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Abstract
In this paper, we discuss SIRS models with two different incidence rates and
Markovian switching. First, we consider that the parameters are perturbed by random
environment modulated by Markovian switching. The segment method is used to
prove that the model has a unique solution and the estimate of the solution is
provided. The threshold values for determining extinction or persistence in mean of
diseases are presented by theoretical analysis and some inequalities techniques.
Furthermore, some results reveal that stochastic disturbances can suppress the
disease outbreak. Because of regime switching, the diseases will be extinct (or
persistent) although they might be persistent (or extinct) in some certain
environments. Then, the model in which incidence rate functions are perturbed by
random environment is also discussed and the values to judge the disease extinction
are obtained. At last, a few examples are set to illustrate these interesting phenomena,
and their simulations have been carried out to verify our theoretical outcomes.

Keywords: Stochastic SIRS model; Two incidence rates; Extinction and persistence;
Markovian switching

1 Introduction
The epidemic model plays a significant role in the spread and control of diseases. Owing to
its great importance, it attracts great attention of scholars and has been extensively inves-
tigated. The SIRS model, in which the infective individual loses immunity and returns to
the susceptive one, is one of its extensions. Also, the epidemic model has other extensions
based on different mechanisms and incidence functions. Because life is full of random-
ness and the parameters involved in the models are affected to a greater or lesser extent
by random factors, stochastic models with white noise depicted by Brownian motion have
been extensively studied, see [1–7]. In [1], Cai et al. have proved an interesting fact that
stochastic fluctuations can suppress disease outbreak, which indicates that stochastic per-
turbation has an important influence on the behavior of a system.

Thanks to the richness of the research content, epidemic models have been extensively
studied in terms of extinction, persistence, stability, stationary distribution, and so on, and
a large amount of literature has been published, see [8–14] and the references therein. For
example, Bao and Zhang in [10] studied the extinction, persistence, and stationary dis-
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tribution of stochastic SIRS models with information intervention, and the study showed
that information intervention had a significant influence on the behavior of a disease.

In order to grasp some essential characteristics of life, researchers have studied many
different models to fit the reality better. One of them is to turn one disease into two kinds
of diseases. Such consideration is reasonable, for instance, children are susceptible to in-
fluenza and chickenpox in spring. For this type, epidemic models with two incidence func-
tions have been studied by many researchers, see [13, 15–17] and the references therein.

Owing to the above reasons, Chang et al. in [15] investigated a stochastic SIRS model
with two different incidence rates with the following forms:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
S(t) = (A – μS(t) – β1S(t)I1(t)

α1+I1(t) – β2S(t)I2(t)
α2+S(t) + δR(t)) dt

– σ1S(t)I1(t)
α1+I1(t) dB1(t) – σ2S(t)I2(t)

α2+S(t) dB2(t),
.
I1(t) = ( β1S(t)I1(t)

α1+I1(t) – [μ + d1 + r1]I1(t)) dt + σ1S(t)I1(t)
α1+I1(t) dB1(t),

.
I2(t) = ( β2S(t)I2(t)

α2+S(t) – [μ + d2 + r2]I2(t)) dt + σ2S(t)I2(t)
α2+S(t) dB2(t),

.
R(t) = (r1I1(t) + r2I2(t) – [μ + δ]R(t)) dt,

(1)

where S(t), I1(t), I2(t), R(t) denote the population sizes of the susceptible, the infected
caused by disease 1, the infected caused by disease 2, and the removed individuals at time
t, respectively. N(t) = S(t) + I1(t) + I2(t) + R(t) stands for the total population. The mean-
ings of the parameters in model (1) are expressed as follows: A is the recruitment rate
of population, μ means the natural mortality rate, β1 and β2 are contact rates, δ denotes
the rate at which the removed individuals lose their immunity and return to the suscep-
tible population, d1 and d2 stand for the death rates caused by disease 1 and disease 2,
respectively. r1 and r2 represent the recovery rates of diseases. β1S(t)I1(t)

α1+I1(t) and β2S(t)I2(t)
α2+S(t) are

two incidence rates for two diseases. Bi(t) is the standard Brownian motion with the in-
tensity σi, i = 1, 2. The authors obtained two threshold values R∗

1 and R∗
2 which determine

the extinction and permanence of two diseases, where R∗
1 = β1A

μα1(μ+d1+r1) – σ 2
1 A2

2μ2α2
1 (μ+d1+r1) and

R∗
2 = β2A

(μα2+A)(μ+d2+r2) – σ 2
2 A2

2(μα2+A)2(μ+d2+r2) .
However, the above stochastic model is investigated in a fixed environment. The real-

ity is that the environment is also changing. Taking the example above into account, the
spread of diseases in children is affected by seasons and temperature, the mechanisms of
the effects of spring and autumn on disease are obviously different. Such changes of the en-
vironment cannot be described by the white noise driven by Brownian motions. Thus, the
model containing both dynamics and discrete events in which the events are modulated
by continuous time Markov chain is reasonable. The epidemic models with Markovian
switching have been investigated by many scholars, see [18–23]. There is a lot of literature
about other systems modulated by Markovian switching, see [24–29]. For more theory
and details about Markovian switching, we refer the readers to [30, 31].

