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Abstract
This paper is concerned with almost sure exponential stabilization of neural networks
by intermittent control based on delay observations. By the stochastic comparison
principle and Itô’s formula, a sufficient criterion is derived, under which unstable
neural networks can be stabilized by stochastic intermittent control based on delay
observations. The range of intermittent rate is given, and the upper bound of time
delay can be solved from a transcend equation. Finally, two examples are provided to
demonstrate the feasibility and validity of our proposed methods.
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1 Introduction
In the past decade, the Hopfield neural networks have been thoroughly investigated.
Nowadays they are widely applied in several areas, such as imagine processing, commu-
nication engineering, and optimization. These applications mainly depend on the asymp-
totic behavior of the neural networks [1–5], especially their stability, and therefore more
and more authors study the stability of neural networks. The readers can refer to [6–10]
and their references.

Actually, many practical problems are related to the unstable neural networks, which
cannot be directly applied in engineering unless they are stabilized in advance. Hence,
various control strategies have been proposed in order to stabilize the unstable neural
networks, including intermittent control [11–15], pinning control [16], impulsive control
[17], finite-time control [18], and adaptive control [19]. Meanwhile, noise disturbance is
ubiquitous in the real world. As a result, an increasing number of authors have revealed the
positive impact of the white noise on the systems in recent decades [20–24]. For example,
Mao showed that noise can suppress an explosive solution for population systems in [25].
Also, some scholars have paid attention to the stochastic stabilization for neural networks.
Shen and Wang have utilized the white noise to stabilize the unstable networks in [26]. The
readers can refer to [27–29] for more details.

In the past decades, more and more scholars have realized that there is time delay τ

between the observation time of the state and the arrival time of the feedback control.
Thus, time-delay feedback control has attracted more and more researchers’ attention
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[30–34]. It was Guo and Mao who first integrated the delay feedback control strategy with
the stochastic stabilization theory. Guo and Mao showed that the differential system is sta-
bilized by delay feedback control provided the time delay is no more than an upper bound
in [22]. Nevertheless, there are distinct characteristics in neural networks. It is significant
to investigate the stochastic delay stabilization for neural networks based on the network
characteristics. To the best of our knowledge, the stochastic delay stabilization for neural
networks has scarcely been investigated yet. Accordingly, tackling this issue constitutes
the first motivation of this paper.

Moreover, the intermittent control strategy has attracted some scholars [11–13, 35–40].
The networks are controlled by white noise during working time, and the white noise is
removed from the networks during rest time. The corresponding controlled system can be
regarded as a switching of a closed-loop subsystem during working time and an open-loop
subsystem during rest time. Intermittent control has its advantages over classic continu-
ous control. We cut costs by reducing the excessive wear of the controller due to long time
work. Presently there are several results applying intermittent control to networks [11, 12,
37]. Then a question arises naturally: Can we integrate the intermittent control strategy
with stochastic delay stabilization strategy? To date, there are few results available on this
topic since the simultaneous presence of the delay feedback control and intermittent noise
complicates the problem. As a result, the proposed approaches in existing literature can-
not be directly adopted. Thus, overcoming the difficulties stemming from delay feedback
control and intermittent noise is the second motivation.

Summarizing the above statements, this paper focuses on stochastic intermittent sta-
bilization based on delay feedback control for neural networks. Sufficient conditions for
almost sure exponential stabilization are obtained provided that the time delay is bounded
by τ0 and intermittent rate φ satisfies 2λ+(–D + |Ā|K) < σ 2(1 – φ) (D, Ā, K , and σ will be
defined in Sect. 2, see [41] for more details). The main contribution of this paper lies in
three aspects as follows. (1) The stochastic delay stabilization for neural networks has
been investigated based on neural networks characteristic. (2) By the stochastic compar-
ison principle and Itô’s formula, the stochastic intermittent stabilization based on delay
feedback control can be obtained. (3) We succeed in overcoming the difficulties mainly
arising from the simultaneous presence of the intermittent noise and delay feedback con-
trol.

