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Abstract
In the present paper, we firstly improve the results on traveling wave solution that
were established in (Liu and Weng in J. Differ. Equ. 258:3688–3741, 2015) for a neutral
reaction–diffusion equation with quasi-monotone reaction. Secondly, by
constructing two auxiliary equations and using Schauder’s Fixed Point Theorem, we
further establish the existence and the asymptotic properties of the traveling wave
solution for the equation with non-monotone reaction. Two examples are also given
as the application of our results.
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1 Introduction
In the present paper, we consider the following neutral reaction–diffusion equation

∂

∂t
L(u)(t, x) = D

∂2

∂x2 L(u)(t, x) + F
(
L(u)(t, x), u(t, x), u(t – r, x)

)
, t > 0, x ∈R, (1)

where L(u)(t, x) = u(t, x) – bu(t – r, x), and D > 0, r ≥ 0, 0 ≤ b < 1 are constants; F(0, 0, 0) =
F((1 – b)K , K , K) = 0 for some K > 0.

When b = 0, then Eq. (1) reduces to the delayed reaction–diffusion equation

∂

∂t
u(t, x) = D

∂2

∂x2 u(t, x) + F
(
u(t, x), u(t – r, x)

)
. (2)

A special case of such equations reads as

∂

∂t
u(t, x) = D

∂2

∂x2 u(t, x) – g
(
u(t, x)

)
+ h
(
u(t, x)

)∫

R

f
(
u(t – r, y)

)
J(x – y) dy, (3)

or its local version (taking formally J(x) = δ(x), the Dirac delta function)

∂

∂t
u(t, x) = D

∂2

∂x2 u(t, x) – g
(
u(t, x)

)
+ h
(
u(t, x)

)
f
(
u(t – r, x)

)
, (4)
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which has been wildly investigated in the literature (see [22, 26, 27, 31] and references
therein).

As a prototype of such equations, we mention the evolution model of the adult pop-
ulation of a single species with two age classes and moving around in an unbounded 1-
dimensional spatial domain as follows:

∂

∂t
u(t, x) = D

∂2

∂x2 u(t, x) – du(t, x) + ε

∫

R

1√
4πα

e– (x–y)2
4α b

(
u(t – r, y)

)
dy, (5)

which was derived by So, Wu and Zou [25], where D > 0 and d > 0 denote respectively
the diffusion and death rates of the adult population, r ≥ 0 is the maturation time for the
species, b(·) is the birth function, and ε > 0 and α ≥ 0 reflect the impact of the death and
the dispersal rates of the immature on the matured population, respectively.

There are also other prototypes of Eq. (2) or Eq. (3) which have been studied intensively,
such as the model

∂

∂t
u(t, x) = D

∂2

∂x2 u(t, x) – βu2(t, x) + αe–γ r
∫

R

1√
4πdr

e– (x–y)2
4dr u(t – r, y) dy, (6)

proposed by Gourley and Kuang [8] to describe the evolution of the mature population of
a single species with age structure, the well-known diffusive Hutchison’s equation

∂

∂t
u(t, x) = D

∂2

∂x2 u(t, x) + u(t, x)
(
1 – u(t – r, x)

)
, (7)

and Nicholson’s blowflies diffusive equation

∂

∂t
u(t, x) = D

∂2

∂x2 u(t, x) – du(t, x) + pu(t – r, x)eu(t–r,x), (8)

or its non-local version

∂

∂t
u(t, x) = D

∂2

∂x2 u(t, x) – du(t, x) + p
∫

R

K(x – y)u(t – r, y)eu(t–r,y) dy, (9)

and so on. For more details about these models, we refer the readers to [3, 18, 26, 33], and
the references therein.

The neutral equations are usually adopted to model the evolution of population [5, 7,
17]. To model a ring array of coupled lossless transmission lines, Wu and Xia [29] proposed
a neutral difference–differential system with discrete diffusion. In [30], by taking a limit,
they further derived the following partial neutral functional differential equation:

∂

∂t
[
u(t, x) – qu(t – r, x)

]
= d

∂2

∂x2

[
u(t, x) – qu(t – r, x)

]
– au(t, x)

– aqu(t – r, x) – g
[
u(t, x) – qu(t – r, x)

]
,

and established the existence and global continuation of rotating waves.
In the last few decades, neutral equations have been investigated wildly, and a variety of

themes have been touched, such as the existence and uniqueness, regularity and stability
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of solutions [1, 4, 9, 11, 14, 16, 28], periodic solutions [10, 24], controllability [23], and so
on. But, to the best of our knowledge, there are few works that treat the traveling wave
solution of partial neutral functional equations [12, 13, 20].

In [20], Liu and Weng established the existence of spreading speed and traveling wave
solution for Eq. (1) with 0 < b < 1 and with a quasi-monotone reaction (i.e., F(s1, s2, s3) is
monotone in s2, s3 ∈ [0, K]), and the equation

∂

∂t
L(u)(t, x) = D

∂2

∂x2 L(u)(t, x)

– aL(u)(t, x) +
p
2
[
u(t, x)e–u(t,x) + u(t – r, x)e–u(t–r,x)], (10)

where p > a > 0, 0 < b < 1, 1 < p
a(1–b) ≤ e.

However, when 0 ≤ b < 1, it is still an open problem to study the existence of travel-
ing wave solution for Eq. (1) with non-monotone reaction F(s1, s2, s3), or Eq. (10) with

p
a(1–b) > e.

Concerning the traveling wave solution for the delayed diffusion equation (not of neutral
type) with non-monotone reaction, we firstly cite the paper by Ma [22]. In this paper, the
author established the existence of a traveling wave solution for a non-local delayed diffu-
sion equation (3) with non-monotone function f by constructing two auxiliary equations
with monotone reaction and by using Schauder’s Fixed Point Theorem. This method is
powerful when dealing with the traveling wave solution of evolution equations with non-
monotone reaction (see [2, 6, 15, 19, 33–35] and the references therein). Another paper
we cite here is [36] by Yi and Zou. In it, the authors studied a class of non-monotone
discrete-time dynamical systems. By using two properly chosen auxiliary systems with
order preserving, they obtained results on the asymptotic behavior, the spreading speed,
and the existence/nonexistence of traveling waves which can be applied to many classes
of evolution equation with non-monotone nonlinearity in the reaction term.

Motivated by the above paper, we study the traveling wave solution for Eq. (1) with
0 ≤ b < 1 and with non-monotone reaction F(s1, s2, s3), and this paper is organized as
follows. In Sect. 2, we will relax some conditions which were stated in [20] and investi-
gate the existence and asymptotic properties of traveling wave solution for Eq. (1) with
quasi-monotone reaction F(s1, s2, s3), by adopting new super- and subsolutions and using
Schauder’s Fixed Point Theorem. In Sect. 3, we study the existence and asymptotic prop-
erties of the traveling wave solution for Eq. (1) with non-monotone reaction. Two special
models are discussed in Sect. 4 as an application of our results.

2 The quasi-monotone case
In this section, we study the existence of traveling wave solution for Eq. (1) with quasi-
monotone reaction F .