To our best knowledge, there is little literature to study a stochastic SIRS model with
two incidence rates and Markovian switching. In this paper, we first discuss the model as
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follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
S(t) = (A(Λt) – μ(Λt)S(t) – β1(Λt )S(t)I1(t)

α1+I1(t) – β2(Λt )S(t)I2(t)
α2+S(t) + δ(Λt)R(t)) dt

– σ1(Λt )S(t)I1(t)
α1+I1(t) dB1(t) – σ2(Λt )S(t)I2(t)

α2+S(t) dB2(t),
.
I1(t) = ( β1(Λt )S(t)I1(t)

α1+I1(t) – [μ(Λt) + d1(Λt) + r1(Λt)]I1(t)) dt + σ1(Λt )S(t)I1(t)
α1+I1(t) dB1(t),

.
I2(t) = ( β2(Λt )S(t)I2(t)

α2+S(t) – [μ(Λt) + d2(Λt) + r2(Λt)]I2(t)) dt + σ2(Λt )S(t)I2(t)
α2+S(t) dB2(t),

.
R(t) = (r1(Λt)I1(t) + r2(Λt)I2(t) – [μ(Λt) + δ(Λt)]R(t)) dt,

(2)

where (Λt) is a continuous-time Markov chain, taking values in a finite state space N =
{1, 2, . . . , N} and with generator Q = (qij)N×N , which means that

P(Λt+θ = j|Λt = i) =

⎧
⎨

⎩

qijθ + o(θ ) if i �= j,

1 + qiiθ + o(θ ) if i = j,

supposing that θ ↓ 0. Throughout this paper, we assume that the Q matrix is conservative
and irreducible. Then, according to the theory of Markov chain, we obtain that (Λt) has a
unique stationary distribution (πi) satisfying the equations

πQ = 0,
N∑

i=1

πi = 1. (3)

On the other hand, the incidence functions may also be affected in different environ-
ments besides the influence of parameters in the above model. Hence, a new SIRS model
in which the incidence functions vary depending on different environments is proposed
as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
S(t) = (A(Λt) – μ(Λt)S(t) – β1(Λt )S(t)I1(t)Λt

α1+I1(t) – β2(Λt )S(t)I2(t)Λt
α2+S(t) + δ(Λt)R(t)) dt

– σ1(Λt )S(t)I1(t)Λt
α1+I1(t) dB1(t) – σ2(Λt )S(t)I2(t)Λt

α2+S(t) dB2(t),
.
I1(t) = ( β1(Λt )S(t)I1(t)Λt

α1+I1(t) – [μ(Λt) + d1(Λt) + r1(Λt)]I1(t)) dt

+ σ1(Λt )S(t)I1(t)Λt
α1+I1(t) dB1(t),

.
I2(t) = ( β2(Λt )S(t)I2(t)Λt

α2+S(t) – [μ(Λt) + d2(Λt) + r2(Λt)]I2(t)) dt

+ σ2(Λt )S(t)I2(t)Λt
α2+S(t) dB2(t),

.
R(t) = (r1(Λt)I1(t) + r2(Λt)I2(t) – [μ(Λt) + δ(Λt)]R(t)) dt.

(4)

Although there are some epidemic models with two incidence functions or Markovian
switching, and some methods are used to solve different problems, for example, Markov
semigroup theory was used in [23] to obtain the existence of stationary distribution,
the stochastic SIRS model (2), which combines two non-linear incidence functions and
Markov switching, has rarely been proposed and studied. In order to overcome the dif-
ficulties caused by two factors, some new inequality techniques are utilized to study the
asymptotic behavior of diseases. In addition, model (4), in which the incidence functions
are affected by Markov chain, has rarely been studied. The methods and results of these
models can enrich epidemiological theories and help control the spread of diseases.

The rest of the paper is arranged as follows. Section 2 provides some background knowl-
edge and proves that model (2) has a unique positive solution. Section 3 focuses on the



Wang and Liu Advances in Difference Equations        (2019) 2019:322 Page 4 of 20

conditions under which the two diseases will be extinct and presents the threshold values
for judging disease extinction. Section 4 proceeds with the threshold values to determine
the disease persistence. Section 5 studies the influence of Markovian switching upon inci-
dence functions in model (4) and gives the conditions to judge disease extinction. Section 6
presents some examples and their figures to illustrate our theoretical results; and finally,
Sect. 7 gives the conclusions and future research of current work.

2 Background knowledge
In this section, we present a number of definitions, notations, and lemmas which will be
used later in the article.

Let Ǎ = maxi∈N A(i), Â = mini∈N A(i), β̌1 = maxi∈N β1(i), and β̂1 = mini∈N β1(i). Simi-
larly, for the parameters μ̌, μ̂, β̌2, β̂2, δ̂, ř1, ř2, σ̂1, we define them in the same way.

Throughout this paper, let (Ω ,F , {F}t≥0,P) be a complete probability space with a fil-
tration {F}t≥0 satisfying the usual conditions. Take into account the SDEs of the following
form:

dX(t) = b(X,Λt) dt + σ (X,Λt) dB(t),

where b : Rn ×N → R
n, σ : Rn ×N → R

n×m, and B(t) = (B1
t , . . . , Bm

t )T is m-dimensional
standard Brownian motion defined on the complete probability space. For i ∈ N and any
twice continuous-differentiable function V (X, i), define the operator L by

LV (X, i) = Vx(X, i)b(X, i) +
1
2

tr
[
σ T (X, t)Vxxσ (X, t)

]
+

N∑

j=1

qijV (X, j). (5)

To proceed, we give the definitions for describing the behavior of the diseases. Let R4
+ =

{xi > 0, i = 1, 2, 3, 4}, and for an integrable function f , define the notation 〈f (t)〉 by 〈f (t)〉 =
1
t
∫ t

0 f (r) dr.