2 Preliminary
Throughout this paper, unless otherwise specified, let (Ω ,F , {Ft}t≥0,P) be a complete
probability space with a filtration {Ft}t≥0 satisfying the usual conditions. Let τ > 0, and
denote by C = C([–τ , 0]; Rn) the family of continuous functions ξ from [–τ , 0] to Rn

with the norm ‖ξ‖ = sup–τ≤θ≤0 |ξ (θ )| < ∞. Denote by L2
F0

([–τ , 0]; Rn) the family of all
F0-measurable C([–τ , 0]; Rn) valued random variables ζ = {ζ (θ ) : –τ ≤ θ ≤ 0} such that
sup–τ≤θ≤0 E|ζ (θ )|2 < ∞, where E| · | stands for the mathematical expectation operator
with respect to the given probability measure P . Let G = (gij)n×n. Denote Ḡ = (ḡij)n×n with
ḡii = max{gii, 0}, ḡij = gij, and |G| = (|gij|)n×n.

Consider the unstable neural networks as follows:

ẋ(t) = –Dx(t) + Af
(
x(t)

)
, (1)
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where D = diag(d1, d2, . . . , dn), A = (aij)n×n, f (x) = (f1(x1), f2(x2), . . . , fn(xn))T , fi(·) : R → R is
an activation function. x(t) ∈ Rn, the variable xi(t) represents the voltage on the input of the
ith neuron. Consider the following neural networks by aperiodically intermittent control
based on delay state observations:

⎧
⎨

⎩
dx(t) = (–Dx(t) + Af (x)) dt + Σh(t)x(t – τ ) dB(t),

h(t) =
{ 1, t ∈ [ti , si],

0, t ∈ (si , ti+1], i = 0, 1, 2, . . . ,

(2)

where Σ = diag(σ , . . . ,σ ), B(t) is a scalar Brown motion, Σh(t)x(t – τ ) dB(t) is an aperi-
odically intermittent controller. tk – tk–1 > 0 is the kth time interval length. The feedback
control is imposed on the networks in the time interval [tk , sk), while the control is removed
in the rest of the interval [sk , tk+1). Set φk = (tk+1 – tk)–1(tk+1 – sk), and φ = lim supk−→+∞ φk

is the intermittence rate.
In order to analyze the asymptotic behavior for networks (2), we define the auxiliary

networks without delay observations:

dy(t) =
(
–Dy(t) + Af (y)

)
dt + Σh(t)y(t) dB(t). (3)

The key technique in this paper is the comparison principle. The pth moment difference
between networks (2) and (3) is estimated. The whole frame is based on two basic assump-
tions.

Assumption 1 For each i = 1, 2, . . . , n, there exists κi such that

0 <
fi(u) – fi(v)

u – v
≤ κi, u, v ∈ R.

Denote K = diag(κ1, . . . ,κn).

Assumption 2 λ+(–D + |Ā|K) = sup|x|=1,x∈Rn
+ xT (–D + |Ā|K)x > 0.

Remark 1 If λ+(–D+ |Ā|K) < 0, calculating the derivative of |x(t)|2 along networks (1) gives

D+∣∣x(t)
∣∣2 = 2xT(t)

(
–D + Af

(
x(t)

))
x(t)

= –2xT(t)Dx(t) + 2
n∑

i=1

a+
iiκi

∣∣x2
i
∣∣ + 2

n∑

i=1

n∑

j �=ij=1

|aij|κj|xi||xj|

= 2
(
[x]+)T|(–D + Ā|K)[x]+ = λ+

(
–D + |Ā|K)∣∣x(t)

∣∣2 < 0,

where [x]+ = (|x1|, |x2|, . . . , |xn|)T , and āii = max{aii, 0}, āij = |aij|. This implies networks (1)
are stable.

3 Main results
The main results will be presented in this section.

Theorem 3.1 Let Assumption 1 and 2λ+(–D + |Ā|K) < σ 2(1 – φ) hold. System (2) can be
stabilized by stochastic intermittent control σh(t)X(t – τ ) dB(t) provided τ < τ0, where τ0

is the solution of (23).
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Proof We divide the proof into three steps for convenience. The main aim of step 1 is
to show the stability of system (3). The moment estimation on E|x(t) – y(t)|p has been
performed in step 2. We will show the stabilization by stochastic intermittent control with
time delay in step 3.