In [20], the authors have obtained the existence of a traveling wave solution for Eq. (1)
with quasi-monotone reaction F and with 0 < b < 1, but they imposed more stringent
conditions on the reaction function F because of the methods they used. Here we relax
some restrictions on F and use new methods to establish the existence of a traveling wave
solution for Eq. (1) and list basic assumptions as follows:

(H1) F((1 – b)s, s, s) > 0 for s ∈ (0, K) and F(s1, s2, s3) is non-decreasing with respect to
s2, s3 ∈ [0, K];
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(H2) F ′
2, F ′

3 ≥ 0, and F ′
1 + 1

1–b (F ′
2 + F ′

3) > 0, where F ′
j = ∂F

∂sj
(0, 0, 0), j = 1, 2, 3;

(H3) There exist σ ∈ (0, 1] and M1, M2, M3 ≥ 0, such that for any s1, s2, s3 ∈ [0, K],

0 ≤ F ′
1s1 + F ′

2s2 + F ′
3s3 – F(s1, s2, s3) ≤ M1s1+σ

1 + M2s1+σ
2 + M3s1+σ

3 ;

(H4) F(s1, s2, s3) is Lipschitz continuous with respect to s1, s2, s3 ∈ [0, K].
Let v(t, x) := L(u)(t, x), then we get

u(t, x) =
+∞∑

i=0

biv(t – ir, x), (11)

and Eq. (1) is transformed into a partial functional differential equation with infinite num-
ber of delays as follows:

∂

∂t
v(t, x) = D

∂2

∂x2 v(t, x) + F

(

v(t, x),
+∞∑

i=0

biv(t – ir, x),
+∞∑

i=0

biv
(
t – (i + 1)r, x

)
)

. (12)

Obviously, v ≡ 0 and v ≡ (1 – b)K are exactly two equilibria of Eq. (12).
It is clear that the traveling wave solution v(t, x) = V (ξ ) (ξ = x+ct) of Eq. (12) is a solution

of the wave profile equation

cV ′(ξ ) = DV ′′(ξ ) + F

(

V (ξ ),
+∞∑

i=0

biV (ξ – cir),
+∞∑

i=0

biV
(
ξ – c(i + 1)r

)
)

, ξ ∈R. (13)

Next, we pursue the solution V (ξ ) of Eq. (13), which satisfies

V (–∞) = 0, V (+∞) = (1 – b)K .

Let q(λ, c) = 0 be the characteristic equation of Eq. (13) at V = 0, where

q(λ, c) = Dλ2 – cλ + F ′
1 + F ′

2

+∞∑

i=0

bie–λcir + F ′
3

+∞∑

i=0

bie–λc(i+1)r

= Dλ2 – cλ + F ′
1 +

1
1 – be–λcr

(
F ′

2 + F ′
3e–λcr). (14)

By a similar argument as in [20], we obtain the following lemma.

Lemma 1 Assume (H2) holds. Then there exists a pair (λ∗, c∗) such that
(i) q(λ∗, c∗) = 0, ∂q

∂λ
(λ∗, c∗) = 0;

(ii) If c ∈ (0, c∗), then q(λ, c) > 0 for all λ > 0;
(iii) For any c > c∗, q(λ, c) = 0 has two roots λ1 and λ2 with 0 < λ1 < λ2 and q(λ, c) < 0 for

all λ ∈ (λ1,λ2).

Remark 1 It is clear that c∗ in Lemma 1 can also be defined by

c∗ = inf
{

c > 0 : q(c,λ) = 0 for some λ > 0
}

. (15)
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Definition 1 V : R→ R is called a supersolution (subsolution) of Eq. (13), if V is contin-
uous on R, twice differentiable on R \ Γ , V ′(ξ+) ≤ (≥) V ′(ξ–), ξ ∈ Γ and satisfies

DV ′′(ξ ) – cV ′(ξ ) + F

(

V (ξ ),
+∞∑

i=0

biV (ξ – cir),
+∞∑

i=0

biV
(
ξ – c(i + 1)r

)
)

≤ (≥) 0, ξ ∈R \ Γ , (16)

where Γ is a finite set.

For any c > c∗, define the functions

V (ξ ) = min
{

(1 – b)K ,α
(
eλ1ξ + θeβλ1ξ

)}
, V (ξ ) = max

{
0,α

(
eλ1ξ – θeβλ1ξ

)}
, (17)

where 1 < β < min{1 + σ , λ2
λ1

}.
Let ξ1, ξ2 be the roots of equations

α
(
eλ1ξ + θeβλ1ξ

)
= (1 – b)K and α

(
eλ1ξ – θeβλ1ξ

)
= 0,

respectively, then ξ2 = – ln θ
λ1(β–1) ≤ 0 whenever θ ≥ 1. By [32, Lemma 2.2], we have the fol-

lowing lemma.

Lemma 2 V (ξ ) and V (ξ ) have the following properties:
(i) V (ξ ) ≥ V (ξ ), ξ ∈R;

(ii) V (ξ ) is non-decreasing on R;
(iii) For any ξ ′, ξ ′′ ∈R, |V (ξ ′) – V (ξ ′′)| ≤ αβλ1(1 – b)K |ξ ′ – ξ ′′|.

Lemma 3 Assume (H1)–(H3) hold, and for any c > c∗, α, θ satisfy the inequalities:

α ≥ 0, θ ≥ 1, and θq(βλ1, c) + ασ

[
M1 +

1
(1 – b)1+σ

(M2 + M3)
]

≤ 0, (18)

then V (ξ ) and V (ξ ) are a supersolution and a subsolution of Eq. (13), respectively.

Proof Firstly, we show that V (ξ ) is a supersolution of Eq. (13). In fact, by the definition of
V (ξ ), V (ξ ) = (1 – b)K for any ξ > ξ1, and V (ξ ) = α(eλ1ξ + θeβλ1ξ ) for any ξ ≤ ξ1, so V (ξ )
is continuous on R, twice differentiable on R \ {ξ1}, V ′(ξ1+) = 0 ≤ V ′(ξ1–) = α(λ1eλ1ξ1 +
θβλ1eβλ1ξ1 ).

Furthermore, V (ξ ) ≤ (1 – b)K for all ξ ∈R, so from (H1) it follows that, for any ξ > ξ1,

DV ′′(ξ ) – cV ′(ξ ) + F

(

V (ξ ),
+∞∑

i=0

biV (ξ – cir),
+∞∑

i=0

biV
(
ξ – c(i + 1)r

)
)

≤ F
(
(1 – b)K , K , K

)
= 0.
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On the other hand, by Lemma 1(iii), we have q(βλ1, c) < 0. Again, for any ξ < ξ1, V (ξ –
cir) = α(eλ1(ξ–cir) + θeβλ1(ξ–cir)) (i = 0, 1, 2, . . .). So from (H3) we have

DV ′′(ξ ) – cV ′(ξ ) + F

(

V (ξ ),
+∞∑

i=0

biV (ξ – cir),
+∞∑

i=0

biV
(
ξ – c(i + 1)r

)
)

=
(
Dλ2

1 – cλ1
)
αeλ1ξ +

[
D(βλ1)2 – cβλ1

]
αθeβλ1ξ

+ F

(

V (ξ ),
+∞∑

i=0

biV (ξ – cir),
+∞∑

i=0

biV
(
ξ – c(i + 1)r

)
)

= q(λ1, c)αeλ1ξ + q(βλ1, c)αθeβλ1ξ

–

[

F ′
1 + F ′

2

+∞∑

i=0

bie–λ1cir + F ′
3

+∞∑

i=0

bie–λ1c(i+1)r

]

αeλ1ξ

–

[

F ′
1 + F ′

2

+∞∑

i=0

bie–βλ1cir + F ′
3

+∞∑

i=0

bie–βλ1c(i+1)r

]

αθeβλ1ξ

+ F

(

V (ξ ),
+∞∑

i=0

biV (ξ – cir),
+∞∑

i=0

biV
(
ξ – c(i + 1)r

)
)

< –

[

F ′
1V (ξ ) + F ′

2

+∞∑

i=0

biV (ξ – cir) + F ′
3

+∞∑

i=0

biV
(
ξ – c(i + 1)r

)
]

+ F

(

V (ξ ),
+∞∑

i=0

biV (ξ – cir),
+∞∑

i=0

biV
(
ξ – c(i + 1)r

)
)

≤ 0.