Definition 2.1
• The disease I(t) is called extinct if limt→∞ I(t) = 0;
• The disease I(t) is called persistent if there exists a positive constant λ such that

lim inft→∞〈f (t)〉 ≥ λ.

Lemma 2.1 For any initial value (S(0), I1(0), I2(0), R(0)) ∈R
4
+, and i0 ∈N , model (2) has a

unique solution (S(t), I1(t), I2(t), R(t)) for t > 0, and the solution remains in R4
+ with proba-

bility 1. Moreover, the solution satisfies the inequality

N(t) ≤ N(0)e–
∫ t

0 μ(Λs) ds +
∫ t

0
A(Λs)e–

∫ t
s μ(Λr ) dr ds, a.s., (6)

then, obviously,

N(t) ≤ N(0)e–μ̂t +
Ǎ
μ̂

≤ N(0) +
Ǎ
μ̂

, a.s., (7)

holds.
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Proof The existence and uniqueness of the solution to model (2) can be obtained by the
segment method. Precisely, let 0 = t0 < t1 < · · · < tn < · · · be the set of all jumping times of
the Markov chain (Λt). Then, for t ∈ [0, t1), Λt = i0. The model is simplified as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
S(t) = (A(i0) – μ(i0)S(t) – β1(i0)S(t)I1(t)

α1+I1(t) – β2(i0)S(t)I2(t)
α2+S1(t) + δ(i0)R(t)) dt

– σ1(i0)S(t)I1(t)
α1+I1(t) dB1(t) – σ2(i0)S(t)I2(t)

α2+S(t) dB2(t),
.
I1(t) = ( β1(i0)S(t)I1(t)

α1+I1(t) – [μ(i0) + d1(i0) + r1(i0)]I1(t)) dt + σ1(i0)S(t)I1(t)
α1+I1(t) dB1(t),

.
I2(t) = ( β2(i0)S(t)I2(t)

α2+S(t) – [μ(i0) + d2(i0) + r2(i0)]I2(t)) dt + σ2(i0)S(t)I2(t)
α2+S(t) dB2(t),

.
R(t) = (r1(i0)I1(t) + r2(i0)I2(t) – [μ(i0) + δ(i0)]R(t)) dt.

(8)

With regard to model (8), the existence and uniqueness of a positive solution can be
obtained by constructing the Lyapunov function V (S, I1, I2, R) = – ln S

h1
– ln I1

h1
– ln I2

h1
– ln R

h1
,

where the constant h1 = max {N(0), A
μ
}. For more details, please refer to the literature [15].

Then, for t ∈ [t1, t2), Λt = Λt1 ∈ N , we use the same Lyapunov function above to acquire
the positive solution. Repeating this procedure, we can arrive at the conclusion that the
model has the unique positive solution with the initial value (S(0), I1(0), I2(0), R(0)).

Then we prove inequality (6). Adding up all formulas of (2) yields that

dN(t) =
[
A(Λt) – μ(Λt)N(t) – d1(Λt)I1(t) – d2(Λt)I2(t)

]
dt

≤ [
A(Λt) – μ(Λt)N(t)

]
dt. (9)

The last equality holds thanks to Ii(t) ≥ 0, i = 1, 2. Hence, we can obtain that

dN(t)
dt

≤ A(Λtk ) – μ(Λtk )N(t), t ∈ [tk , tk+1).

Using the method of variation of constant, we can get the following formula:

N(t) ≤ N(tk)e–μ(Λtk )(t–tk ) +
∫ t

tk

A(Λs)e–μ(Λtk )(t–s) ds

= N(tk)e–
∫ t

tk
μ(Λs) ds +

∫ t

tk

A(Λs)e–
∫ t

s μ(Λr ) dr ds. (10)

By the recursive rule, letting t = tk , we get that

N(tk) ≤ N(tk–1)e–
∫ tk

tk–1
μ(Λs) ds +

∫ tk

tk–1

A(Λs)e–
∫ t

s μ(Λr ) dr ds. (11)

Inserting (11) into (10) and repeating this calculation yield that

N(t) ≤ N(tk–1)e–
∫ t

tk–1
μ(Λs) ds +

∫ t

tk–1

A(Λs)e–
∫ t

s μ(Λr ) dr ds

≤ · · ·

≤ N(0)e–
∫ t

0 μ(Λs) ds +
∫ t

0
A(Λs)e–

∫ t
s μ(Λr ) dr ds
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and

N(t) ≤ N(0)e–
∫ t

0 μ̂ds +
∫ t

0
Ǎe–

∫ t
s μ̂dr ds

= N(0)e–μ̂t +
Ǎ
μ̂

(
1 – e–μ̂t).

Hence, (6) and (7) are verified. �

3 Extinction of diseases
In this section, we study some sufficient conditions to justify the extinction of the diseases
of model (2). To begin with, we present some lemmas which will be used in the paper.

Lemma 3.1 For the solution of model (2) with any initial value, it holds that

lim sup
t→∞

R(t) ≤ ř1 + ř2

μ̂ + δ̂
lim sup

t→∞

(
I1(t) + I2(t)

)
. (12)

Proof From the fourth equation of model (2), we deduce that

dR(t)
dt

≤ (ř1 + ř2)
(
I1(t) + I2(t)

)
– (μ̂ + δ̂)R(t).