Step 1. We will show that system (3) is pth moment exponentially stable if p ∈ (0, 1 –
2λ+(–D+ |Ā|K)σ –2(1–φ)–1) is sufficiently small. Applying Itô’s formula to V = |y(t)|p yields

dV =
{

–p|y|p–2yT Dy + p|y|p–2yT Af (y) +
1
2
σ 2h2(t)p(p – 1)|y|p

}
dt

+ pσh(t)|y|p dB(t). (4)

By similar computations in Remark 1, we have

LV ≤ p|y|p–2|y|T(
–D + |Ā|K)|y| +

1
2
σ 2h2(t)p(p – 1)|y|p

≤ p
(

λ+
(
–D + |Ā|K)

+
1
2
σ 2h(t)(p – 1)

)
|y|p.

For convenience, denote λ1 = λ+(–D + |Ā|K), then (4) can be written as

d
∣
∣y(t)

∣
∣p ≤

(
λ1p +

1
2
σ 2h(t)p(p – 1)

)∣
∣y(t)

∣
∣p dt + pσh(t)

∣
∣y(t)

∣
∣p dB(t).

It follows from the stochastic comparison principle that

∣
∣y(t)

∣
∣p ≤ ∣

∣y(t0)
∣
∣p

exp

{(
λ1p –

1
2

pσ 2
)

(t – t0) + pσ
(
B(t) – B(t0)

)}
, t0 ≤ t ≤ s0. (5)

Note that t = s0,

∣∣y(s0)
∣∣p ≤ ∣∣y(t0)

∣∣p
exp

{(
λ1p –

1
2

pσ 2
)

(s0 – t0) + pσ
(
B(s0) – B(t0)

)}
.

It is obvious that h(t) = 0, s0 < t ≤ t1, then we obtain

∣∣y(t)
∣∣p ≤ ∣∣y(s0)

∣∣p
exp

{(
λ1p –

1
2

p2σ 2
)

(t – s0)
}

≤ ∣∣y(t0)
∣∣p

exp

{(
λ1p –

1
2

pσ 2
)

(s0 – t0) + λ1p(t – s0)

+ pσ
(
B(s0) – B(t0)

)}
, s0 < t ≤ t1. (6)

Applying Itô’s formula to V1(t) = epσB(t) yields

dV1(t) =
1
2

p2σ 2V1 dt + pσV1(t) dB(t).
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Simple computations show that EV1 = e 1
2 p2σ 2t . Taking expectation on both sides of (5)

yields

E
∣∣y(t)

∣∣p ≤ ∣∣y(t0)
∣∣p

exp

{(
λ1p +

1
2
σ 2p(p – 1)

)
(t – t0)

}
, t0 ≤ t ≤ s0.

In the same way, using (6) yields

E
∣∣y(t)

∣∣p ≤ ∣∣y(t0)
∣∣p

exp

{(
λ1p +

1
2
σ 2p(p – 1)

)
(s0 – t0) + λ1p(t – s0)

}
, s0 < t ≤ t1.

Denote α1 = λ1p + 1
2σ 2p(p – 1), α2 = λ1p. For ti ≤ t < si, we can readily verify that

E
∣∣y(t)

∣∣p ≤ ∣∣y(t0)
∣∣p

exp

{

α1

i–1∑

k=0

(sk – tk) + α2

i–1∑

k=0

(tk+1 – sk) + α1(t – ti)

}

=
∣∣y(t0)

∣∣p
exp

{

α1

i–1∑

k=0

(1 – φk)(tk+1 – tk) + α2

i–1∑

k=0

φk(tk+1 – tk) + α1(t – ti)

}

.

It follows from the definition of φ that, for any ε > 0, there exists a positive integer N > 0
such that φk < φ + ε for any k > N . Consequently, for ti ≤ t < si, we have

E
∣
∣y(t)

∣
∣p

≤ ∣∣y(t0)
∣∣p

exp

{

C +
i–1∑

k=N+1

(
α1(1 – φ – ε) + α2(φ + ε)

)
(tk+1 – tk) + α1(t – ti)

}

, (7)

where C is a constant. Similarly, for si ≤ t < ti+1, we get

E
∣
∣y(t)

∣
∣p ≤ ∣

∣y(t0)
∣
∣p

exp

{

α1

i∑

k=0

(sk – tk) + α2

i–1∑

k=0

(tk+1 – sk) + α2(t – si)

}

=
∣∣y(t0)

∣∣p
exp

{

α1

i∑

k=0

(1 – φk)(tk+1 – tk) + α2

i–1∑

k=0

φk(tk+1 – tk) + α2(t – si)

}

=
∣∣y(t0)

∣∣p
exp

{

C +
i–1∑

k=N+1

(
α1(1 – φ – ε) + α2(φ + ε)

)
(tk+1 – tk)

+ α1(1 – φk)(ti+1 – ti) + α2(t – si)

}

. (8)

Combining (7) and (8), for every ε > 0,

lim sup
t→∞

1
t

log E
∣∣y(t)

∣∣p ≤ –
(
α1(1 – φ – ε) + α2(φ + ε)

)
. (9)

Letting ε → 0 yields

lim sup
t→∞

1
t

log E
∣
∣y(t)

∣
∣p ≤ –γ = p

(
λ1 –

1
2
σ 2(1 – φ)(1 – p)

)
< 0.
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Then we can claim that there exists a positive real number T1 > 0 such that, for any t – t0 >
T1,

E
∣∣y(t)

∣∣p ≤ E
∣∣y(t0)

∣∣pe–0.5γ (t–t0), t – t0 > T1. (10)

Step 2. The main aim now is to estimate the pth moment for solution process x(t) and
the difference process x(t) – y(t) between networks (2) and (3). Applying Itô’s formula to
|x(t)|2 yields

∣∣x(t)
∣∣2 ≤ ∣∣x(t0)

∣∣2 +
∫ t

t0

(
2xT (s)

(
–D + |Ā|K)

x(s) + σ 2h2(t)xT (s – τ )x(s – τ )
)

ds

+ 2σ

∫ t

t0

h(s)xT (s)x(s – τ ) dB(s).

Taking expectations on both sides, we have

E
∣∣x(t)

∣∣2 ≤ E
∣∣x(t0)

∣∣2 + 2λ1

∫ t

t0

E
∣∣x(s)

∣∣2 ds + σ 2
∫ t

t0

E
∣∣x(s – τ )

∣∣2 ds.

Taking supremum on [t0 – τ , t] gives

sup
t0–τ≤u≤t

E
∣∣x(u)

∣∣2 ≤ E|ζ |2 + sup
t0≤u≤t

E
∣∣x(t)

∣∣2

≤ 2E|ζ |2 + 2λ1

∫ t

t0

(
sup

t0≤u≤s
E
∣∣x(u)

∣∣2
)

ds + σ 2
∫ t

t0

(
sup

t0–τ≤u≤s
E
∣∣x(u)

∣∣2
)

ds.

Note that the right term of the above inequality is monotonically increasing for t ≥ t0,
then we obtain

sup
t0–τ≤u≤t

E
∣∣x(t)

∣∣2 ≤ 2E|ζ |2 +
(
2λ1 + σ 2)

∫ t

t0

(
sup

t0–τ≤u≤s
E
∣∣x(u)

∣∣2
)

ds.

The Gronwall inequality then gives

sup
t0–τ≤u≤t

E
∣
∣x(u)

∣
∣2 ≤ 2e(2λ1+σ 2)(t–t0)E‖ζ‖2. (11)

By the Burkholder–Davis–Gundy inequality and the Hölder inequality, we obtain

E
(

sup
0≤u≤τ

∣∣x(t + u) – x(t)
∣∣2

)

≤ 2E
{

sup
0≤u≤τ

∣∣
∣∣

∫ t+u

t

[
–Dx(t) + Af

(
x(s)

)]
ds

∣∣
∣∣

2}
+ 2E

{
sup

0≤u≤τ

∣∣
∣∣

∫ t+u

t
σx(s – τ ) dB(s)

∣∣
∣∣

2}

≤ 2λ2
2τ

∫ t+τ

t
E
∣
∣x(s)

∣
∣2 ds + 8σ 2

∫ t+τ

t
E
∣
∣x(s – τ )

∣
∣2 ds.

Using (11) yields

E
(

sup
0≤u≤τ

∣∣x(t + u) – x(t)
∣∣2

)
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≤ [
4τ

(
λ2

2τ exp
{(

2λ1 + σ 2)τ
}

+ 4σ 2) exp
{(

2λ1 + σ 2)(t – t0)
}]

E‖ζ‖2, (12)

where λ2 = sup|x|=1 xT (D2 + KT (x)AT AK(x) – 0.5DAK(x) – 0.5KT (x)AT D)x, with K(x) =
diag(f (x1/x1, f (x2/x2, . . . , f (xn/xn)). It follows from the Hölder inequality that

E
(

sup
0≤u≤τ

∣
∣x(t + u) – x(t)

∣
∣p

)
≤ F1(τ , p) exp

{(
pλ1 + 0.5pσ 2)(t – t0)

}
E‖ζ‖p,

where F1(τ , p) = [4τ (λ2
2τ exp{(2λ1 + σ 2)τ } + 4σ 2)]

p
2 . Now we estimate the expectation

E(supt0≤u≤t |x(u)|2). The element inequality gives

∣∣x(t)
∣∣2 ≤ 3

∣∣x(t0)
∣∣2 + 3λ2

2(t – t0)
∫ t

t0

∣∣x(s)
∣∣2 ds + 3σ 2

∣∣∣
∣

∫ t

t0

∣∣x(s – τ )
∣∣2 dB(s)

∣∣∣
∣

2

.

Taking supremum on [t0, t] and expectations on both sides yields

E
(

sup
t0≤u≤t

∣
∣x(u)

∣
∣2

)
≤ 3

∣
∣x(t0)

∣
∣2 + 3λ2

2(t – t0)
∫ t

t0

E
∣
∣x(s)

∣
∣2 ds + 12σ 2

∫ t

t0

E
∣
∣x(s – τ )

∣
∣2 ds.

Together with (11), we have

E
(

sup
t0≤u≤t

∣∣x(u)
∣∣2

)
≤

(
3 +

6(λ2(t – t0) + 4σ 2)
2λ1 + σ 2

(
exp

{(
2λ1 + σ 2)(t – t0)

}
– 1

)
)

E‖ζ‖2.

The Hölder inequality then gives

E
(

sup
t0≤u≤t

∣
∣x(u)

∣
∣p

)
≤

(
3 +

6(λ2(t – t0) + 4σ 2)
2λ1 + σ 2

(
exp

{(
2λ1 + σ 2)(t – t0)

}
– 1

))
p
2

E‖ζ‖p

:= F2(τ , p, t – t0)E|ζ |p. (13)

Next we estimate the pth moment difference between networks (2) and (3). By Itô’s formula
and the Hölder inequality, we get

E
∣∣x(t) – y(t)

∣∣2

= E
∫ t

t0+τ

{
2
(
x(s) – y(s)

)[
–D

(
x(s) – y(s)

)
+ A

(
f
(
x(s)

)
– f

(
y(s)

))]

+ σ 2h2(t)
(
x(s – τ ) – y(s)

)}
ds

≤ 2
(
λ1 + σ 2)

∫ t

t0+τ

E
∣∣x(s) – y(s)

∣∣2 ds + 2σ 2
∫ t

t0+τ

E
∣∣x(s – τ ) – x(s)

∣∣2 ds. (14)

Instituting (12) to (14) gives

E
∣∣x(t) – y(t)

∣∣2 ≤ 2
(
λ1 + σ 2)

∫ t

t0+τ

E
∣∣x(s) – y(s)

∣∣2 ds

+ 2σ 2F1(τ , 2)
(
2λ1 + σ 2)–1

exp
{(

2λ1 + σ 2)(t – τ – t0)
}

. (15)
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It follows from the Gronwall inequality that

E
∣∣x(t) – y(t)

∣∣2 ≤ (
2λ1 + σ 2)–1F1(τ , 2) exp

{(
2λ1 + σ 2)(t – τ – t0)

}

× [
2σ 2 + 4

(
λ1 + σ 2)(exp

{
σ 2(t – τ – t0)

}
– 1

)]
E‖ζ‖2. (16)

It follows from the Hölder inequality that

E
∣∣x(t) – y(t)

∣∣p ≤ F3(τ , p, t – t0)E‖ζ‖p,

where

F3(τ , p, t – t0) =
((

2λ1 + σ 2)–1F1(τ , 2) exp
{(

2λ1 + σ 2)(t – τ – t0)
}

× [
2σ 2 + 4

(
λ1 + σ 2)(exp

{
σ 2(t – τ – t0)

}
– 1

)]) p
2 . (17)

Step 3. Let x(t) = x(t, t0, ζ ), y(t0 + τ + T) = y(t0 + τ + T , t0 + τ , x(t0 + τ )) for simplicity.
Taking T = max{T1, 2

γ
log( 22.5p

ε
)} with ε ∈ (0, 1), assertion (10) gives that

E
∣∣y(t0 + τ + T)

∣∣p ≤ E
∣∣x(t0 + τ )

∣∣pe
1
2 p(α– 1

2 σ 2(1–p)(1–φ))T ≤ e– 1
2 γ T(

2e(2α+σ 2)τ ) p
2 E‖ζ‖p. (18)

The elementary inequality (x + y)p ≤ 2p(xp + yp) for x, y ≥ 0 yields

E
∣
∣x(t0 + τ + T)

∣
∣p ≤ 2pE

∣
∣y(t0 + τ + T)

∣
∣p + 2pE

∣
∣x(t0 + τ + T) – y(t0 + τ + T)

∣
∣p.

It follows from (17) and (18) that

E
∣∣x(t0 + τ + T)

∣∣p ≤ 2p(e– 1
2 γ T(

2e(2α+σ 2)τ ) p
2 + F3(τ , p, T + τ )

)
E‖ζ‖p. (19)

Using the elementary inequality and (19),

E
∣∣x(t0 + 2τ + T)

∣∣p ≤ 2pE
∣∣x(t0 + τ + T)

∣∣p

+ 2pE
(

sup
0≤μ≤τ

∣∣x(t0 + τ + T + u) – x(t0 + τ + T)
∣∣
)

≤ 2pE
∣∣x(t0 + τ + T)

∣∣p + 2pF1(τ , p, T + τ )E‖ζ‖p. (20)

Using (19) and (20), we have

E
∣
∣x(t0 + 2τ + T)

∣
∣p ≤ (

εe(α+ 1
2 σ 2)pτ + 2pF1(τ , p, T + τ ) + 4pF3(τ , p, T + τ )

)
E‖ζ‖p (21)

:= G(τ , ε, p, T)E‖ζ‖p. (22)

Note that, for given ε ∈ (0, 1), G(τ , ε, p, T) is a monotonously increasing function,
G(0, ε, p, T) = ε < 1, and G(0, ε, p, T) → ∞ as τ → ∞. Now we claim that there exists a
unique τ0 to the following equation:

εe(α+ 1
2 σ 2)pτ + 2pF1(τ , p, T + τ ) + 4pF3(τ , p, T + τ ) = 1. (23)
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Note the left item of (23), it is monotonically increasing when we think of it as a function
with the independent variable τ , and it is equal to ε if τ = 0. As a result, equation (23)
has a unique solution if τ0 > 0. Determine τ ∈ (0, τ0), and ζ ∈ L2

Ft0
(Ω , C([–τ , 0]; Rn)) is an

arbitrary initial value. From τ < τ0 we can verify that

εe(α+ 1
2 σ 2)pτ + 2pF1(τ , p, T + τ ) + 4pF3(τ , p, T + τ ) < 1

and therefore we can find a suitable constant c > 0 such that

εe(α+ 1
2 σ 2)pτ + 2pF1(τ , p, T + τ ) + 4pF3(τ , p, T + τ ) = e–c(T+2τ ).

We obtain from (21) that

E
∣∣x(t0 + 2τ + T)

∣∣p ≤ e–c(T+2τ )E‖ζ‖p. (24)

Next we discuss the solution x(t) for t ≥ t0 +2τ +T . We know that there is a unique solution
to networks (2) for t > t0 – τ . In other words, we can regard x(t0 + 2τ + T) as the initial
value of x(t) at t = t0 + 2τ + T . By (24) we have

E
∣∣x

(
t0 + 2(2τ + T)

)∣∣p ≤ e–c(T+2τ )E|x(t0 + 2τ + T)|p.

Analyzing (24) and the equation above, we get

E
∣∣x

(
t0 + 2(2τ + T)

)∣∣p ≤ e–2c(T+2τ )E‖ζ‖p.

After repeated iteration we have

E
∣
∣x

(
t0 + c(2τ + T)

)∣∣p ≤ e–nc(T+2τ )E‖ζ‖p, n = 1, 2, . . . . (25)

Moreover, we can verify that it is established if n = 0. Using (13) and (25), we have

E
(

sup
t0+nΞ≤t≤t0+(n+1)Ξ

∣
∣x(t)

∣
∣p

)
≤ F2E

∣
∣x(t0 + nΞ )

∣
∣p ≤ F2e–ncΞ E‖ζ‖p, n = 0, 1, . . . , (26)

where Ξ = T + 2τ and F2 is defined by (13). Using Markov’s inequality and (26),

P
(

sup
t0+nΞ≤t≤t0+(n+1)Ξ

∣∣x(t)
∣∣p ≥ e– 1

2 ncΞ
)

≤ e– 1
2 ncΞ E

(
sup

t0+nΞ≤t≤t0+(n+1)Ξ

∣∣x(t)
∣∣p

)

≤ F2e– 1
2 ncΞ E‖ζ‖p, n = 0, 1, . . . .

Using the Borel–Cantelli lemma, we can verify that, for almost every ω, there exists an
integer N0 = N0(ω) such that

sup
t0+nΞ≤t≤t0+(n+1)Ξ

∣∣x(t)
∣∣p < e– 1

2 ncΞ , N ≥ N0.

That is,

sup
t0+nΞ≤t≤t0+(n+1)Ξ

log |x(t)|
t

< sup
t0+nΞ≤t≤t0+(n+1)Ξ

log |x(t)|
nΞ

< –
c

2p
.
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For almost every ω, we get

lim sup
t→+∞

log |x(t)|
t

< –
c

2p
< 0

as desired. �

Remark 2 Shen and Wang studied the stabilization of recurrent neural networks by con-
tinuous noise (see [26]). Compared to the existing results, we show that neural networks
can be stabilized by intermittent noise with time delay.

Step 1 of Theorem 3.1 implies a sufficient condition on stabilization by stochastic inter-
mittent control without delay observations as follows.

Corollary 3.2 Let Assumption 1 and 2λ+(–D + |Ā|K) < σ 2(1 – φ) hold. Networks (2) can
be stabilized by stochastic intermittent control h(t)Σx(t) dB(t).

Remark 3 Guo and Mao have discussed almost sure stabilization of delay differential sys-
tems by delay feedback control in [22]. Nevertheless, there is distinct characteristics in
delay neural networks. We can make full use of the network characteristics. Thus, it is
desirable to derive the stabilization condition. In this study the neural networks are sta-
bilized by aperiodically intermittent noise based on delay observations. Comparing with
the results in [22], we further integrate the intermittent control strategy.

When ψ = 0, the white noise is continuous and Theorem 3.1 implies a criterion on sta-
bilization by delay feedback control.

Corollary 3.3 Let Assumption 1 and 2λ+(–D + |Ā|K) < σ 2 hold. Networks (2) can be sta-
bilized by delay feedback control Σx(t – τ ) dB(t) provided τ > τ0, where τ0 is the solution
to (23).

4 Numerical example
A numerical example is presented in this section. We verify that the theorem above is
available.

Example 1 Consider two-neural networks:

dx(t) =
(
–Dx(t) + Af (x)

)
dt, (27)

where x(t) = (x1(t), x2(t))T , f (x) = tanh x, and the other parameters in networks (27) are
selected as follows:

D =

(
0.1 0
0 0.1

)

, A =

(
0.5 0.5
0.5 0.6

)

.
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Figure 1 The left curve shows an unstable trajectory of X(t) generated by the EM scheme for system (27)
without feedback control, while the right one shows a stable trajectory for system (28) by continuous noise
with time delay τ = 0.015

Figure 2 The left curve shows a stable trajectory of X(t) generated by the EM scheme for system (28) by
continuous noise with time delay τ = 0.03, while the right one shows a stable trajectory for system (28) by
continuous noise with time delay τ = 0.06. We can see that there is a slight difference between them

Figure 1(a) shows that networks (27) are unstable. The controller Σh(t)x(t – τ ) dB(t) is
designed. That is,

dx(t) =
(
–Dx(t) + Af (x)

)
dt + Σh(t)x(t – τ ) dB(t),

h(t) =

⎧
⎨

⎩
1, t ∈ [ti, si],

0, t ∈ (si, ti+1], i = 0, 1, 2, . . . ,

(28)

where τ = 0.015, Σ = 0.2I .

We take aperiodic controlled intervals [0, 0.1] ∪ [2.0, 2.1] ∪ [4.0, 4.1] ∪ [6.0, 6.1] ∪
[8.0, 8.1] ∪ · · · , or [0, 0.33] ∪ [1.00, 1.34] ∪ [2.00, 2.33] ∪ [3.00, 3.33] ∪ [4.00, 4.33] ∪ [5.00,
5.34] ∪ [6.00, 6.33] ∪ [7.00, 7.33] ∪ [8.0, 8.33] ∪ [9.00, 9.34] ∪ · · · , or [0, 0.9] ∪ [2.0, 3.1] ∪
[4.0, 5.1] ∪ [6.0, 6.9] ∪ [8.0, 9.0] ∪ · · · , the intermittent rates are 0.05, 0.33, 0.5 respectively.
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Figure 3 The left curve shows an unstable trajectory of X(t) generated by the EM scheme for system (28) by
continuous noise with time delay τ = 0.12, while the right one shows an unstable trajectory for system (28) by
intermittent noise with time delay τ = 0.03, the intermittent rate φ = 0.05 on [0,10]

Figure 4 The left curve shows a stable trajectory of X(t) generated by the EM scheme for system (28) by
intermittent noise with time delay τ = 0.03 (intermittent rate φ = 0.33 on[0,10]), while the right one shows a
stable trajectory for system (28) by intermittent noise with time delay τ = 0.03 (the intermittent rate φ = 0.5
on [0,10])

We draw four figures by Matlab. The networks are stabilized by continuous white noise
with delay observations (the time delay is 0.015 (Fig. 1b), 0.03 (Fig. 2a), 0.06 (Fig. 2b), re-
spectively), while they are not stabilized if time delay is 0.12 (Fig. 3a). We see easily that
the bigger time delay is better owing to less observation interval; however, the networks
cannot be stabilized by continuous noise if the time delay is big enough. We fix time delay
τ = 0.03 and switch the control strategy from continuous noise to intermittent noise, then
we change the intermittent rate φ (φ = 0.05 (Fig. 3b), 0.33 (Fig. 4a), 0.5 (Fig. 4b), respec-
tively). The networks are stabilized when φ = 0.33 or φ = 0.5, while they are unstable when
φ = 0.05. That is, the networks are unstable if the intermittent rate is small enough. The
networks work best when φ = 0.5.

The numerical example shows that the proposed methods are practical and efficient. We
observe the states less frequently and cut the costs by reducing the controlled time com-



He et al. Advances in Difference Equations        (2019) 2019:353 Page 13 of 14

pared with the algorithm proposed by Mao (see [24]). The neural networks are stabilized
by aperiodic intermittent control with delay observations.

5 Conclusions
In this study, we have investigated the exponential stabilization for neural networks by
aperiodically intermittent control based on delay observations. First of all, by using the
stochastic comparison principle, Itô’s formula, and the sequence analysis technique, we
show that the unstable neural networks can be stabilized by aperiodically intermittent
noise. Secondly, in terms of the characteristic of neural networks, we show that the net-
works are exponentially stabilized based on delay observations. Finally, a numerical exam-
ple is provided to illustrate the superiority and effectiveness of the proposed approaches.
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