Next, we prove that V (ξ ) is a subsolution of Eq. (13). In fact, we have V (ξ ) = 0 for ξ > ξ2,
and V (ξ ) = α(eλ1ξ – θeβλ1ξ ) for ξ ≤ ξ2, so V (ξ ) is continuous on R, twice differentiable on
R \ {ξ2}, V ′(ξ2+) = 0 ≥ V ′(ξ2–) = αλ1(1 – β)θ

1
1–β . Note that V (ξ ) ≥ 0 for all ξ ∈ R, we get

from (H1) that, for ξ > ξ2,

DV ′′(ξ ) – cV ′(ξ ) + F

(

V (ξ ),
+∞∑

i=0

biV (ξ – cir),
+∞∑

i=0

biV
(
ξ – c(i + 1)r

)
)

≥ F(0, 0, 0) = 0.

On the other hand, for any ξ < ξ2, V (ξ – cir) = α(eλ1(ξ–cir) – θeβλ1(ξ–cir)) (i = 0, 1, 2, . . .),
then from (H1), (H3) and Lemma 1(iii), we get

DV ′′(ξ ) – cV ′(ξ ) + F

(

V (ξ ),
+∞∑

i=0

biV (ξ – cir),
+∞∑

i=0

biV
(
ξ – c(i + 1)r

)
)

=
(
Dλ2

1 – cλ1
)
αeλ1ξ –

[
D(βλ1)2 – cβλ1

]
αθeβλ1ξ

+ F

(

V (ξ ),
+∞∑

i=0

biV (ξ – cir),
+∞∑

i=0

biV
(
ξ – c(i + 1)r

)
)

= q(λ1, c)αeλ1ξ – q(βλ1, c)αθeβλ1ξ –

[

F ′
1 + F ′

2

+∞∑

i=0

bie–λ1cir + F ′
3

+∞∑

i=0

bie–λ1c(i+1)r

]

αeλ1ξ
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+

[

F ′
1 + F ′

2

+∞∑

i=0

bie–βλ1cir + F ′
3

+∞∑

i=0

bie–βλ1c(i+1)r

]

αθeβλ1ξ

+ F

(

V (ξ ),
+∞∑

i=0

biV (ξ – cir),
+∞∑

i=0

biV
(
ξ – c(i + 1)r

)
)

= –q(βλ1, c)αθeβλ1ξ –

[

F ′
1V (ξ ) + F ′

2

+∞∑

i=0

biV (ξ – cir) + F ′
3

+∞∑

i=0

biV
(
ξ – c(i + 1)r

)

– F

(

V (ξ ),
+∞∑

i=0

biV (ξ – cir),
+∞∑

i=0

biV
(
ξ – c(i + 1)r

)
)]

≥ –q(βλ1, c)αθeβλ1ξ – M1V 1+σ (ξ ) – M2

[ +∞∑

i=0

biV (ξ – cir)

]1+σ

– M3

[ +∞∑

i=0

biV
(
ξ – c(i + 1)r

)
]1+σ

= –eβλ1ξ

{

αθq(βλ1, c) + M1e–βλ1ξ V 1+σ (ξ ) + M2e–βλ1ξ

[ +∞∑

i=0

biV (ξ – cir)

]1+σ

+ M3e–βλ1ξ

[ +∞∑

i=0

biV
(
ξ – c(i + 1)r

)
]1+σ}

≥ –eβλ1ξ

{

αθq(βλ1, c) + M1α
1+σ e(1+σ–β)λ1ξ + M2α

1+σ e(1+σ–β)λ1ξ

( +∞∑

i=0

bie–λ1cir

)1+σ

+ M3α
1+σ e(1+σ–β)λ1ξ

( +∞∑

i=0

bie–λ1c(i+1)r

)1+σ}

≥ –αeβλ1ξ

{

θq(βλ1, c) + ασ

[

M1 + M2

( +∞∑

i=0

bi

)1+σ

+ M3

( +∞∑

i=0

bi

)1+σ]}

= –αeβλ1ξ

{
θq(βλ1, c) + ασ

[
M1 +

1
(1 – b)1+σ

(M2 + M3)
]}

≥ 0. �

From the above lemma, we indeed get a family of pairs of super- and subsolutions which
take α, β , θ as parameters. Next, we just adopt a pair of super- and subsolution with α = 1,
and still denote them by V , V .

By (H4), there exist L1, L2, L3 > 0, such that, for any s′
i, s′′

i ∈ [0, K], i = 1, 2, 3,

∣∣F
(
s′

1, s′
2, s′

3
)

– F
(
s′′

1, s′′
2, s′′

3
)∣∣≤ L1

∣∣s′
1 – s′′

1
∣∣ + L2

∣∣s′
2 – s′′

2
∣∣ + L3

∣∣s′
3 – s′′

3
∣∣.

Let γ ≥ L1 and rewrite Eq. (13) as follows:

cV ′(ξ ) – DV ′′(ξ ) + γ V (ξ )

= γ V (ξ ) + F

(

V (ξ ),
+∞∑

i=0

biV (ξ – cir),
+∞∑

i=0

biV
(
ξ – c(i + 1)r

)
)

. (19)
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Set

Λ1 =
c –

√
c2 + 4Dγ

2D
< 0, Λ2 =

c +
√

c2 + 4Dγ

2D
> 0, (20)

and let 0 < μ < Λ2. Define

‖V‖μ := sup
ξ∈R

∣∣V (ξ )
∣∣e–μξ ; E :=

{
V ∈ C(R;R) : ‖V‖μ < +∞}

,

and

Ω :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

V ∈ E

∣∣∣
∣∣
∣∣
∣∣

(i) V (ξ ) is nondecreasing on R;
(ii) V (ξ ) ≤ V (ξ ) ≤ V (ξ ) for all ξ ∈R;

(iii)
∣
∣V (ξ ′) – V (ξ ′′)

∣
∣≤ 2(1 – b)K

√
γ

D
∣
∣ξ ′ – ξ ′′∣∣ for all ξ ′, ξ ′′ ∈R

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

then (E,‖ · ‖μ) is a Banach space. Obviously, V ∈ Ω with βλ1 ≤ 2
√

γ

D , i.e., Ω is non-empty.
Moreover, it is easy to verify that Ω is convex and compact in E.

Set

H(V )(ξ ) = γ V (ξ ) + F

(

V (ξ ),
+∞∑

i=0

biV (ξ – cir),
+∞∑

i=0

biV
(
ξ – c(i + 1)r

)
)

, (21)

and define an operator T on Ω by

T (V )(ξ ) =
1

D(Λ2 – Λ1)

[∫ ξ

–∞
eΛ1(ξ–s)H(V )(s) ds +

∫ +∞

ξ

eΛ2(ξ–s)H(V )(s) ds
]

, (22)

then a fixed point V (ξ ) of T is the solution of Eq. (13), and vice versa.