Then integrating the above formula and letting I(t) = I1(t) + I2(t) yield that

R(t) ≤ R(0)e–(μ̂+δ̂)t + (ř1 + ř2)
∫ t

0
e–(μ̂+δ̂)(t–s)(I1(s) + I2(s)

)
ds

= R(0)e–(μ̂+δ̂)t + (ř1 + ř2)
∫ t

0
e–(μ̂+δ̂)uI(t – u) du

≤ R(0)e–(μ̂+δ̂)t + (ř1 + ř2)
∫ ∞

0
e–(μ̂+δ̂)uI(t – u) du.

By Fatou’s lemma, we can get

lim sup
t→∞

R(t) ≤ lim sup
t→∞

R(0)e–(μ̂+δ̂)t + lim sup
t→∞

(ř1 + ř2)
∫ ∞

0
e–(μ̂+δ̂)uI(t – u) du

≤ (ř1 + ř2)
∫ ∞

0
lim sup

t→∞
I(t – u)e–(μ̂+δ̂)u du

= (ř1 + ř2) lim sup
t→∞

I(t)
∫ ∞

0
e–(μ̂+δ̂)u du

=
ř1 + ř2

μ̂ + δ̂
lim sup

t→∞

(
I1(t) + I2(t)

)
. �

Lemma 3.2 For the solution of model (2) with any initial value, the following formulas
hold:

lim
t→∞

1
t

∫ t

0

σ1(Λs)S(s)
α1 + I1(s)

dB1(s) = 0, lim
t→∞

1
t

∫ t

0

σ2(Λs)S(s)
α2 + S(s)

dB2(s) = 0,

lim
t→∞

1
t

∫ t

0
σ1(Λs)S(s) dB1(s) = 0, lim

t→∞
1
t

∫ t

0

σ1(Λs)S(s)I1(s)Λs–1

α1 + I1(s)
dB1(s) = 0, (13)
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lim
t→∞

1
t

∫ t

0

σ2(Λs)S(s)I2(s)Λs–1

α2 + S(s)
dB2(s) = 0, a.s.

Proof We only give the proof of the first formula and the fourth one above, the other three
formulas can be proved in a similar way.

Let M(t) =
∫ t

0
σ1(Λs)S(s)
α1+I1(s) dB1(s), A(t) =

∫ t
0

σ 2
1 (Λs)S2(s)

(α1+I1(s))2 ds, and p > 2. Making use of the BDG
inequality, one can get

E

[
sup

0≤s≤t

∣
∣M(s)

∣
∣p

]
≤ CpE

[
A(t)

] p
2 ≤ CpE

[

sup
0≤s≤t

σ 2
1 (Λs)S2(s)

(α1 + I1(s))2

] p
2

t
p
2 ≤ C̃pt

p
2 ,

where C̃p = Cp( σ̌1(N(0)μ̂+Ǎ)
α1μ̂

)p.
Let k ≥ 1 be a positive integer and ε be an arbitrarily small positive constant. By Cheby-

shev’s inequality, one has

P

{
sup

kθ≤t≤(k+1)θ

∣
∣M(t)

∣
∣p > (kθ )1+ε+ p

2
}

≤ E|M((k + 1)θ )|p
(kθ )1+ε+ p

2

≤ C̃p[(k + 1)θ ]
p
2

(kθ )1+ε+ p
2

≤ C̃p(2kθ )
p
2

(kθ )1+ε+ p
2

=
C̃p2

p
2

(kθ )1+ε
.

Since
∑∞

k=0
C̃p2

p
2

(kθ )1+ε converges, the Borel–Cantelli lemma yields that, for almost all ω ∈ Ω ,
there exists a positive integer n0 = n0(ω) such that

sup
kθ≤t≤(k+1)θ

∣
∣M(t)

∣
∣p ≤ (kθ )1+ε+ p

2 , when n ≥ n0.

For kθ ≤ t ≤ (k + 1)θ and n ≥ n0, we have

ln
∣
∣M(t)

∣
∣p ≤

(

1 + ε +
p
2

)

ln t, a.s.

Because ε is arbitrary, letting ε → 0, we can obtain

lim sup
t→∞

ln |M(t)|
ln t

≤ 1
2

+
1
p

, a.s.

Then, for a sufficiently small constant ε (ε < 1
2 – 1

p ), there exists a constant N(ω), for
t ≥ N(ω), one has

ln
∣
∣M(t)

∣
∣ ≤

(
1
2

+
1
p

+ ε

)

ln t, a.s.

Thus,

lim sup
t→∞

|M(t)|
t

≤ lim sup
t→∞

t( 1
2 + 1

p +ε)

t
= 0, a.s.

The first formula of (13) has been established.
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Next, we prove that the fourth formula holds. We use the strong law of large numbers
to prove it.

Assume that M1(t) =
∫ t

0
σ1(Λs)S(s)I1(s)Λs–1

α1+I1(s) dB1(s), then one has

lim sup
t→∞

〈M1, M1〉t

t
≤ lim sup

t→∞
1
t

∫ t

0

(
σ̌1(N(0) + Ǎ

μ̂
)N

α1

)

dt < ∞, a.s.

Thus, we get that lim supt→∞
M1(t)

t = 0. �

Lemma 3.3 (Strong ergodicity theorem, cf. [31]) Assume that (Xt ,Λt) is positive recurrent
and π is the stationary distribution of (Xt ,Λt), then for any bounded measurable function
f defined on R+ ×N , it holds

lim
t→∞

1
t

∫ t

0
f (Xs,Λs) ds =

∑

i∈N

∫

R+

f (x, i)π (dx, i).

