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Abstract
A new class of 2m-point non-stationary subdivision schemes (SSs) is presented,
including some of their important properties, such as continuity, curvature, torsion
monotonicity, and convexity preservation. The multivariate analysis of subdivision
schemes is extended to a class of non-stationary schemes which are asymptotically
equivalent to converging stationary or non-stationary schemes. A comparison
between the proposed schemes, their stationary counterparts and some existing
non-stationary schemes has been depicted through examples. It is observed that the
proposed SSs give better approximation and more effective results.
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1 Introduction
Subdivision schemes (SSs) have become one of the most essential tools for the genera-
tion of curve/surfaces and have been appreciated in many fields such as computer aided
geometric design (CAGD), image processing, animation industry, computer graphics, etc.

Several univariate SSs studied in the literature are stationary. It seems that stationary
SSs cannot generate circles; on the other hand, non-stationary SSs are capable of repro-
ducing conic sections, spirals, trigonometric and hyperbolic functions of great interest in
graphical and engineering applications. The non-stationary SSs were established for the
first time by Dyn and Levin [17] in 1991. In 2002, Jena et al. [23] presented a scheme for
trigonometric spline curves. Later on, in 2003 Jena et al. [24] also proposed a binary four-
point interpolating non-stationary SSs which can generate C1 limit curve. In 2007, Beccari
et al. [4, 5] proposed a couple of four-point non-stationary C2 SSs with tension control pa-
rameter. For a general treatment of SSs, the readers can refer to [3, 20, 21, 27–29]. Recent
proposals of non-stationary SSs have been presented by Daniel and Shunmugaraj [10–12],
Conti and Romani [8, 9], Siddiqi et al. [30, 31], Bari and Mustafa [2], and Tan et al. [32]
who have constructed new attractive artifacts in the subdivision museum.

The property of shape preservation is of extraordinary significance and usually used in
curve & surface modeling. Several research papers have been published on shape preser-
vation in the last couple of years. In 1994, Méhauté and Utreras [26] introduced a new
technique to solve the problem of shape preservation in interpolating SSs. In 1998, Kuijt
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and Damme [25] constructed local SSs that interpolate functional univariate data preserv-
ing convexity. Dyn et al. [16] examined the convexity preservation properties of 4-point
binary interpolating SSs of Dyn et al. [19] in 1999. In 2009, Cai [6] discussed the con-
vexity preservation of 4-point ternary stationary SSs. Recently, in 2017, Wang and Li [33]
proposed a family of convexity preserving SSs and Akram et al. [1] deduced the shape
preserving properties of binary 4-point non-stationary interpolating SSs.

The main objective of this research is to define a new class of 2m-point binary approx-
imating subdivision schemes by using the Lagrange interpolation method. For simplicity,
we have analyzed and discussed only 2-point and 4-point non-stationary SSs. It is ob-
served that our proposed SSs are asymptotically equivalent to existing famous Chaikin’s
scheme [7] and 4-point binary scheme of Siddiqi et al. [31] and Dyn et al. [15] for different
choices of m, respectively. The results show that the binary approximating schemes de-
veloped by the proposed algorithm have the ability to reproduce or regenerate the conic
sections and trigonometric polynomials as well. Some examples are considered, by choos-
ing an appropriate tension parameter 0 < α < π

2 , to show the usefulness. We also examine
the shape preserving properties (monotonicity and convexity preservation) of SSs when
applied to functional univariate strictly convex data. Furthermore, motivated by appli-
cations in computer graphics and animation, the curvature and torsion of the obtained
curves are also presented in this paper.

The plan of this paper is as follows: Sect. 2 is for derivation of a new family of 2m-point
approximating non-stationary SSs. Section 3 is devoted for investigation of convergence
and continuity of proposed SSs, and in Sect. 4 we deduce the shape preserving proper-
ties (monotonicity and convexity preservation) of binary 4-point approximating stationary
scheme. Section 5 is devoted to results and discussion. Concluding remarks are presented
in Sect. 6.

2 Binary 2m-point non-stationary schemes
In this section, a procedure for constructing a new family of 2n-point binary non-
stationary SSs is presented. The following is a general form of one subdivision level of
the non-stationary SS:

qj+1
2i+γ =

n∑

k=0

α
j
i+γ qj

i+k , γ = 0, 1; i ∈ Z, (1)

where the finite set aj = {aj
i, i ∈ Z} is called the mask. The symbol of the scheme is defined

by a(z) =
∑

i∈Z aizi.

Theorem 1 ([18]) Let S be a convergent non-stationary SS with the mask aj
i+γ , then

m∑

k=0

aj
γ ,k = 1, γ = 0, 1. (2)

Here we reformulated Lagrange interpolation polynomials and presented some basic
identities which key role in this sections. Consider the Lagrange interpolation polynomials
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of degree (2m – 1):

L2m–1
n (y) =

m∏

k=–(m–1),n�=k

y – k
n – k

, n = –(m – 1), –(m – 2), . . . , (m). (3)

Lemma 2 If n = –(m – 1), . . . , (m), then following results holds:

m∏

k=–(m–1),k �=n

(n – k) = (–1)m–n(m + n – 1)!(m – n)!. (4)

Proof We derive this implication individually for each value of n. Now, for n = –(m – 1),
we get

m∏

k=–(m–1),k �=n

(n – k) = (–1)(–2)(–3) · · · (–2m + 2)(–2m + 1).

Therefore,

m∏

k=–(m–1),k �=n

(n – k) = 0!(–1)2m–1(2m – 1)!.

Since n = –(m – 1), the above identity can be composed as (4).
In the same manner for n = –(m – 2), . . . , 0, . . . , n, we have (4), completing the proof. �

Lemma 3 If L2m–1
n (x) is a Lagrange interpolation polynomial of degree (2m – 1), obtained

in (3) analogously to the nodes {n}m
–(m–1), then we get

Vn = L2m–1
n

(
1
4

)
=

(–1)n(4m – 1)(4m – 3)!
26m–4(1 – 4n)(2m – 2)!(m + n – 1)!(m – n)!

, (5)

where n = –(m – 1), . . . , (m).

Proof Since

m∏

k=–(m–1)

(
1
4

– k
)

=
(

1
4

)2m{
(4m – 3)(4m – 7)(4m – 11) · · · (5)(1)(–3) · · ·

× (–4m + 13)(–4m + 9)(–4m + 5)(–4m + 1)
}

,

we get

m∏

k=–(m–1),k �=n

(
1
4

– k
)

=
1

42m–1(1 – 4n)

n∏

m=–m+1

(1 – 4n).

This leads to

m∏

k=–(m–1),k �=n

(
1
4

– k
)
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=
(–1)m

42m–1(1 – 4n)

{
(4m – 3)

(4m – 4)
(4m – 4)

(4m – 5)
(4m – 5)

(4m – 6)
(4m – 6)

× (4m – 7)
(4m – 8)
(4m – 8)

(4m – 9)
(4m – 9)

(4m – 10)
(4m – 10)

(4m – 11)
(4m – 12)
(4m – 12)

× . . .
(

8
8

)(
7
7

)(
6
6

)
(5)

(
4
4

)(
3
3

)(
2
2

)
(1)

(
2
2

)
(3)

×
(

4
4

)(
5
5

)(
6
6

)
(7) · · · (4m – 13)

(4m – 12)
(4m – 12)

(4m – 11)
(4m – 11)

× (4m – 10)
(4m – 10)

(4m – 9)
(4m – 8)
(4m – 8)

(4m – 7)
(4m – 7)

(4m – 6)
(4m – 6)

× (4m – 5)
(4m – 4)
(4m – 4)

(4m – 3)
(4m – 3)

(4m – 2)
(4m – 2)

(4m – 1)
}

.

This implies

m∏

k=–(m–1),k �=n

(
1
4

– k
)

=
(–1)m(4m – 1)(4m – 3)!
26m–4(1 – 4n)(2m – 2)!

.

Applying (3)–(4) and y = 1
4 , we get (5). This completes the proof. �

Given m ≥ 0, the mask of the following 2m-point non-stationary SSs is:

⎧
⎨

⎩
qj+1

2i =
∑m

k=–(m–1) μ
j
kqj

i+k ,

qj+1
2i+1 =

∑m
k=–(m–1) μ

j
–k+1qj

i+k ,
(6)

and also

μ
j
k =

sin( a
2j+1 UmVn)

sin( a
2j+1 Um)

,

where 0 ≤ a ≤ π
2 , Um = m(42m–1) while Vn is defined in Eq. (5).

2.1 Binary 2-point scheme
For m = 1 in (6), the 2-point SS is

⎧
⎨

⎩
qj+1

2i = μ
j
1qj

i + μ
j
0qj

i+1,

qj+1
2i+1 = μk

0qj
i + μ

j
1qj

i+1,
(7)

where

μ
j
0 =

sin( 3a
2j+1 )

sin( a
2j–1 )

, μ
j
1 =

sin( a
2j+1 )

sin( a
2j–1 )

.

Remark 2.1
• For m = 1, the proposed SS (6) becomes the two-point non-stationary SS [14].
• The two-point SS constructed in [23] for the generation of the trigonometric spline of

order m, m > 2 also agrees with the proposed SS (6).
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• Now for m = 1, we derive the normalized SS (corresponding to (7)). Note that

μj = μ
j
0 + μ

j
1 =

sin( 3a
2j+1 )

sin( a
2j–1 )

+
sin( a

2j+1 )
sin( a

2j–1 )

=
1

sin( a
2j–1 )

{
sin

(
3a

2j+1

)
+ sin

(
a

2j+1

)}

=
1

sin( a
2j–1 )

{
2 sin

(
2a

2j+1

)
cos

(
a

2j+1

)}
=

cos( a
2j+1 )

cos( a
2j )

.

The corresponding normalized SS is obtained by dividing the stencil of the SS (7) at
the jth refinement level by their sum:

qj+1
2i = η

j
0qj

i + η
j
1qj

i+1,

qj+1
2i+1 = η

j
1qj

i + η
j
0qj

i+1,
(8)

where

η
j
0 =

cos( a
2j )

cos( a
2j+1 )

μ
j
0, η

j
1 =

cos( a
2j )

cos( a
2j+1 )

μ
j
1.

Lemma 4 If f is the limit function of the SS (7), then (cos a)f (x) is the limit function of the
proposed normalized SS.

Proof It is clear that

lim
n→∞

n∏

j=0

1
η

j
0 + η

j
1

= lim
n→∞

n∏

j=0

cos( a
2j )

cos( a
2j+1 )

= lim
n→∞

cos a
cos( a

2n+1 )

= cos a. �

2.2 Binary 4-point scheme
For m = 2 in (6), we get a new four-point symmetric binary approximating SS

qj+1
2i = μ

j
–1qj

i–1 + μ
j
0qj

i + μ
j
1qj

i+1 + μ
j
2qj

i+2,

qj+1
2i+1 = μ

j
2qj

i–1 + μ
j
1qj

i + μ
j
0qj

i+1 + μ
j
–1qj

i+2,
(9)

where

μ
j
–1 =

sin(– 7a
2j+1 )

sin( 32a
2j–1 )

, μ
j
0 =

sin( 105a
2j+1 )

sin( 32a
2j–1 )

, μ
j
1 =

sin( 35a
2j+1 )

sin( 32a
2j–1 )

and μ
j
2 =

sin(– 5a
2j+1 )

sin( 32a
2j–1 )

.

Similarly, the corresponding normalized SS is obtained by dividing the stencil of mask at
the jth refinement level of the SS (9) by their sum:

qj+1
2i = λ

j
–1qj

i–1 + λ
j
0qj

i + λ
j
1qj

i+1 + λ
j
2qj

i+2,

qj+1
2i+1 = λ

j
2qj

i–1 + λ
j
1qj

i + λ
j
0qj

i+1 + λ
j
–1qj

i+2,
(10)
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where

λ
j
k =

μ
j
k

μj , k = –1, 0, 1, 2.

The above normalized SS generates the function q(x) = 1 because
∑

λ
j
k = 1, k = –m +

1, . . . , m.

Lemma 5 Let j ≥ 0 and m > 0 be fixed integers. If qj
i = cos{(2i) a

2j } then for –1 ≤ i ≤ 2jm, we
have

qj+1
2i = cos

{(
2i +

1
2

)
a
2j

}
and qj+1

2i+1 = cos

{(
2i +

3
2

)
a
2j

}
.

Similarly, if qj
i = sin{(2i) a

2j } then for –1 ≤ i ≤ 2jn we have

qj+1
2i = sin

{(
2i +

1
2

)
a
2j

}
and qj+1

2i+1 = sin

{(
2i +

3
2

)
a
2j

}
.

Proof Here we prove the first part. Let q0
i = cos(2ia). In the first step of the SS (7), we get

q1
2i = η0

0 cos(2ia) + η0
1 cos

(
(2i + 2)a

)
=

sin( 3a
2 )

sin(2a)
cos(2ia) +

sin( a
2 )

sin(2a)
cos

(
(2i + 2)a

)

=
sin(2a – a

2 )
sin(2a)

cos(2ia) +
sin( a

2 )
sin(2a)

cos
(
(2i + 2)a

)

= cos

(
a
2

)
cos(2ia) – sin

(
a
2

)
sin(2ia) = cos

((
2i +

1
2

)
a
)

.

At the jth step of the SS, we get

qj+1
2i = η

j
0 cos

(
2i

a
2j

)
+ η

j
1 cos

(
(2i + 2)

a
2j

)

=
sin( 3a

2j+1 )
sin( a

2j–1 )
cos

(
(2i)

a
2j

)
+

sin( a
2j+1 )

sin( a
2j–1 )

cos

(
(2i + 2)

a
2j

)

=
sin( a

2j–1 – a
2j+1 )

sin( a
2j–1 )

cos

(
2i

a
2j

)
+

sin( a
2j+1 )

sin( a
2j–1 )

cos

(
(2i + 2)

a
2j

)

= cos

(
a

2j+1

)
cos

(
2i

a
2j

)
– sin

(
a

2j+1

)
sin

(
2i

a
2j

)

= cos

((
2i +

1
2

)
a
2j

)
.

Similarly, we can show that

qj
2i+1 = cos

((
2i +

3
2

)
a
2j

)
.

The proof of the other part is similar. Analogously, we can prove that SS (9) also generates
functions cos(ax) and sin(ax). �
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3 Convergence analysis
In this section, we use the asymptotic equivalence method to find the smoothness of the
normalized SSs (8) and (10).

Definition 1 ([18]) Two binary SSs, {Sαj} and {Sβj}, are asymptotically equivalent if

∞∑

j=1

‖Sαj – Sβj‖ < ∞,

where ‖Sαj‖∞ = max{∑i∈Z |α(j)
2i |, |α(j)

2i+1|}.

Theorem 6 ([18]) Assume that {Sαj} is a non-stationary SS and {Sβj} is a stationary SS. Let
{Sαj} and {Sβj} be two asymptotically equivalent SS having finite masks of the same support.
If {Sβj} is Cm and

∑∞
j=0 2mj‖Sαj – Sβj‖ < ∞, then the non-stationary SS {Saj} is Cm.

Some estimates of stencils η
j
k , k = 0, 1 and λ

j
k , k = –1, 0, 1, 2, are required to find the

smoothness of the proposed schemes which are given in the following lemmas.

Lemma 7 The following inequalities hold:

(a)
1
4

≤ λ
j
1 ≤ 1

4
1

cos( a
2j–1 )

,

(b)
3
4

≤ λ
j
0 ≤ 3

4
1

cos( a
2j–1 )

.

Proof We give the proof of (a). Note that

λ
j
1 =

cos( a
2j ) sin( a

2j+1 )
cos( a

2j+1 ) sin( a
2j–1 )

≥
a

2j+1
a

2j–1
=

(
1
4

)
.

Also

λ
j
1 =

cos( a
2j )(sin( a

2j+1 ))
cos( a

2j+1 ) sin( a
2j–1 )

≤
sin( a

2j )
a
2j

sin( a
2j+1 )

sin( a
2j+1 )
a

2j+1
sin( a

2j–1 )
=

sin( a
2j )

2 sin( a
2j–1 )

≤
a
2j

2 a
2j–1 cos( a

2j–1 )
≤

a
2j+1

a
2j–1 cos( a

2j–1 )
=

1
4

1
cos( a

2j–1 )
.

This completes the proof of (a). The proof of (b) is obtained similarly. �

Now, by Lemma 7, we have the following result.

Lemma 8 The following inequalities hold:

(a)
∣∣∣∣λ

j
1 –

1
4

∣∣∣∣ ≤ C0
1

22j ,

(b)
∣∣∣∣λ

j
0 –

3
4

∣∣∣∣ ≤ C1
1

22j ,

where C0 and C1 are constants independent of j.
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Proof We present the proof of (a). By Lemma 7(a), we get

∣∣∣∣λ
j
1 –

1
4

∣∣∣∣ ≤
(

1
4

)(1 – cos( a
2j–1 )

cos( a
2j–1 )

)
≤ 2

1
4 cos( a

2j–1 )
sin2

(
a
2j

)

≤ 1
2 cos( a

2j–1 )
a2

22j ≤ C0
1

22j .

This complete the proof of (a). The proof of (b) is obtained similarly. �

Remark 3.1 The the normalized SS (8) is a non-stationary counterpart of the following
stationary SS [7]:

⎧
⎨

⎩
qj+1

2i = 3
4 qj

i + 1
4 qj

i+1,

qj+1
2i+1 = 1

4 qj
i + 3

4 qj
i+1

(11)

because the stencils of the normalized SS (8) converge to the stencils of (11): λj
0 → ( 3

4 ) and
λ

j
1 → ( 1

4 ) as j → ∞. The proof of convergence follows from Lemma 8.

Lemma 9 Suppose that the Laurent polynomial a(z) of the stationary SS (16) can be writ-
ten as

a(z) =
{(

1
4

)
+

(
3
4

)
z1 +

(
3
4

)
z2 +

(
1
4

)
z3

}
,

then SS Sa corresponding to the Laurent polynomial a(z) is C1.

Proof To find the smoothness of the stationary scheme Sα , we consider a(z),

a(z) =
1
4
(
1 + 3z + 3z2 + z3).

If

c(z) =
4a(z)

(1 + z)2 = (1 + z),

then

∥∥∥∥
1
2

Sc

∥∥∥∥ =
1
2

max
{∑

k∈Z
|c2k|,

∑

k∈Z
|c2k+1|

}
= max

{
1
2

,
1
2

}
< 1.

Hence by [18, Corollary 4.11], the SS Sa is C1. �

Lemma 10 The Laurent polynomial aj(z) of the jth refinement level of the stationary SS
(10) can be written as aj(z) = ( 1+z

2 )bj(z) where

bj(z) = 2
{
λ

j
1 +

(
λ

j
0 – λ

j
1
)
z + λ

j
1z2}.
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Proof Observe that

aj(z) = λ
j
1 +

(
λ

j
0
)
z +

(
λ

j
0
)
z2 +

(
λ

j
1
)
z3.

It can be easily proved that aj(z) = ( 1+z
2 )bj(z). �

Theorem 11 The stationary SSs (8) and (11) are asymptotically equivalent, that is,

∞∑

j=0

‖Saj – Sa‖∞ < ∞.

Proof From the stationary SSs (8) and (11), we get

∞∑

j=0

‖Saj – Sa‖∞ =
∞∑

j=0

{∣∣∣∣λ
j
0 –

3
4

∣∣∣∣ +
∣∣∣∣λ

j
1 –

1
4

∣∣∣∣

}
.

From Lemma 8(a), it follows that

∞∑

j=0

∣∣∣∣λ
j
1 –

1
4

∣∣∣∣ ≤
∞∑

j=0

C0
1

22j < ∞.

Similarly from Lemma 8(b) we obtain

∞∑

j=0

∣∣∣∣λ
j
0 –

3
4

∣∣∣∣ < ∞.

Hence

∞∑

j=0

‖Saj – Sa‖∞ < ∞.
�

Theorem 12 The non-stationary SS (8) is C1.

Proof Since Sa is C1 by Lemma 9 and also the stationary SSs (8) and (11) are asymptotically
equivalent by Theorem 11, by [18, Theorem 8(a)], it is sufficient to prove that

∞∑

j=0

2j‖Saj – Sa‖∞ < ∞,

where

‖Saj – Sa‖∞ = max

{∑

k∈Z

∣∣aj
2k – a2j

∣∣,
∑

k∈Z

∣∣aj
2k+1 – a2j+1

∣∣
}

=
∞∑

j=0

{
2
∣∣∣∣λ

j
0 –

3
4

∣∣∣∣ + 2
∣∣∣∣λ

j
1 –

1
4

∣∣∣∣

}
.
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Note that

∣∣λj
0 + λ

j
1
∣∣ ≤

∣∣∣∣λ
j
0 –

3
4

∣∣∣∣ +
∣∣∣∣λ

j
1 –

1
4

∣∣∣∣.

Since

∞∑

j=0

2j
∣∣∣∣λ

j
0 –

3
4

∣∣∣∣ < ∞ and
∞∑

j=0

2j
∣∣∣∣λ

j
1 –

1
4

∣∣∣∣ < ∞,

by Lemma 8(a)–(b), it follows that

∞∑

j=0

2j∣∣λj
0 + λ

j
1 – 1

∣∣ < ∞.

Hence

∞∑

j=0

2j‖Saj – Sa‖∞ < ∞.
�

Now we discuss the procedure for checking the smoothness of four-point non-stationary
SS (9). The proofs of the following lemmas are similar to those of Lemmas 7 and 8.

Lemma 13 The following inequalities hold:

(a) –
7

128
≤ λ

j
–1 ≤ –

7
128

,

(b)
105
128

≤ λ
j
0 ≤ 105

128 cos(a)
,

(c)
35

128
≤ λ

j
1 ≤ 35

128 cos(a)
,

(d) –
5

128
≤ λ

j
2 ≤ –

5
128

.

Using Lemma 13, we get following result.

Lemma 14 The following inequalities hold:

(a)
∣∣∣∣λ

j
–1 –

(
–

7
128

)∣∣∣∣ ≤ D0
1

22j ,

(b)
∣∣∣∣λ

j
0 –

(
105
128

)∣∣∣∣ ≤ D1
1

22j ,

(c)
∣∣∣∣λ

j
1 –

(
35

128

)∣∣∣∣ ≤ D2
1

22j ,

(d)
∣∣∣∣λ

j
2 –

(
–

5
128

)∣∣∣∣ ≤ D3
1

22j ,

where D0, D1, D2, and D3 are some constants independent of j.
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Remark 3.2 The four-point stationary SS (9) is a non-stationary counterpart of following
stationary SS [15]:

⎧
⎨

⎩
qj+1

2i = (– 7
128 )qj

i–1 + ( 105
128 )qj

i + ( 35
128 )qj

i+1 + (– 5
128 )qj

i+2,

qj+1
2i+1 = (– 5

128 )qj
i–1 + ( 35

128 )qj
i + ( 105

128 )qj
i+1 + (– 7

128 )qj
i+2

(12)

because the stencils of the normalized SS (9) converge to the stencils of the stationary SS
(12): λ

j
–1 → – 7

128 , λ
j
o → 105

128 , λ
j
1 → 35

128 and λ
j
2 → – 5

128 as j → ∞. The proof of these facts
follows from Lemma 14.

Theorem 15 The stationary SSs (9) and (12) are asymptotically equivalent, that is,

∞∑

j=0

‖Saj – Sa‖∞ < ∞.

Proof From (9) and (12), we have

∞∑

j=0

‖Saj – Sa‖∞ =
∞∑

j=0

{∣∣∣∣λ
j
–1 –

(
–

7
128

)∣∣∣∣ +
∣∣∣∣λ

j
0 –

(
105
128

)∣∣∣∣

+
∣∣∣∣λ

j
1 –

(
35

128

)∣∣∣∣ +
∣∣∣∣λ

j
2 –

(
–5
128

)∣∣∣∣

}
.

From Lemma 14(a), it follows that

∞∑

j=0

∣∣∣∣λ
j
–1 –

(
–

7
128

)∣∣∣∣ ≤
∞∑

j=0

D0
1

22j < ∞.

Similarly, from Lemma 14(b)–(d) we obtain

∣∣∣∣λ
j
0 –

(
105
128

)∣∣∣∣ < ∞,
∣∣∣∣λ

j
1 –

(
35

128

)∣∣∣∣ < ∞,
∣∣∣∣λ

j
2 –

(
–5
128

)∣∣∣∣ < ∞.

Hence

∞∑

j=0

‖Saj – Sa‖∞ < ∞.
�

Theorem 16 The non-stationary SS (9) is C2.

The proof of above theorem is similar to that of Theorem 12.

4 Shape preservation of binary four-point SS
In this section, we will check what axiom should be applied on the control points so that
the limit curve achieved by binary 4-point subdivision scheme (9) is both monotonicity
and convexity preserving.
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4.1 Monotonicity preservation
Lemma 17 Consider the control points {q0

i }i∈Z,

· · · < q0
–2 < q0

–1 < q0
0 < q0

1 < · · · < q0
n–1 < q0

n < · · · .

Define first order divided difference by Dj
i = qj

i+1 – qj
i, taking

qj
i =

Dj
i+1

Dj
i

, Qj = max
i

{
qj

i,
1
qj

i

}
, ∀j ≥ 0, i, j ∈ Z.

Furthermore, consider 29–
√

801
4 ≤ ρ ≤ 1, ρ ∈R.

If 1
ρ

≤ Q0 ≤ ρ and {pj
i} is given by the SS (9), then

Dj
i > 0,

1
ρ

≤ Qj ≤ ρ, ∀j ≥ 0, i, j ∈ Z. (13)

Proof To prove Lemma 17, we use mathematical induction on j.
(I) By hypothesis, when j = 0, D0

i = q0
i+1 – q0

i > 0, 1
ρ

≤ Q0 ≤ ρ , then (13) is satisfied.
(II) Suppose that (13) is satisfied for some j ≥ 1, then we have to prove that it is true for

j + 1.
We first prove Dj

i > 0, ∀j ≥ 0, i, j ∈ Z.
Assume that Dj

i > 0, ∀i ∈ Z, is true for some j ≥ 1. Then ∀i ∈ Z, we have

Dj+1
2i = qj+1

2i+1 – qj+1
2i

=
1

128
[
–2

(
qj

i – qj
i–1

)
+ 58

(
qj

i+1 – qj
i
)

– 2
(
qj

i+2 – qj
i+1

)]

=
1

128
[
–2Dj

i–1 + 58Dj
i – 2Dj

i+1
]

=
Dj

i
128

[
–2
qj

i–1

+ 58 – 2qj
i

]

=
Dj

i
128

[
–2
ρ

+ 58 – 2ρ

]
> 0 (14)

and

Dj+1
2i+1 = qj+1

2i+2 – qj+1
2i+1

=
1

128
[
–5Dj

i–1 + 37Dj
i + 37Dj

i+1 – 5Dj
i+2

]

=
Dj

i
128

[
–

5
qj

i–1

+ 37 + 37qj
i – 5qj

i+1qj
i

]

=
Dj

i
128

[
–5

1
ρ

+ 37 +
(

37 – 5
1
ρ

)
qj

i

]

≥ Dj
i

128

[
–5

1
ρ

+ 37 +
(

37 – 5
1
ρ

)
ρ

]
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=
Dj

i
128ρ

[
37ρ2 + 32ρ – 5

]
> 0, (15)

which implies that Dj+1
i > 0, ∀i ∈ Z.

Therefore, by induction, Dj
i > 0, ∀j ≥ 0, i ∈ Z, j ∈ Z.

(III) We now prove that 1
ρ

≤ Qj ≤ ρ , ∀j ≥ 0, j ∈ Z.
Since

qj
2i =

Dj+1
2i+1

Dj+1
2i

=

Dj
i

128 [– 5
qj

i–1
+ 37 + 37qj

i – 5qj
i+1qj

i]

Dj
i

128 [ –2
qj

i–1
+ 68 – 2qj

i]
,

qj
2i – ρ =

[– 5
qj

i–1
+ 37 + 37qj

i – 5qj
i+1qj

i] – ρ[ –2
qj

i–1
+ 68 – 2qj

i]

[ –2
qj

i–1
+ 68 – 2qj

i]
,

qj
2i – ρ =

– 5
qj

i–1
+ 37 + 37qj

i – 5qj
i+1qj

i + 2ρ

qj
i–1

– 68ρ + 2ρqj
i

–2
qj

i–1
+ 68 – 2qj

i

,

qj
2i – ρ =

N
D

,

(16)

and as the denominator in (16) is positive, i.e., D > 0, the numerator satisfies:

N ≤ –
5

qj
i–1

+ 37 + 37qj
i – 5qj

i+1qj
i +

2ρ

qj
i–1

– 68ρ + 2ρqj
i

=
(

–5
ρ

+ 37 + 2ρ

)
qj

i + 37 –
5

qj
i–1

+ 2ρ
1

qj
i–1

– 68ρ

=
1
ρ

(
2ρ3 – 31ρ2 + 34ρ – 5

)

≤ 1
ρ

(ρ – 1)
(
2ρ2 – 29ρ + 5

) ≤ 0.

Therefore, qj
2i ≤ ρ .

Similarly, we can get qj
2i+1 ≤ ρ , 1

qj
2i

≤ ρ and 1
qj

2i+1
≤ ρ , which implies 1

ρ
≤ Qj+1 ≤ ρ .

Therefore, by induction, we have 1
ρ

≤ Qj ≤ ρ , ∀j ≥ 0, j ∈ Z, completing the proof. �

A direct consequence of Lemma 17 is Theorem 18.

Theorem 18 Suppose the control points {q0
i }i∈Z with q0

i = (x0
i , f 0

i ) are strictly monotone
decreasing (strictly monotone increasing). Denote

X0 = max
i

{
x0

i+2 – x0
i+1

x0
i+1 – x0

i
,

x0
i+1 – x0

i
x0

i+2 – x0
i+1

}
, Q0 = max

i

{
q0

i ,
1
q0

i

}
.

Then, for 1
ρ

≤ X0 ≤ ρ and 1
ρ

≤ Q0 ≤ ρ , we have

29 –
√

801
4

≤ ρ ≤ 1, ρ ∈R,
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and the limit functions obtained by the SS (9) are strictly monotone decreasing (strictly
monotone increasing).

4.2 Convexity preservation
Definition 2 Consider that data points {q0

i }i∈Z with q0
i = (x0

i , q0
i ) are strictly convex, where

{x0
i }i∈Z are equidistant. For convenience, we let 	x0

i = x0
i+1 – x0

i = 1. By SS (9), we have
	xj+1

i = xj+1
i+1 – xj+1

i = 1
2	xj

i = 1
2j+1 .

Definition 3 Let dj
i = 2j(qj

i–1 – 2qj
i + qj

i+1) denote the 2nd order divided differences. In the
following, we will prove d0

i > 0, ∀j ≥ 0, j, i ∈ Z. The SS (9) can thus be written in terms of
2nd order divided differences as follows:

dj+1
2i =

1
32

[
–5dj

i–1 + 34dj
i + 3dj

i+1
]
,

dj+1
2i+1 =

1
32

[
3dj

i + 34dj
i+1 – 5dj

i+2
]
.

Theorem 19 Consider the control points {q0
i }i∈Z, q0

i = (x0
i , q0

i ), which are strictly convex,

i.e., d0
i > 0, ∀i ∈ Z. Let Γ j = maxi{rj

i,
1
rj
i
}, where rj

i = dj
i+1
dj

i
, ∀j ≥ 0, j ∈ Z.

Furthermore, consider 17–
√

274
3 ≤ λ ≤ 1, λ ∈R. Then for 1

λ
≤ Γ 0 ≤ λ, we get

d0
i > 0,

1
λ

≥ Γ j < λ, ∀j ≥ 0, i ∈ Z, j ∈ Z. (17)

In particular, the limit functions generated by the four-point binary approximating station-
ary SS defined in (9) preserve convexity.

Proof To verify Theorem 19, we use mathematical induction on j.
(I) By hypothesis, (17) holds true for j = 0, as is easily seen to be true: d0

i > 0,
1
λ

≤ Γ 0 < λ.
(II) Suppose that if (17) true for some j ≥ 1. It must then be shown that (17) holds true

for j + 1. To achieve this, we first prove that dj
i > 0, ∀j ≥ 0, i, j ∈ Z. From the

assumption that dj
i > 0, ∀i ∈ Z, it follows ∀i ∈ Z that

dj+1
2i =

1
32

[
–5dj

i–1 + 34dj
i + 3dj

i+1
]

=
dj

i
32

[
–5

dj
i–1

dj
i

+ 34 + 3
dj

i+1

dj
i

]

=
dj

i
32

[
–5

1
rj

i–1

+ 34 + 3rj
i

]

≥ dj
i

32λ

[
–5λ2 + 34λ + 3

]

≥ 0,

and

dj+1
2i+1 =

1
32

[
3dj

i + 34dj
i+1 – 5dj

i+2
]
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=
dj

i
32

[
3 + 34

dj
i+1

dj
i

– 5
dj

i+2

dj
i

]

=
dj

i
32

[
3 + (34 – 5λ)rj

i
]

≥ dj
i

32λ
[–2λ + 34]

≥ 0,

which implies that dj+1
i > 0, ∀i ∈ Z.

Therefore, by mathematical induction, we have dj
i > 0, ∀j ≥ 0, i, j ∈ Z.

(III) Now we prove that 1
λ

≥ Γ j+1 < λ, j ≥ 0, i ∈ Z, j ∈ Z.
Since

rj+1
2i =

dj+1
2i+1

dj+1
2i

=
dj

i
32 [3 + 34rj

i – 5rj
ir

j
i+1]

dj
i

32 [–5 1
rj
i–1

+ 34 + 3rj
i]

=
3 + 34rj

i – 5rj
ir

j
i+1

–5 1
rj
i–1

+ 34 + 3rj
i

,

we get

rj+1
2i – λ =

3 + 34rj
i – 5rj

ir
j
i+1 + 5λ 1

rj
i–1

– 34λ – 3λrj
i

–5 1
rj
i–1

+ 34 + 3rj
i

.

Since dj+1
2i ≥ 0, the numerator of the above expression satisfies:

Numerator ≤ 3 + 34rj
i – 5rj

ir
j
i+1 + 5λ

1
rj

i–1

– 5 – 3λrj
i

=
(

34 – 5
1
λ

– 3λ

)
rj

i + 3 + 5λ
1

rj
i–1

– 34λ

=
(

34 – 5
1
λ

– 3λ

)
λ + 3 + 5λ2 – 34λ

= 2λ2 – 2

= 2(λ – 1)(λ + 1)

≤ 0,

therefore rj+1
2i ≤ λ.

Similarly, we get rj+1
2i+1 ≤ λ, 1

rj+1
2i

≤ λ, and 1
rj+1
2i+1

≤ λ, which implies 1
λ

≥ Γ j+1 < λ.

Therefore, by mathematical induction, we have 1
λ

≥ Γ j < λ, ∀j ≥ 0, j ∈ Z, completing the
proof. �

5 Results and discussion
Now, we compare the proposed SSs (8) and (10) with some known existing ASS [4, 12–14,
22, 23] and illustrate through their smooth curves helix, curvature, and torsion plots. The
curves in the figures of this section are drawn after the fifth subdivision level.
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Figure 1 Limit curves obtained after the fifth iteration (left), the corresponding curvature (center) and torsion
(right)

In Fig. 1, we first compare the helix, curvature and torsion plots of the 3-point schemes
[11, 13, 23] and the 2-point proposed scheme (8). Similarly, in Fig. 2, we compare the helix,
curvature and torsion plots of the 4-point schemes [14, 22] and the proposed scheme (10).

The limit curves generated by existing SSs [4, 12–14, 22, 23] and proposed schemes (8)
and (10), along with their curvature plots, are illustrated in Fig. 3.
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Figure 2 Limit curves obtained after the fifth iteration, the corresponding curvature (center) and torsion
(right)

6 Conclusion
In this paper, we have constructed a simple and efficient algorithm to generate binary 2m-
point approximating non-stationary SS for any integer m ≥ 2. The proposed 2-point (8)
and 4-point (10) SSs have been assumed as non-stationary counterparts of the stationary
SSs [7] and [15, 31], respectively. The constructions of the SSs (8) and (10) have been as-
sociated with trigonometric polynomials that reproduce the functions. It has been proved
that our schemes have the ability to reconstruct the conics, especially circles. The asymp-
totic equivalence method is applied to investigate the smoothness of our SSs. A com-
parison of our SSs with the existing non-stationary SSs has been depicted by their he-
lix, curvature and torsion plots. It is clear that the proposed SSs give better approxima-
tion and are more effective with the control polygons. Also the shape preserving proper-
ties of the binary 4-point ASS (9) generating C2-continuous limit curves have been de-
rived.
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Figure 3 Comparison of the existing [4, 12–14, 22, 23] and proposed schemes (8) and (10) when five initial
control points are sampled from a circle
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