Lemma 4 Assume (H1) and (H4) hold, then
(1) 0 ≤ T [V ](ξ ) ≤ (1 – b)K for all V ∈ C(R; [0, (1 – b)K]);
(2) For any ξ ∈R,T [V ](ξ ) is non-decreasing with respect to V ∈ C(R; [0, (1 – b)K]);
(3) V (ξ ) ≤ T [V ](ξ ) ≤ T [V ](ξ ) ≤ T [V ](ξ ) ≤ V (ξ ) for any V ∈ Ω , ξ ∈R;
(4) For any V ∈ Ω ,T [V ](ξ ) is non-decreasing with respect to ξ ∈R;
(5) For any V ∈ Ω and ξ ′, ξ ′′ ∈R, it follows that

∣∣T [V ]
(
ξ ′) – T [V ]

(
ξ ′′)∣∣≤ 2(1 – b)K

√
γ

D
∣∣ξ ′ – ξ ′′∣∣.

Proof (1) Firstly, we claim that, for any ξ ∈ R, H[V ](ξ ) is non-decreasing with respect to
V ∈ C(R; [0, (1 – b)K]).

In fact, for any V1, V2 ∈ C(R; [0, (1 – b)K]) with V1(ξ ) ≤ V2(ξ ), ξ ∈ R, it follows that

H[V2](ξ ) – H[V1](ξ )

= γ
[
V2(ξ ) – V1(ξ )

]
+ F

(

V2(ξ ),
+∞∑

i=0

biV2(ξ – cir),
+∞∑

i=0

biV2
(
ξ – c(i + 1)r

)
)
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– F

(

V1(ξ ),
+∞∑

i=0

biV1(ξ – cir),
+∞∑

i=0

biV1
(
ξ – c(i + 1)r

)
)

≥ γ
[
V2(ξ ) – V1(ξ )

]
+ F

(

V2(ξ ),
+∞∑

i=0

biV1(ξ – cir),
+∞∑

i=0

biV1
(
ξ – c(i + 1)r

)
)

– F

(

V1(ξ ),
+∞∑

i=0

biV1(ξ – cir),
+∞∑

i=0

biV1
(
ξ – c(i + 1)r

)
)

≥ (γ – L1)
[
V2(ξ ) – V1(ξ )

]≥ 0.

The claim holds. So, for any V ∈ C(R; [0, (1 – b)K]),

0 ≤ H[V ](ξ ) ≤ H
[
(1 – b)K

]
= γ (1 – b)K + F

(
(1 – b)K , K , K

)
= γ (1 – b)K , ξ ∈R,

and then, we get that, for any V ∈ C(R; [0, (1 – b)K]), ξ ∈ R,

0 ≤ T [V ](ξ ) ≤ γ (1 – b)K
D(Λ2 – Λ1)

[∫ ξ

–∞
eΛ1(ξ–s) ds +

∫ +∞

ξ

eΛ2(ξ–s) ds
]

= (1 – b)K .

(2) The monotonicity of T [V ](ξ ) with respect to V ∈ C(R; [0, (1 – b)K]) follows from
that of H[V ](ξ ).

(3) For any V ∈ Ω , from (2), we get that

T [V ](ξ ) ≤ T [V ](ξ ) ≤ T [V ](ξ ), ξ ∈R,

and a similar argument as in [21] shows that

V (ξ ) ≤ T [V ](ξ ), T [V ](ξ ) ≤ V (ξ ), ξ ∈R.

(4) For any V ∈ Ω and ξ ′, ξ ′′ ∈ R with ξ ′ ≤ ξ ′′, we have V (ξ ′) ≤ V (ξ ′′), so H(V )(ξ ′) ≤
H(V )(ξ ′′). Noting the fact that

T (V )(ξ ) =
1

D(Λ2 – Λ1)

[∫ ξ

–∞
eΛ1(ξ–s)H(V )(s) ds +

∫ +∞

ξ

eΛ2(ξ–s)H(V )(s) ds
]

=
1

D(Λ2 – Λ1)

[∫ +∞

0
eΛ1sH(V )(ξ – s) ds +

∫ 0

–∞
eΛ2sH(V )(ξ – s) ds

]
,

it is easy to see that T (V )(ξ ) is non-decreasing with respect to ξ ∈R.
(5) For any V ∈ Ω , we have 0 ≤ H[V ](ξ ) ≤ γ (1 – b)K , ξ ∈R, and then, for any ξ ′, ξ ′′ ∈R

with ξ ′ ≥ ξ ′′,

D(Λ2 – Λ1)
∣∣T (V )

(
ξ ′) – T (V )

(
ξ ′′)∣∣

≤
∣∣
∣∣

∫ ξ ′

–∞
eΛ1(ξ ′–s)H(V )(s) ds –

∫ ξ ′′

–∞
eΛ1(ξ ′′–s)H(V )(s) ds

∣∣
∣∣

+
∣
∣∣
∣

∫ +∞

ξ ′
eΛ2(ξ ′–s)H(V )(s) ds –

∫ +∞

ξ ′′
eΛ2(ξ ′′–s)H(V )(s) ds

∣
∣∣
∣
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≤
∫ ξ ′

ξ ′′
eΛ1(ξ ′–s)H(V )(s) ds +

∫ ξ ′′

–∞

∣∣eΛ1(ξ ′–s) – eΛ1(ξ ′′–s)∣∣H(V )(s) ds

+
∫ +∞

ξ ′

∣∣eΛ2(ξ ′–s) – eΛ2(ξ ′′–s)∣∣H(V )(s) ds +
∫ ξ ′

ξ ′′
eΛ2(ξ ′′–s)H(V )(s) ds

≤ γ (1 – b)K
{∫ ξ ′

ξ ′′
eΛ1(ξ ′–s) ds +

∫ ξ ′′

–∞

[
eΛ1(ξ ′′–s) – eΛ1(ξ ′–s)]ds

+
∫ +∞

ξ ′

[
eΛ2(ξ ′–s) – eΛ2(ξ ′′–s)]ds +

∫ ξ ′

ξ ′′
eΛ2(ξ ′′–s) ds

}

≤ γ (1 – b)K
{

2
∣
∣ξ ′ – ξ ′′∣∣ +

1
Λ1

[
eΛ1(ξ ′–ξ ′′) – 1

]
+

1
Λ2

[
1 – eΛ2(ξ ′′–ξ ′)]

}

≤ 4γ (1 – b)K
∣∣ξ ′ – ξ ′′∣∣,

i.e.,

∣
∣T (V )

(
ξ ′) – T (V )

(
ξ ′′)∣∣≤ 4γ (1 – b)K

D(Λ2 – Λ1)
∣
∣ξ ′ – ξ ′′∣∣≤ 2(1 – b)K

√
γ

D
∣
∣ξ ′ – ξ ′′∣∣. �

Theorem 1 Assume that (H1)–(H4) hold. Then
(1) For any c ≥ c∗, the traveling wave solution V (ξ ) of Eq. (12) exists; V (ξ ) is

nondecreasing on R, V (–∞) = 0, and V (+∞) = (1 – b)K . In addition, for c > c∗,

lim
ξ→–∞ V (ξ )e–λ1ξ = 1 and lim

ξ→–∞ V ′(ξ )e–λ1ξ = λ1;

(2) For any c < c∗ and λ > 0, there is no traveling solution V (ξ ) of Eq. (12) which satisfies

lim
ξ→–∞ V (ξ )e–λξ = 1 and lim

ξ→–∞ V ′(ξ )e–λξ = λ.

Proof (1) Firstly, by Lemma 4, we have T (Ω) ⊂ Ω .
Next, we will show that T is continuous with respect to ‖ · ‖μ in Ω .
In fact, for any V1, V2 ∈ Ω , we have

∣∣T (V1)(ξ ) – T (V2)(ξ )
∣∣e–μξ

=
e–μξ

D(Λ2 – Λ1)

∣∣
∣∣

[∫ ξ

–∞
eΛ1(ξ–s)H(V1)(s) ds +

∫ +∞

ξ

eΛ2(ξ–s)H(V1)(s) ds
]

–
[∫ ξ

–∞
eΛ1(ξ–s)H(V2)(s) ds +

∫ +∞

ξ

eΛ2(ξ–s)H(V2)(s) ds
]∣∣∣
∣

≤ e–μξ

D(Λ2 – Λ1)

[∫ ξ

–∞
eΛ1(ξ–s)∣∣H(V1)(s) – H(V2)(s)

∣
∣ds

+
∫ +∞

ξ

eΛ2(ξ–s)∣∣H(V1)(s) – H(V2)(s)
∣
∣ds

]

≤ e–μξ

D(Λ2 – Λ1)

{

(γ + L1)
[∫ ξ

–∞
eΛ1(ξ–s)∣∣V1(s) – V2(s)

∣∣ds

+
∫ +∞

ξ

eΛ2(ξ–s)∣∣V1(s) – V2(s)
∣∣ds

]
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+ L2

[∫ ξ

–∞
eΛ1(ξ–s)

+∞∑

i=0

bi∣∣V1(s – cir) – V2(s – cir)
∣∣ds

+
∫ +∞

ξ

eΛ2(ξ–s)
+∞∑

i=0

bi∣∣V1(s – cir) – V2(s – cir)
∣∣ds

]

+ L3

[∫ ξ

–∞
eΛ1(ξ–s)

+∞∑

i=0

bi∣∣V1
(
s – c(i + 1)r

)
– V2

(
s – c(i + 1)r

)∣∣ds

+
∫ +∞

ξ

eΛ2(ξ–s)
+∞∑

i=0

bi∣∣V1
(
s – c(i + 1)r

)
– V2

(
s – c(i + 1)r

)∣∣ds

]}

≤ ‖V1 – V2‖μe–μξ

D(Λ2 – Λ1)

{

(γ + L1)
[∫ ξ

–∞
eΛ1(ξ–s) · eμs ds +

∫ +∞

ξ

eΛ2(ξ–s) · eμs ds
]

+ L2

[∫ ξ

–∞
eΛ1(ξ–s)

+∞∑

i=0

bieμ(s–cir) ds +
∫ +∞

ξ

eΛ2(ξ–s)
+∞∑

i=0

bieμ(s–cir) ds

]

+ L3

[∫ ξ

–∞
eΛ1(ξ–s)

+∞∑

i=0

bieμ(s–c(i+1)r) ds +
∫ +∞

ξ

eΛ2(ξ–s)
+∞∑

i=0

bieμ(s–c(i+1)r) ds

]}

≤ ‖V1 – V2‖μe–μξ

D(Λ2 – Λ1)

{(
γ + L1 +

L2 + L3e–cr

1 – be–cr

)

×
[∫ ξ

–∞
eΛ1(ξ–s) · eμs ds +

∫ +∞

ξ

eΛ2(ξ–s) · eμs ds
]}

=
‖V1 – V2‖μ

D(Λ2 – μ)(μ – Λ1)

(
γ + L1 +

L2 + L3e–cr

1 – be–cr

)
.

By virtue of Schauder’s Fixed Point Theorem, for any c > c∗, there exists a fixed point
V (ξ ) of T (V ) on Ω , i.e., there exists traveling wave solution V (ξ ) of Eq. (12) which is
nondecreasing on R, and V (–∞) = 0, V (+∞) = (1 – b)K .

Furthermore, by using a similar argument to the proof of [20, Theorem 3.3], we get

lim
ξ→–∞ V (ξ )e–λ1ξ = 1 and lim

ξ→–∞ V ′(ξ )e–λ1ξ = λ1.

For the case c = c∗, let {cn} be a sequence such that cn > c∗, n = 1, 2, . . . , and limn→+∞ cn =
c∗, then for c = cn, n = 1, 2, . . . , Eq. (12) admits a nondecreasing solution Vn(ξ ), which sat-
isfies

Vn(ξ ) =
1

D(Λ2,n – Λ1,n)

[∫ ξ

–∞
eΛ1,n(ξ–s)H(Vn)(s) ds +

∫ +∞

ξ

eΛ2,n(ξ–s)H(Vn)(s) ds
]

and

Vn(0) =
(1 – b)K

2
, Vn(–∞) = 0, Vn(+∞) = (1 – b)K ,

where

Λ1,n =
cn –

√
c2

n + 4Dγ

2D
< 0, Λ2,n =

cn +
√

c2
n + 4Dγ

2D
> 0, n = 1, 2, . . . .
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Adopting a limit argument similar to the proof of [20, Theorem 3.3] or [34, Theo-
rem 2.5], we can obtain a subsequence of {Vn(ξ )} which is convergent uniformly for ξ in
any bounded subset of R. Without loss of generality, denote it still by {Vn(ξ )}, then there
exists limit limn→+∞ Vn(ξ ) = V∗(ξ ), ξ ∈R, and V∗(0) = (1–b)K

2 , V∗(ξ ) is nondecreasing in R,
V∗(–∞) = 0, and V∗(+∞) = (1 – b)K .

(2) Suppose that there exist some c < c∗ and λ > 0, such that the traveling wave solution
V (ξ ) of Eq. (12) exists and satisfies

lim
ξ→–∞ V (ξ )e–λξ = 1, lim

ξ→–∞ V ′(ξ )e–λξ = λ,

then we have

cV ′(ξ )e–λξ

= DV ′′(ξ )e–λξ + e–λξ F

(

V (ξ ),
+∞∑

i=0

biV (ξ – cir),
+∞∑

i=0

biV
(
ξ – c(i + 1)r

)
)

.

Let ξ → –∞, we get

D lim
ξ→–∞ V ′′(ξ )e–λξ = cλ – F ′

1 – F ′
2

+∞∑

i=0

bie–λcir – F ′
3

+∞∑

i=0

bie–λc(i+1)r,

and then

D lim
ξ→–∞

[
V ′(ξ )e–λξ

]′

= –Dλ2 + cλ – F ′
1 – F ′

2

+∞∑

i=0

bie–λcir – F ′
3

+∞∑

i=0

bie–λc(i+1)r

= –q(λ, c).

From limξ→–∞ V ′(ξ )e–λξ = λ, we get limξ→–∞[V ′(ξ )e–λξ ]′ = 0, so q(λ, c) = 0. This is a
contradiction to Lemma 1(ii). �

Theorem 2 Assume that (H1)–(H4) hold. Then
(1) For any c ≥ c∗, the traveling wave solution U(ξ ) of Eq. (1) exists; U(ξ ) is

nondecreasing on R, U(–∞) = 0, U(+∞) = K , and for any c > c∗,

lim
ξ→–∞ U(ξ )e–λ1ξ =

1
1 – be–λ1cr and lim

ξ→–∞ U ′(ξ )e–λ1ξ =
λ1

1 – be–λ1cr ;

(2) For any c < c∗ and λ > 0, there is no traveling solution U(ξ ) of Eq. (1) which satisfies

lim
ξ→–∞ U(ξ )e–λξ =

1
1 – be–λcr and lim

ξ→–∞ U ′(ξ )e–λξ =
λ

1 – be–λcr .

Proof (1) For any c ≥ c∗, by the Theorem 1, the traveling wave solution V (ξ ) of Eq. (12)
exists, and V (ξ ) is nondecreasing on R, V (–∞) = 0, V (+∞) = (1 – b)K , and for any c > c∗,

lim
ξ→–∞ V (ξ )e–λ1ξ = 1 and lim

ξ→–∞ V ′(ξ )e–λ1ξ = λ1.
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Firstly, the boundedness of V (ξ – cir) (i = 0, 1, . . .) implies that
∑+∞

i=0 biV (ξ – cir) is
uniformly convergent on ξ ∈ R. Let U(ξ ) =

∑+∞
i=0 biV (ξ – cir), then U(ξ ) is a travel-

ing wave solution of Eq. (1) and is non-decreasing on R, U(–∞) = 0, U(+∞) = K and
U ′(ξ ) =

∑+∞
i=0 biV ′(ξ – cir).

Furthermore, for any c > c∗,
∑+∞

i=0 biV (ξ – cir)e–λ1ξ and
∑+∞

i=0 biV ′(ξ – cir)e–λ1ξ are uni-
formly convergent for ξ ∈R, respectively, since

lim
ξ→–∞ V (ξ – cir)e–λ1(ξ–cir) = 1, lim

ξ→–∞ V ′(ξ – cir)e–λ1(ξ–cir) = λ1

for all i = 0, 1, 2 . . . , and

+∞∑

i=0

bie–λ1cir =
1

1 – be–λ1cr .

So,

lim
ξ→–∞ U(ξ )e–λ1ξ = lim

ξ→–∞

+∞∑

i=0

biV (ξ – cir)e–λ1(ξ–cir)e–λ1cir =
1

1 – be–λ1cr ;

and

lim
ξ→–∞ U ′(ξ )e–λ1ξ = lim

ξ→–∞

+∞∑

i=0

biV ′(ξ – cir)e–λ1(ξ–cir)e–λ1cir =
λ1

1 – be–λ1cr .

(2) Assume that there exist c < c∗ and λ > 0, such that Eq. (1) has traveling wave solution
U(ξ ) which satisfies

lim
ξ→–∞ U(ξ )e–λξ =

1
1 – be–λcr and lim

ξ→–∞ U ′(ξ )e–λξ =
λ

1 – be–λcr .

Let V (ξ ) = U(ξ ) – bU(ξ – cr), then V (ξ ) is a traveling wave solution of Eq. (12) and

lim
ξ→–∞ V (ξ )e–λξ = lim

ξ→–∞
[
U(ξ )e–λξ – bU(ξ – cr)e–λ(ξ–cr)e–λcr] = 1;

and

lim
ξ→–∞ V ′(ξ )e–λξ = lim

ξ→–∞
[
U ′(ξ )e–λξ – bU ′(ξ – cr)e–λ(ξ–cr)e–λcr] = λ.

This is a contradiction to Theorem 1(2). �

3 The non-monotone case
In this section, we will discuss the traveling wave solution of Eq. (1) with the non-
monotone reaction F(s1, s2, s3), and we need the following assumptions: there exist con-
tinuous functions F±(s1, s2, s3) and constants K1, K2 > 0, such that K1 ≤ K ≤ K2 and

(A1) F±(0, 0, 0) = 0, F+((1 – b)K2, K2, K2) = F–((1 – b)K1, K1, K1) = 0, F+((1 – b)s, s, s) > 0
for s ∈ (0, K2) and F–((1 – b)s, s, s) > 0 for s ∈ (0, K1);

(A2) F–(s1, s2, s3) ≤ F(s1, s2, s3) ≤ F+(s1, s2, s3) for s1, s2, s3 ∈ [0, K2];
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(A3) F ′±,j = F ′
j , where F ′±,j are defined similarly to F ′

j in (H4), j = 1, 2, 3;
(A4) There exist σ ∈ (0, 1] and M±,1, M±,2, M±,3 ≥ 0, such that

0 ≤ F ′
–,1s1 + F ′

–,2s2 + F ′
–,3s3 – F–(s1, s2, s3) ≤ M–,1s1+σ

1 + M–,2s1+σ
2 + M–,3s1+σ

3 ;

for any s1, s2, s3 ∈ [0, K1], and

0 ≤ F ′
+,1s1 + F ′

+,2s2 + F ′
+,3s3 – F+(s1, s2, s3) ≤ M+,1s1+σ

1 + M+,2s1+σ
2 + M+,3s1+σ

3 ;

for any s1, s2, s3 ∈ [0, K2];
(A5) F±(s1, s2, s3) is non-decreasing with respect to s2, s3 ∈ [0, K2] and Lipschitz

continuous with respect to s1, s2, s3 ∈ [0, K2].
Consider the following equations:

∂

∂t
L(u)(t, x) = D

∂2

∂x2 L(u)(t, x) + F+
(
L(u)(t, x), u(t, x), u(t – r, x)

)
(23)

and

∂

∂t
L(u)(t, x) = D

∂2

∂x2 L(u)(t, x) + F–
(
L(u)(t, x), u(t, x), u(t – r, x)

)
. (24)

From (A1), it is obvious that u ≡ 0 and u ≡ K1 are equilibria of Eq. (23) and u ≡ 0 and
u ≡ K2 are those of Eq. (24).

By the transformation v(t, x) = L(u)(t, x), Eqs. (23) and (24) reduce to

∂v
∂t

(t, x) = D
∂2v
∂x2 (t, x) + F+

(

v(t, x),
+∞∑

i=0

biv(t – ir, x),
+∞∑

i=0

biv
(
t – (i + 1)r, x

)
)

(25)

and

∂v
∂t

(t, x) = D
∂2v
∂x2 (t, x) + F–

(

v(t, x),
+∞∑

i=0

biv(t – ir, x),
+∞∑

i=0

biv
(
t – (i + 1)r, x

)
)

, (26)

respectively, and the wave profile equations are given as follows:

cV ′(ξ ) = DV ′′ + F+

(

V (ξ ),
+∞∑

i=0

biV (ξ – cir),
+∞∑

i=0

biV
(
ξ – c(i + 1)r

)
)

(27)

and

cV ′(ξ ) = DV ′′ + F–

(

V (ξ ),
+∞∑

i=0

biV (ξ – cir),
+∞∑

i=0

biV
(
ξ – c(i + 1)r

)
)

, (28)

respectively.
It is obviously that, Eqs. (13), (27), and (28) have the same characteristic equation,

q(λ, c) = 0 at V = 0, where q(λ, c) is defined in (14). Let c∗ and λ1 are defined as in Lemma 1,
then we have the following lemma.
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Lemma 5 Assume (H2), (A1)–(A5) hold. Then:
(1) For any c ≥ c∗, the traveling wave solutions V+(ξ ) of Eq. (25) and V–(ξ ) of Eq. (26)

exist; V±(ξ ) is nondecreasing on R, V±(–∞) = 0, V–(+∞) = (1 – b)K1,
V+(+∞) = (1 – b)K2, and for any c > c∗,

lim
ξ→–∞ V±(ξ )e–λ1ξ = 1 and lim

ξ→–∞ V ′
±(ξ )e–λ1ξ = λ1;

(2) For any c < c∗ and λ > 0, there is no traveling solution V+(ξ ) of Eq. (25) and V–(ξ ) of
Eq. (26) such that

lim
ξ→–∞ V±(ξ )e–λξ = 1 and lim

ξ→–∞ V ′
±(ξ )e–λξ = λ.

Lemma 6 For any c ≥ c∗, let V+(ξ ) and V–(ξ ) be the traveling wave solution of Eqs. (25)
and (26), respectively, then there exists ξ ∈R such that V–(ξ ) ≤ V+(ξ + ξ ), ξ ∈R.

The proof is similar to that of [34, Lemma 3.5] and we omit it here.
Assume L+,j, L–,j > 0 (j = 1, 2, 3) are Lipschitz constants of F+ and F–, respectively, and L1

is as defined in Sect. 2. Let γ ≥ max{L+,1, L–,1, L1} and rewrite Eqs. (27) and (28), respec-
tively, as follows:

cV ′(ξ ) – DV ′′(ξ ) + γ V (ξ )

= γ V (ξ ) + F+

(

V (ξ ),
+∞∑

i=0

biV (ξ – cir),
+∞∑

i=0

biV
(
ξ – c(i + 1)r

)
)

and

cV ′(ξ ) – DV ′′(ξ ) + γ V (ξ )

= γ V (ξ ) + F–

(

V (ξ ),
+∞∑

i=0

biV (ξ – cir),
+∞∑

i=0

biV
(
ξ – c(i + 1)r

)
)

.

Set

Λ1 =
c –

√
c2 + 4Dγ

2D
< 0, Λ2 =

c +
√

c2 + 4Dγ

2D
> 0,

and let 0 < μ < Λ2. Define

‖V‖μ := sup
ξ∈R

∣∣V (ξ )
∣∣e–μξ ; E :=

{
V ∈ C(R;R) : ‖V‖μ < +∞}

,

and

Ω :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

V ∈ C
(
R;
[
0, (1 – b)K2

])

∣
∣∣
∣∣
∣∣
∣∣

(i) V–(ξ ) ≤ V (ξ ) ≤ V+(ξ + ξ ), ξ ∈ R;

(ii)
∣
∣V (ξ ′) – V (ξ ′′)

∣
∣≤ 2(1 – b)K2

√
γ

D
∣
∣ξ ′ – ξ ′′∣∣

for all ξ ′, ξ ′′ ∈ R

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.
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Then (E,‖ · ‖μ) is a Banach space and Ω is non-empty since V± ∈ Ω . Moreover, it is easy
to verify that Ω is convex and compact in E.

Set

H±(V )(ξ ) = γ V (ξ ) + F±

(

V (ξ ),
+∞∑

i=0

biV (ξ – cir),
+∞∑

i=0

biV
(
ξ – c(i + 1)r

)
)

,

and define an operator T on Ω by

T (V )(ξ ) =
1

D(Λ2 – Λ1)

[∫ ξ

–∞
eΛ1(ξ–s)H(V )(s) ds +

∫ +∞

ξ

eΛ2(ξ–s)H(V )(s) ds
]

,

where H is defined as in (21) with γ replaced by γ .

Theorem 3 Assume (H2), (H4), (A1)–(A5) hold. Then for any c ≥ c∗, there exists a trav-
eling wave solution V (ξ ) of Eq. (12) with V (–∞) = 0,

(1 – b)K1 ≤ lim inf
ξ→+∞ V (ξ ) ≤ lim sup

ξ→+∞
V (ξ ) ≤ (1 – b)K2,

and for any c > c∗,

1 ≤ lim inf
ξ→–∞ V (ξ )e–λ1ξ ≤ lim sup

ξ→–∞
V (ξ )e–λ1ξ ≤ eλ1ξ .

Proof For any V ∈ Ω , we have 0 ≤ V–(ξ ) ≤ V (ξ ) ≤ V+(ξ + ξ ) ≤ (1 – b)K2, and then

0 ≤ H–[V ](ξ ) ≤ H[V ](ξ ) ≤ H+[V ](ξ ) ≤ γ (1 – b)K2, ξ ∈R.

Furthermore,

0 ≤ T (V )(ξ ) ≤ γ (1 – b)K2

D(Λ2 – Λ1)

[∫ ξ

–∞
eΛ1(ξ–s) ds +

∫ +∞

ξ

eΛ2(ξ–s) ds
]

≤ (1 – b)K2, ξ ∈R.

Again, since V–(ξ ) is a solution of Eq. (28) and H–(V )(ξ ) is non-decreasing on V ∈
C(R, [0, (1 – b)K2]) for any ξ ∈R, we have that, for any V ∈ Ω , ξ ∈R,

V–(ξ ) =
1

D(Λ2 – Λ1)

[∫ ξ

–∞
eΛ1(ξ–s)H–(V–)(s) ds +

∫ +∞

ξ

eΛ2(ξ–s)H–(V–)(s) ds
]

≤ 1
D(Λ2 – Λ1)

[∫ ξ

–∞
eΛ1(ξ–s)H–(V )(s) ds +

∫ +∞

ξ

eΛ2(ξ–s)H–(V )(s) ds
]

≤ 1
D(Λ2 – Λ1)

[∫ ξ

–∞
eΛ1(ξ–s)H(V )(s) ds +

∫ +∞

ξ

eΛ2(ξ–s)H(V )(s) ds
]

= T (V )(ξ ).

Similarly, we have T (V )(ξ ) ≤ V+(ξ + ξ ) for any V ∈ Ω , ξ ∈R.
By a similar proof to that of Lemma 4(5), we get that, for any V ∈ Ω ,

∣∣T (V )
(
ξ ′) – T (V )

(
ξ ′′)∣∣≤ 2(1 – b)K2

√
γ

D
∣∣ξ ′ – ξ ′′∣∣ for all ξ ′, ξ ′′ ∈ R.
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So, T (Ω) ⊂ Ω . It is easy to verify that T is continuous with respect to the norm ‖·‖μ on Ω

by making use of a similar argument as in the proof of Theorem 1. By virtue of Schauder’s
Fixed Point Theorem, operator T has a fixed point V (ξ ) on Ω , which is the traveling wave
solution of Eq. (12) and satisfies

V–(ξ ) ≤ V (ξ ) ≤ V+(ξ + ξ ), ξ ∈R.

Furthermore, by Lemma 5, we have V (–∞) = 0,

(1 – b)K1 = lim
ξ→+∞ V–(ξ ) ≤ lim inf

ξ→+∞ V (ξ ) ≤ lim sup
ξ→+∞

V (ξ )

≤ lim
ξ→+∞ V+(ξ + ξ ) ≤ (1 – b)K2,

and for any c > c∗,

1 = lim
ξ→–∞ V–(ξ )e–λ1ξ ≤ lim inf

ξ→–∞ V (ξ )e–λ1ξ ≤ lim sup
ξ→–∞

V (ξ )e–λ1ξ

≤ lim
ξ→–∞V+(ξ + ξ )e–λ1(ξ+ξ )eλ1ξ = eλ1ξ . �

By a similar proof as for Theorem 2, we obtain a theorem as follows.

Theorem 4 Assume that (H2), (H4), (A1)–(A5) hold. Then for any c ≥ c∗, there exists a
traveling wave solution U(ξ ) of Eq. (1) with U(–∞) = 0,

K1 ≤ lim inf
ξ→+∞ U(ξ ) ≤ lim sup

ξ→+∞
U(ξ ) ≤ K2,

and for any c > c∗,

1
1 – be–λ1cr ≤ lim inf

ξ→–∞ U(ξ )e–λ1ξ ≤ lim sup
ξ→–∞

U(ξ )e–λ1ξ ≤ eλ1ξ

1 – be–λ1cr .

4 Applications and discussions
In this section, as an application of Theorem 4, we firstly consider the following partial
functional differential equation of neutral type:

∂

∂t
L(u)(t, x) = D

∂2

∂x2 L(u)(t, x) – g
(
L(u)(t, x)

)
+ h
(
u(t, x)

)
f
(
u(t – r, x)

)
. (29)

We need the following assumptions:
(a1) g(0) = f (0) = 0; g((1 – b)K) = h(K)f (K) for some K > 0;
(a2) There exists K2 ≥ K such that 0 < f (u) ≤ g((1 – b)K2)/h(K2), u ∈ (0, K2];

g((1 – b)u) ≤ g((1 – b)K2)/h(K2), u ∈ (0, K2);
(a3) h(0)f ′(0) > (1 – b)g ′(0) > 0; f ′(0)u ≥ f (u), g(u) ≥ g ′(0)u, h(0) ≥ h(u) > 0 and

f ′(0)u > g((1 – b)u)/h(u), u ∈ (0, K2);
(a4) There exists σ ∈ (0, 1] such that

lim sup
u→0+

[
f ′(0) – f (u)/u

]
u–σ < +∞; lim sup

u→0+

[
g(u)/u – g ′(0)

]
u–σ < +∞;
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and

lim sup
u→0+

[
h(0) – h(u)

]
u–(1+σ ) < +∞;

(a5) g , h and f are Lipschitz continuous on [0, K2].
Let

K1 = inf
{

u
∣∣g
(
(1 – b)u

)
/h(u) = inf

s∈(0,K2]

{
f (s)|f (s) ≤ g

(
(1 – b)s

)
/h(s)

}}
.

From the conditions f ′(0) > (1 – b)g ′(0)/h(0) and f (u) > 0, u ∈ (0, K2] in (a3), K1 is well
defined and 0 < K1 ≤ K and f (u) ≥ g((1 – b)u), u ∈ (0, K1).

Define the following functions:

f1(u) =

⎧
⎨

⎩
min{mins∈[u,K2] f (s), g((1 – b)K1)/h(K1)}, u ∈ [u, K1],

min{f (u), g((1 – b)K1)/h(K1)}, u ∈ [K1, +∞);

and

f2(u) =

⎧
⎨

⎩
min{f ′(0)u, g((1 – b)K2)/h(K2)}, u ∈ [u, K2],

max{f (u), g((1 – b)K2)/h(K2)}, u ∈ [K2, +∞),

then f1 and f2 have the following properties:

Lemma 7 Assume (a1)–(a5) hold. Then
(1) fn (n = 1, 2) is Lipschitz continuous on [0, +∞) and non-decreasing on [0, K2];
(2) f1(u) ≤ f (u) ≤ f2(u), u ∈ [0, +∞);
(3) fn(0) = 0, fn(Kn) = g((1 – b)Kn)/h(Kn) and fn(u) > g((1 – b)u)/h(u), u ∈ (0, Kn), n = 1, 2;
(4) f ′

n(0) = f ′(0), n = 1, 2;
(5) lim supu→0+ [f ′

n(0) – fn(u)/u]u–σ < +∞.

Set

F(s1, s2, s3) = –g(s1) + h(s2)f (s3),

and

F+(s1, s2, s3) = –g(s1) + h(s2)f2(s3), F–(s1, s2, s3) = –g(s1) + h(s2)f1(s3).

From assumptions (a3)–(a5) and Lemma 7, it is easy to verify that F and F± satisfy as-
sumptions (H2), (H4), and (A1)–(A5).

Let

q(λ, c) = Dλ2 – cλ – g ′(0) +
h(0)f ′(0)e–λcr

1 – be–λcr ,

and assume c∗ is defined as in (15). Then from the Theorem 4, we have
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Theorem 5 Assume that (a1)–(a5) hold. Then for any c ≥ c∗, there exists a traveling wave
solution U(ξ ) of (29) with U(–∞) = 0,

K1 ≤ lim inf
ξ→+∞ U(ξ ) ≤ lim sup

ξ→+∞
U(ξ ) ≤ K2,

and there exists some ξ ∈R such that, for any c > c∗,

1
1 – be–λ1cr ≤ lim inf

ξ→–∞ U(ξ )e–λ1ξ ≤ lim sup
ξ→–∞

U(ξ )e–λ1ξ ≤ eλ1ξ

1 – be–λ1cr ,

where λ1 is the smaller root of q(λ, c) = 0.

As another application example of Theorem 4, we consider Eq. (10) and state it again as
follows for convenience of reading:

∂

∂t
L(u)(t, x) = D

∂2

∂x2 L(u)(t, x) – aL(u)(t, x)

+
p
2
[
u(t, x)e–u(t,x) + u(t – r, x)e–u(t–r,x)], (30)

where p > a > 0, 0 ≤ b < 1, p
a(1–b) > e. It is obvious that Eq. (30) has exactly two equilibria

u = 0 and u = K = ln p
a(1–b) > 0.

Let F(s1, s2, s3) = –as1 + p
2 [s2e–s2 + s3e–s3 ], K2 = p

a(1–b) , then K2 > K , and F(s1, s2, s3) is non-
monotone on s2, s3 ∈ [0, K2].

Set f (s) = p
2 se–s, and choose K ∈ (0, K), such that f (K) = p

2 K2e–K2 = p2

2a(1–b) e– p
a(1–b) . Let

K1 = p2

a2(1–b)2 e– p
a(1–b) , then K < K1 < K .

Define

F+(s1, s2, s3) =

⎧
⎨

⎩
–as1 + p

2 [s2 + s3], s1, s2, s3 ∈ [0, 1],

–as1 + p, s1, s2, s3 ∈ (1, +∞),

and

F–(s1, s2, s3) =

⎧
⎨

⎩
–as1 + p

2 [s2e–s2 + s3e–s3 ], s1, s2, s3 ∈ [0, K],

–as1 + p2

a(1–b) e– p
a(1–b) , s1, s2, s3 ∈ (K , +∞).

Then it is easy to verify that F and F± satisfy assumptions (H2), (H4), and (A1)–(A5).
Let

q(λ, c) = Dλ2 – cλ – a +
p

2(1 – be–λcr)
(
1 + e–λcr),

and suppose c∗ is defined as in (15). Then from Theorem 4, we have

Theorem 6 For any c ≥ c∗, there exists a traveling wave solution U(ξ ) of (30) with
U(–∞) = 0,

p2

a2(1 – b)2 e– p
a(1–b) ≤ lim inf

ξ→+∞ U(ξ ) ≤ lim sup
ξ→+∞

U(ξ ) ≤ p
a(1 – b)

,
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and there exists some ξ ∈R such that, for any c > c∗,

1
1 – be–λ1cr ≤ lim inf

ξ→–∞ U(ξ )e–λ1ξ ≤ lim sup
ξ→–∞

U(ξ )e–λ1ξ ≤ eλ1ξ

1 – be–λ1cr ,

where λ1 is the smaller root of q(λ, c) = 0.
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