After introducing several lemmas above, we provide a sufficient condition to judge the
extinction of diseases.

Theorem 3.1 If

σ̂ 2
1 >

1
2
∑

i∈N πiβ
2
1 (i)

∑
i∈N πi(μ(i) + d1(i) + r1(i))

(14)

and

σ̂ 2
2 >

1
2
∑

i∈N πiβ
2
2 (i)

∑
i∈N πi(μ(i) + d2(i) + r2(i))

, (15)

then the two diseases of model (2) will be extinct almost surely, i.e.,

lim
t→∞ Ii(t) = 0, i = 1, 2, a.s.

Proof Applying Itô’s formula to V1(t) = ln I1(t) and the chain rule to the second equation
of model (2) yields that

d ln I1(t) = LV1(t) dt +
σ1(Λt)S(t)
α1 + I1(t)

dB1(t), (16)

where LV1(t) = β1(Λt )S(t)
α1+I1(t) – [μ(Λt) + d1(Λt) + r1(Λt)] – σ 2

1 (Λt )S2(t)
2(α1+I1(t))2 . Thus,

LV1(t) ≤ β1(Λt)S(t)
α1 + I1(t)

–
[
μ(Λt) + d1(Λt) + r1(Λt)

]
–

σ̂ 2
1 S2(t)

2(α1 + I1(t))2

= –
σ̂ 2

1
2

(
S(t)

α1 + I1(t)
–

β1(Λt)
σ̂ 2

1

)2

+
β2

1 (Λt)
2σ̂ 2

1
–

[
μ(Λt) + d1(Λt) + r1(Λt)

]

≤ β2
1 (Λt)
2σ̂ 2

1
–

[
μ(Λt) + d1(Λt) + r1(Λt)

]
.
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Integrating from 0 to t for (16) and dividing both sides by t, one has

ln I1(t)
t

≤ 1
t

∫ t

0

(
β2

1 (Λs)
2σ̂ 2

1
–

[
μ(Λs) + d1(Λs) + r1(Λs)

]
)

ds

+
1
t

∫ t

0

σ1(Λs)S(s)
α1 + I1(s)

dB1(s) +
ln I1(0)

t
.

Letting t → ∞, using Lemmas 3.2 and 3.3, we get that

lim sup
t→∞

ln I1(t)
t

≤
∑

i∈M
πi

(
β2

1 (i)
2σ̂ 2

1
–

[
μ(i) + d1(i) + r1(i)

]
)

.

Under the condition of (14), we can obtain that limt→∞ I1(t) = 0, a.s. The proof of (15) is
the same as that of the first one, we omit it here to avoid repetition.

From conditions (14) and (15), we can see that when the intensities of white noise in each
environment are sufficiently large, the two diseases will go to extinction almost surely as
time goes on. This reveals the effect of white noise on diseases. Next, we will consider
the situation of small intensities of white noise and provide the sufficient condition for
extinction of diseases. �

Theorem 3.2 For the solution S(t), I1(t), I2(t), R(t) to model (2) with the initial value
S(0), I1(0), I2(0), R(0) ∈ R4

+, if Ǎ
α1μ̂

≤ mini∈N { β1(i)
σ 2

1 (i) }, Ǎ
α2μ̂+Ǎ

≤ mini∈N { β2(i)
σ 2

2 (i) }, and


1 :=
∑

i∈N π (i)β1(i) Ǎ
α1μ̂

∑
i∈N π (i)[μ(i) + d1(i) + r1(i) + σ 2

1 (i)Ǎ2

2α2
1 μ̂2 ]

< 1, (17)


2 :=

∑
i∈N π (i)β2(i) Ǎ

α2μ̂+Ǎ
∑

i∈N π (i)[μ(i) + d2(i) + r2(i) + σ 2
2 (i)Ǎ2

2(α2μ̂+Ǎ)2 ]
< 1, (18)

then

lim
t→∞ Ii(t) = 0, i = 1, 2, a.s., (19)

which means that the two diseases will go to extinction.
Also,

lim
t→∞ R(t) = 0, a.s. (20)

lim
t→∞

1
t

∫ t

0
μ(Λs)S(s) ds =

∑

i∈N
π (i)A(i), a.s. (21)

Proof Applying Itô’s formula to V1 = ln I1(t), one has

d ln I1(t) = LV1 dt +
σ1(Λt)S(t)
α1 + I1(t)

dB1(t), (22)

where LV1 = β1(Λt )S(t)
α1+I1(t) – [μ(Λt) + d1(Λt) + r1(Λt)] – σ 2

1 (Λt )S2(t)
2(α1+I1(t))2 .
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Let x(t) = S(t)
α1+I1(t) , then x(t) ≤ 1

α1
(N(0)e–μ̂t + Ǎ

μ̂
), and LV1 can be regarded as a combina-

tion of N quadratic functions. Each function is increasing in the interval [0, β1(Λt )
σ 2

1 (Λt ) ]. There-

fore, when Ǎ
α1μ̂

≤ mini∈N { β1(i)
σ 2

1 (i) }, it holds

LV1 ≤ β1(Λt)
(

N(0)e–μ̂t

α1
+

Ǎ
α1μ̂

)

–
[
μ(Λt) + d1(Λt) + r1(Λt)

]

–
σ 2

1 (Λt)
2

(
N(0)e–μ̂t

α1
+

Ǎ
α1μ̂

)2

≤ β1(Λt)Ǎ
α1μ̂

–
[
μ(Λt) + d1(Λt) + r1(Λt)

]
–

σ 2
1 (Λt)

2

(
Ǎ

α1μ̂

)2

+ ce–μ̂t

for a certain constant c. Substituting it into (22), integrating for the both sides from 0 to t
and dividing by t, we can obtain that

ln I1(t)
t

≤ 1
t

∫ t

0

{
β1(Λs)Ǎ

α1μ̂
–

[
μ(Λs) + d1(Λs) + r1(Λs)

]
–

σ 2
1 (Λs)

2

(
Ǎ

α1μ̂

)2}

ds

+
1
t

∫ t

0
ce–μ̂s ds +

M(t)
t

+
ln I1(0)

t
.

This, along with Lemmas 3.2 and 3.3, yields

lim sup
t→∞

ln I1(t)
t

≤
∑

i∈N
π (i)

[
β1(i)Ǎ
α1μ̂

–
[
μ(i) + d1(i) + r1(i)

]
–

σ 2
1 (i)
2

(
Ǎ

α1μ̂

)2]

,

where we use the result that

lim sup
t→∞

1
t

∫ t

0
ce–μ̂s ds = lim sup

t→∞
c
μ̂t

(
1 – e–μ̂t) = 0.

Under the assumption of condition (17), we can get that the disease I1(t) will go to extinc-
tion.

Applying Itô’s formula to V2 = ln I2(t), one has

d ln I2(t) = LV2 dt +
σ2(Λt)S(t)
α2 + S(t)

dB2(t), (23)

where LV2 = β2(Λt )S(t)
α2+S(t) – [μ(Λt) + d2(Λt) + r2(Λt)] – σ 2

2 (Λt )S2(t)
2(α2+S(t))2 .

According to the similar calculation above, and using the inequality a
a+b ≤ a+x

a+b+x for
a, b, x > 0, we get that, for some constant c2,

LV2 ≤ β2(Λt)
( N(0)e–μ̂t + Ǎ

μ̂

α2 + N(0)e–μ̂t + Ǎ
μ̂

)

–
[
μ(Λt) + d2(Λt) + r2(Λt)

]

–
σ 2

2 (Λt)
2

( N(0)e–μ̂t + Ǎ
μ̂

α2 + N(0)e–μ̂t + Ǎ
μ̂

)2

≤ β2(Λt)Ǎ
α2μ̂ + Ǎ

–
[
μ(Λt) + d2(Λt) + r2(Λt)

]
–

σ 2
2 (Λt)

2

(
Ǎ

α2μ̂ + Ǎ

)2

+ c2e–μ̂t
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and

ln I2(t)
t

≤ 1
t

∫ t

0

{
β2(Λs)Ǎ
α2μ̂ + Ǎ

–
[
μ(Λs) + d2(Λs) + r2(Λs)

]
–

σ 2
2 (Λs)Ǎ2

2(α2μ̂ + Ǎ)2

}

ds

+
1
t

∫ t

0
ce–μ̂s ds +

M1(t)
t

+
ln I2(0)

t
.

Therefore, we can obtain that

lim sup
t→∞

ln I2(t)
t

≤
∑

i∈N
π (i)

[
β2(i)Ǎ

α2μ̂ + Ǎ
–

[
μ(i) + d2(i) + r2(i)

]
–

σ 2
2 (i)Ǎ2

2(α2μ̂ + Ǎ)2

]

.

Owing to assumption (18), one has limt→∞ I2(t) = 0, a.s. These complete the proof of
(19).

Thanks to (19), we have lim supt→∞(I1(t)+ I2(t)) = 0, a.s. Then, by Lemma 3.1, (20) holds.
As a result of (9), one has

1
t

∫ t

0
μ(Λs)S(s) ds =

1
t

∫ t

0

[
A(Λs) –

(
μ(Λs) + d1(Λs)

)
I1(s) – μ(Λs)R(s)

]
ds

–
1
t

∫ t

0

(
μ(Λs) + d2(Λs)

)
I2(s) ds –

N(t) – N(0)
t

.

This, together with (19), (20), and Lemma 3.3, implies that conclusion (21) holds.
The proof is completed. �

4 Persistence of diseases
In this section, we proceed to studying the conditions for persistence of diseases. Because
there are two kinds of disease, we will discuss them respectively.

Theorem 4.1 Let (S(t), I1(t), I2(t), R(t)) be the solution of model (2).
• Case 1. If Ǎ

α2μ̂+Ǎ
≤ mini∈N { β2(i)

σ 2
2 (i) }, 
2 < 1, and


3 :=
∑

i∈N π (i)A(i)

κ1
∑

i∈N π (i)[μ(i) + d1(i) + r1(i) + σ 2
1 (i)Ǎ2

2α2
1 μ̂2 ]

> 1, (24)

where κ1 = α1 maxi∈N { μ(i)
β1(i) }, then the infected individuals I1 caused by disease 1, or the

disease I1 for short, will be persistent in mean and the infected individuals I2 caused by
disease 2, or the disease I2 for short, will go to extinction.

• Case 2. If Ǎ
α1μ̂

≤ mini∈N { β1(i)
σ 2

1 (i) }, 
1 < 1, and


4 :=
∑

i∈N π (i)A(i)

κ2
∑

i∈N π (i)[μ(i) + d2(i) + r2(i) + σ 2
2 (i)Ǎ2

2(α2μ̂+Ǎ)2 ]
> 1, (25)

where κ2 = μ̂α2+Ǎ
μ̂

maxi∈N { μ(i)
β2(i) }, then the disease I1 will go to extinction and disease I2

will be persistent in mean.
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• Case 3. If 
3 > 1 and 
4 > 1, then the diseases I1, I2 will be persistent in mean.
Moreover,

lim inf
t→∞

(〈
I1(t)

〉
+

〈
I2(t)

〉) ≥ 1
2C

(N1 + N2), (26)

where N1 =
∑

i∈N π (i)[A(i) – κ1(μ(i) + d1(i) + r1(i) + σ 2
1 (i)Ǎ2

2α2
1 μ̂2 )], N2 =

∑
i∈N π (i)[A(i) –

κ2(μ(i) + d2(i) + r2(i) + σ 2
2 (i)Ǎ2

2(α2μ̂+Ǎ)2 )].

Proof Case 1: We have proved the former part in Theorem 3.2, i.e., limt→∞ I2(t) = 0. Then,
for t sufficiently large and arbitrarily small ε, I2(t) < ε. We just need to prove the second
half, that is, 1

t
∫ t

0 I1(s) ds > 0, when 
3 > 1.
First, we prove that, for sufficiently large constant C1,

f (I, S, i) :=
[

(κ1 – I)
β1(i)
α1 + I

– μ(i)
]

S + C1I ≥ 0 (27)

and

g(I, S, i) :=
[

(κ2 – I)
β2(i)
α2 + S

– μ(i)
]

S + C2I ≥ 0,

where κ1 = α1 maxi∈N { μ(i)
β1(i) }, κ2 = μ̂α2+Ǎ

μ̂
maxi∈N { μ(i)

β2(i) }, I, S ∈ [0, N(0) + Ǎ
μ̂

], i ∈N .
Obviously, f (0, S, i) = [κ1

β1(i)
α1

– μ(i)]S and

∂f
∂I

=
[

–
β1(i)
α1 + I

– (κ1 – I)
β1(i)

(α1 + I)2

]

S + C1

≥ C1 –
[

β̌1

α1
+ κ1

β̌1

α2
1

](

N(0) +
Ǎ
μ̂

)

.

For κ1 = α1 maxi∈N { μ(i)
β1(i) } and large constant C1, f (0, S, i) ≥ 0, and ∂f

∂I > 0. Hence, according

to the continuity and monotonicity of f , f (I, S, i) ≥ 0 for I ∈ [0, I0], S ∈ [0, N(0) + Ǎ
μ̂

], i ∈N .

We move forward to proving that f (I, S, i) ≥ 0 when I ∈ [I0, N(0) + Ǎ
μ̂

]. From (27), we
obtain that, for a sufficiently large constant C1,

f (I, S, i) ≥ C1I –
[

β1(i)I
α1 + I

+ μ(i)
]

S ≥ C1I0 – (β̌1 + Ǎ)
(

N(0) +
Ǎ
μ̂

)

≥ 0.

We have proved that (27) holds.
The proof of g(I, S, i) ≥ 0 is similar to that of f . We omit it here.
Let C = max {C1, C2}, then, for constant C, both f ≥ 0 and g ≥ 0 hold.
Next, from the first formula of (2) and utilizing the fact that R(t) ≥ 0 and I2(t) < ε, we

get that

dS(t) ≥
(

A(Λt) – μ(Λt)S(t) –
β1(Λt)S(t)I1(t)

α1 + I1(t)
– β̌2ε

)

dt – c(t) dB(t)

=
(

A(Λt) –
κ1β1(Λt)S(t)

α1 + I1(t)
– CI1(t) – β̌2ε + f (I1, S,Λt)

)

dt – c(t) dB(t)
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≥
(

A(Λt) –
κ1β1(Λt)S(t)

α1 + I1(t)
– CI1(t) – β̌2ε

)

dt – c(t) dB(t), (28)

where c(t) dB(t) = c1(t) dB1(t) + c2(t) dB2(t), c1(t) = σ1(Λt )S(t)I1(t)
α1+I1(t) , c2(t) = σ2(Λt )S(t)I2(t)

α2+S(t) .
As a result of (22) and utilizing the result (28), one has

d
(
κ1 ln I1(t)

)
= κ1LV1 dt + κ1

σ1(Λt)S(t)
α1 + I1(t)

dB1(t)

≥ (
A(Λt) – CI1(t) – β̌2ε – κ1

[
μ(Λt) + d1(Λt) + r1(Λt)

])
dt – dS(t)

–
κ1σ

2
1 (Λt)Ǎ2

2α2
1μ̂

2 dt – c3e–μ̂t dt +
κ1σ1(Λt)S(t)

α1 + I1(t)
dB1(t) – c(t) dB(t) (29)

for a certain constant c3.
Integrating for both sides of (29) from 0 to t and dividing by t, we can obtain that

C
〈
I1(t)

〉 ≥ 1
t

∫ t

0

{

A(Λs) – κ1

[

μ(Λs) + d1(Λs) + r1(Λs) +
σ 2

1 (Λs)Ǎ2

2α2
1μ̂

2

]}

ds

– β̌2ε –
c3

∫ t
0 e–μ̂s ds

t
–

S(t) – S(0)
t

– κ1
ln I1(t) – ln I1(0)

t

+
1
t

∫ t

0

(
κ1 – I1(s)

)σ1(Λs)S(s)
α1 + I1(s)

dB1(s) –
1
t

∫ t

0
c2(s) dB2(s).

Taking the inferior limit of the above formula and taking Lemma 3.2, Lemma 3.3, and
(7) into account, one has

lim inf
t→∞

〈
I1(t)

〉 ≥ 1
C

∑

i∈N
π (i)

[

A(i) – κ1

(

μ(i) + d1(i) + r1(i) +
σ 2

1 (i)Ǎ2

2α2
1μ̂

2

)]

– β̌2ε.

Letting ε → 0 and with the help of (24), thus, the conclusion that I1(t) is persistent is
available.

Case 2: To proceed, we refer to the above methods and procedures to obtain that

dS(t) ≥
(

A(Λt) – μ(Λt)S(t) –
β2(Λt)S(t)I2(t)

α2 + S(t)
– c4ε

)

dt – c(t) dB(t)

=
(

A(Λt) –
κ2β2(Λt)S(t)

α2 + S(t)
– C2I2(t) – c4ε + g(I2, S,Λt)

)

dt – c(t) dB(t)

≥
(

A(Λt) –
κ2β2(Λt)S(t)

α2 + S(t)
– C2I2(t) – c4ε

)

dt – c(t) dB(t), (30)

where c4 =
β̌1(N(0)+ Ǎ

μ̂
)

α1
.

From the result of (23) and exploiting (30), we get that

d
(
κ2 ln I2(t)

)

= κ2LV2 dt + κ2
σ2(Λt)S(t)
α2 + S(t)

dB2(t)

≥
[

A(Λt) – C2I2(t) – κ2
[
μ(Λt) + d2(Λt) + r2(Λt)

]
–

κ2σ
2
2 (Λt)Ǎ2

2(α2μ̂ + Ǎ)2

]

dt
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– c4ε dt – c5e–μ̂t dt – dS(t) – c1(t) dB1(t) +
(
κ2 – I2(t)

)σ2(Λt)S(t)
α2 + S(t)

dB2(t)

for some constant c5.
Then integrating from 0 to t and dividing by t for both sides yield

C2
〈
I2(t)

〉 ≥ 1
t

∫ t

0

{

A(Λs) – κ2

[

μ(Λs) + d2(Λs) + r2(Λs) +
σ 2

2 (Λs)Ǎ2

2(α2μ̂ + Ǎ)2

]}

ds

– c4ε –
c5

∫ t
0 e–μ̂s ds

t
–

S(t) – S(0)
t

– κ2
ln I2(t) – ln I2(0)

t

–
1
t

∫ t

0
c1(s) dB1(s) +

1
t

∫ t

0

(
κ2 – I2(s)

)σ2(Λs)S(s)
α2 + S(s)

dB2(s).

Taking the inferior limit of the above formula, along with the result of (6), Lemma 3.2,
Lemma 3.3, deduces that

lim inf
t→∞

〈
I2(t)

〉 ≥ 1
C2

∑

i∈N
π (i)

[

A(i) – κ2

(

μ(i) + d2(i) + r2(i) +
σ 2

2 (i)Ǎ2

2(α2μ̂ + Ǎ)2

)]

– c4ε.

Due to the arbitrariness of ε and the assumption of (25), we can obtain that
lim inft→∞ 1

t
∫ t

0 I2(s) ds > 0, i.e., the disease I2 is persistent in mean.
Case 3: At last, we discuss the situation of 
3 > 1 and 
4 > 1. Due to 
3 > 1 and 
4 > 1,

we have N1 > 0, N2 > 0. From the first formula of (2), we have

dS ≥
(

A(Λt) – 2μ(Λt)S –
β1(Λt)SI1

α1 + I1
–

β2(Λt)SI2

α2 + S

)

dt – c(t) dB(t)

=
(

A(Λt) –
κ1β1(Λt)S

α1 + I1
–

κ2β2(Λt)S
α2 + S

– CI1(t) – CI2(t)
)

dt

+
[
f (I1, S,Λt) + g(I2, S,Λt)

]
dt – c(t) dB(t)

≥
(

A(Λt) –
κ1β1(Λt)S

α1 + I1
–

κ2β2(Λt)S
α2 + S

– C(I1 + I2)
)

dt – c(t) dB(t).

Then applying Itô’s formula to V (t) = κ1 ln I1(t) + κ2 ln I2(t) yields

C(I1 + I2) dt ≥
{

1
2

A(Λt) – κ1

[

μ(Λt) + d1(Λt) + r1(Λt) +
σ 2

1 (Λt)Ǎ2

2α2
1μ̂

2

]}

dt

+
{

1
2

A(Λt) – κ2

[

μ(Λt) + d2(Λt) + r2(Λt) +
σ 2

2 (Λt)Ǎ2

2(α2μ̂ + Ǎ)2

]}

dt

– dV (t) – dS(t) – c3e–μ̂t dt – c5e–μ̂t dt

+
(
κ1 – I1(t)

)σ1(Λt)S(t)
α1 + I1(t)

dB1(t) +
(
κ2 – I2(t)

)σ2(Λt)S(t)
α2 + S(t)

dB2(t).

Integrating on both sides, dividing by t, and taking the inferior limit, then (26) can be
obtained.

Next, we will compare the values given in Theorem 3.2 and Theorem 4.1 to show that
the conclusions are compatible, that is to say, there is no contradiction between the con-
clusions. �
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Theorem 4.2 For the 
1, 
2, 
3, 
4 presented in Theorem 3.2 and Theorem 4.1, 
1 ≥ 
3

and 
2 ≥ 
4 hold. Especially, 
1 = 
3 is established if and only if Ǎ = Â, μ̌ = μ̂, β̌1 = β̂1,
i.e., A(i),μ(i),β1(i), i ