,p2), x1n+1 + tx2n+1
)

– 6
n∑

p2=0

n–p2∑

p1=0

4n–p1–p2 (–6)p1 24p2 f
(
N n

(p1,p2), x1n+1
)

+ 24
n∑

p2=0

n–p2∑

p1=0

4n–p1–p2 (–6)p1 24p2 f
(
N n

(p1,p2), x2n+1
)

=
n+1∑

p2=0

n+1–p2∑

p1=0

4n+1–p1–p2 (–6)p1 24p2 f
(
N n+1

(p1,p2)
)
.

This means that (2.2) holds for n + 1.
Conversely, suppose that f satisfies the functional equation (2.2). Fix j ∈ {1, . . . , n}. Set

f ∗(x1j, x2j) := f (x11, . . . , x1j–1, x1j + x2j, x1j+1, . . . , x1n)

+ f (x11, . . . , x1j–1, x1j – x2j, x1j+1, . . . , x1n)
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and

f ∗(x2j) : = f (x11, . . . , x1j–1, x2j, x1j+1, . . . , x1n).

Putting x2k = 0 for all k ∈ {1, . . . , n}\{j} in (2.2) and using Lemma 2.1, we get

2n–1[f (x11, . . . , x1j–1, x1j + 2x2j, x1j+1, . . . , x1n)

+ f (x11, . . . , x1j–1, x1j – 2x2j, x1j+1, . . . , x1n)
]

=
n–1∑

p1=0

(
n – 1

p1

)
4n–p1 (–6)p1 2n–p1–1f ∗(x1j, x2j)

+
n∑

p1=1

(
n – 1
p1 – 1

)
4n–p1 (–6)p1 2n–p1 f (x11, . . . , x1n)

+
n∑

p1=1

(
n – 1
p1 – 1

)
4n–p1 (–6)p1–12n–p1 f ∗(x2j)

= 4 × 2n–1
n–1∑

p1=0

(
n – 1

p1

)
4n–1–p1 (–3)p1 f ∗(x1j, x2j)

– 6 × 2n–1
n–1∑

p1=0

(
n – 1

p1

)
4n–1–p1 (–3)p1 f (x11, . . . , x1n)

+ 24 × 2n–1
n–1∑

p1=0

(
n – 1

p1

)
4n–1–p1 (–3)p1 f ∗(x2j)

= 4 × 2n–1f ∗(x1j, x2j) – 6 × 2n–1f (x11, . . . , x1n) + 24 × 2n–1f ∗(x2j).

Note that we have used the fact that
∑n–1

p1=0
(n–1

p1

)
4n–1–p1 (–3)p1 = (4 – 3)n–1 = 1 in the above

computations. So this relation implies that f is quartic in the jth variable. Since j is arbi-
trary, we obtain the desired result. �

3 Stability results for the functional equation (2.2)
For two sets X and Y , we denote by Y X the set of all mappings from X to Y , In this section,
we wish to prove the Hyers–Ulam stability of the functional equation (2.2) in normed
spaces. The proof is based on a fixed point result that can be derived from [26, Theorem 1].
To state it, we introduce three hypotheses:

(A1) Y is a Banach space, S is a nonempty set, j ∈ N, g1, . . . , gj : S −→ S , and
L1, . . . , Lj : S −→ R+,

(A2) T : YS −→ YS is an operator satisfying the inequality

∥∥T λ(x) – T μ(x)
∥∥ ≤

j∑

i=1

Li(x)
∥∥λ

(
gi(x)

)
– μ

(
gi(x)

)∥∥, λ,μ ∈ YS , x ∈ S ,

(A3) Λ : RS
+ −→R

S
+ is an operator defined as

Λδ(x) :=
j∑

i=1

Li(x)δ
(
gi(x)

)
δ ∈ R

S
+ , x ∈ S .
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Here we highlight the following theorem. which is a fundamental result in fixed point
theory [26, Theorem 1]. This result plays a key tool to obtain our objective in this paper.

Theorem 3.1 Let (A1)–(A3) hold and suppose that a function θ : S −→ R+ and a mapping
φ : S −→ Y fulfill the following two conditions:

∥∥T φ(x) – φ(x)
∥∥ ≤ θ (x), θ∗(x) :=

∞∑

l=0

Λlθ (x) < ∞ (x ∈ S).

Then there exists a unique fixed point ψ of T such that

∥∥φ(x) – ψ(x)
∥∥ ≤ θ∗(x) (x ∈ S).

Moreover, ψ(x) = liml→∞ T lφ(x) for all x ∈ S .

For a given the mapping f : V n −→ W , we define the difference operator Γ f : V n ×
V n −→ W by

Γ f (x1, x2) :=
∑

t∈{–2,2}n

f (x1 + tx2) –
n∑

p2=0

n–p2∑

p1=0

4n–p1–p2 (–6)p1 24p2 f
(
N n

(p1,p2)
)

for all x1, x2 ∈ V n, where f (N n
(p1,p2)) is defined in (2.1).

Definition 3.2 Let V be a vector space, let W be a normed space, and let ϕ : V n ×
V n −→R+ be a function. We call that a mapping f : V n −→ W is approximately ϕ(x1, x2)-
multiquartic or briefly approximately ϕ-multiquartic if

∥∥Γ f (x1, x2)
∥∥ ≤ ϕ(x1, x2)

(
x1, x2 ∈ V n). (3.1)

In addition, the mapping f : V n −→ W is called even in the jth variable if

f (z1, . . . , zj–1, –zj, zj+1, . . . , zn) = f (z1, . . . , zj–1, zj, zj+1, . . . , zn), z1, . . . , zn ∈ V .

We say that a mapping f : V n −→ W satisfies the approximately ϕ-even-zero conditions
if

(i) f is approximately ϕ-multiquartic;
(ii) f is even in each variable;

(iii) f (x) = 0 for any x ∈ V n with at least one component equal to 0.

Remark 3.3 We note that the approximately ϕ-even-zero conditions for the mapping f :
V n −→ W do not imply that f is multiquartic. Indeed, there are plenty of examples of f
with the mentioned conditions that are not multiquartic. Here we give a concrete example
for n = 2. Let (A,‖ · ‖) be a Banach algebra. Fix a unit vector a0 in A. Define the mapping
h : A × A −→ A by h(x, y) = ‖x‖‖y‖a0 for x, y ∈ A. Clearly, h satisfies conditions (ii) and
(iii). Define ϕ : A2 ×A2 −→R+ by

ϕ
(
(a1, b1), (a2, b2)

)
= c

(‖a1‖ + ‖a2‖
)(‖b1‖ + ‖b2‖

)
, (a1, b1), (a2, b2) ∈A2,
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where c ≥ 1172. A computation shows that

∥∥Γ h
(
(a1, b1), (a2, b2)

)∥∥ ≤ ϕ
(
(a1, b1), (a2, b2)

)
.

Hence h satisfies the approximately ϕ-even-zero conditions, but it is not a 2-multiquartic
mapping.

In the next theorem, we prove the Hyers–Ulam stability of the functional equation (2.2).

Theorem 3.4 Let s ∈ {–1, 1}, let V be a linear space, and let W be a Banach space. Suppose
that f : V n −→ W satisfies approximately ϕ-even-zero conditions and

lim
l→∞

(
1

24ns

)l

ϕ
(
2slx1, 2slx2

)
= 0 (3.2)

for all x1, x2 ∈ V n. If

Φ(x) =
1

2n+2n(s+1)

∞∑

l=0

(
1

24ns

)l

ϕ
(
0, 2sl+ s–1

2 x
)

< ∞ (3.3)

for all x ∈ V n, then there exists a unique multiquartic mapping Q : V n −→ W such that

∥∥f (x) – Q(x)
∥∥ ≤ Φ(x) (3.4)

for all x ∈ V n.

Proof Replacing (x1, x2) by (0, x) in (3.1) and using the assumptions, we have

∥∥∥∥∥∥
2nf (2x) –

n∑

p2=0

(
n
p2

)
4n–p2 24p2 2n–p2 f (x)

∥∥∥∥∥∥
≤ ϕ(0, x) (3.5)

for all x ∈ V n. We note that
∑n

p2=0
( n

p2

)
4n–p2 24p2 2n–p2 = (8 + 24)n = 32n. Inequality (3.5)

implies that

∥∥f (2x) – 24nf (x)
∥∥ ≤ 1

2n ϕ(0, x)
(
x ∈ V n). (3.6)

For each x ∈ V n, set

ξ (x) :=
1

2n+2n(s+1) ϕ
(
0, 2

s–1
2 x

)
, and T ξ (x) :=

1
24ns ξ

(
2sx

) (
ξ ∈ W V n)

.

Then relation (3.6) can be written as

∥∥f (x) – T f (x)
∥∥ ≤ ξ (x)

(
x ∈ V n). (3.7)

Define Λη(x) := 1
24ns η(2sx) for η ∈ R

V n
+ and x ∈ V n. We now see that Λ has the form de-

scribed in (A3) with S = V n, g1(x) = 2sx, and L1(x) = 1
24ns for x ∈ V n. Furthermore, for all
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λ,μ ∈ W V n and x ∈ V n, we get

∥∥T λ(x) – T μ(x)
∥∥ =

∥∥∥∥
1

24ns

[
λ
(
2sx

)
– μ

(
2sx

)]∥∥∥∥ ≤ L1(x)
∥∥λ

(
g1(x)

)
– μ

(
g1(x)

)∥∥.

This relation shows that hypothesis (A2) holds. By induction on l we can check for any
l ∈ N0 and x ∈ V n that

Λlξ (x) :=
(

1
24ns

)l

ξ
(
2slx

)
=

1
2n+2n(s+1)

(
1

24ns

)l

ϕ
(
0, 2sl+ s–1

2 x
)

(3.8)

for all x ∈ V n. Relations (3.3) and (3.8) ensure that all assumptions of Theorem 3.1 are
satisfied. Hence there exists a unique mapping Q : V n −→ W such that

Q(x) = lim
l→∞

(
T lf

)
(x) =

1
24ns Q

(
2sx

) (
x ∈ V n)

and (3.4) holds. We will show that

∥∥Γ
(
T lf

)
(x1, x2)

∥∥ ≤
(

1
24ns

)l

ϕ
(
2slx1, 2slx2

)
(3.9)

for all x1, x2 ∈ V n and l ∈N0. We argue by induction on l. Inequality (3.9) is valid for l = 0
by (3.1). Assume that (3.9) is true for l ∈N0. Then

∥∥Γ
(
T l+1f

)
(x1, x2)

∥∥

=

∥∥∥∥∥
∑

t∈{–2,2}n

(
T l+1f

)
(x1 + tx2) –

n∑

p2=0

n–p2∑

p1=0

4n–p1–p2 (–6)p1 24p2
(
T l+1f

)(
N n

(p1,p2)
)
∥∥∥∥∥

=
1

24ns

∥∥∥∥∥
∑

t∈{–2,2}n

(
T lf

)(
2s(x1 + tx2)

)
–

n∑

p2=0

n–p2∑

p1=0

4n–p1–p2 (–6)p1 24p2
(
T lf

)(
2sN n

(p1,p2)
)
∥∥∥∥∥

=
1

24ns

∥∥Γ
(
T lf

)(
2sx1, 2sx2

)∥∥ ≤
(

1
24ns

)l+1

ϕ
(
2s(l+1)x1, 2s(l+1)x2

)

for all x1, x2 ∈ V n. Letting l → ∞ in (3.9) and applying (3.2), we obtain that ΓQ(x1, x2) = 0
for all x1, x2 ∈ V n. So the mapping Q satisfies (2.2) and thus is multiquartic. This finishes
the proof. �

Let A be a nonempty set, let (X, d) bea metric space, let ψ ∈ R
An
+ , and let F1, F2 be

operators mapping a nonempty set D ⊂ XA into XAn . We say that the operator equation

F1ϕ(a1, . . . , an) = F2ϕ(a1, . . . , an) (3.10)

is ψ-hyperstable if every ϕ0 ∈ D satisfying the inequality

d
(
F1ϕ0(a1, . . . , an),F2ϕ0(a1, . . . , an)

) ≤ ψ(a1, . . . , an), a1, . . . , an ∈ A,

fulfils (3.10); this definition is introduced in [27]. Under some conditions, the functional
equation (2.2) can be hyperstable as the following corollary shows.
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Corollary 3.5 Let δ > 0. Suppose that χkj > 0 for k ∈ {1, 2} and j ∈ {1, . . . , n} fulfill
∑2

k=1
∑n

j=1 χkj �= 4n. Let V be a normed space, and let W be a Banach space. If f : V n −→ W
satisfies approximately

∏2
k=1

∏n
j=1 ‖xkj‖χkjδ-even-zero conditions, then it is multiquartic.

In the following corollaries, which are direct consequences of Theorem 3.4, we show
that the functional equation (2.2) is stable. Since the proofs are routine, we include them
without proofs.

Corollary 3.6 Let λ ∈ R with λ �= 4n. Let V be a normed space, and let W be a Banach
space. If f : V n −→ W satisfies approximately

∑2
k=1

∑n
j=1 ‖xkj‖λ-even-zero conditions, then

there exists a unique multiquartic mapping Q : V n −→ W such that

∥∥f (x) – Q(x)
∥∥ ≤

⎧
⎨

⎩

24n

25n(24n–2λ)

∑n
j=1 ‖x1j‖λ, λ < 4n,

1
2n(2λ–24n)

∑n
j=1 ‖x1j‖λ, λ > 4n,

for all x = x1 ∈ V n.

Corollary 3.7 Let δ > 0. Let V be a normed space, and let W be a Banach space. If
f : V n −→ W satisfies approximately δ-even-zero conditions, then there exists a unique
multiquartic mapping Q : V n −→ W such that

∥∥f (x) – Q(x)
∥∥ ≤ 24n

25n(24n – 1)
δ

for all x ∈ V n.

4 Conclusions
We have applied an alternative fixed point method to prove the Hyers–Ulam stability for
the multiquartic functional equations in the normed spaces, and we have proved that un-
der some mild conditions, every approximately multiquartic mapping is a multiquartic
mapping.
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24. Bahyrycz, A., Ciepliński, K., Olko, J.: On an equation characterizing multi-Cauchy–Jensen mappings and its

Hyers–Ulam stability. Acta Math. Sci. Ser. B Engl. Ed. 35, 1349–1358 (2015)
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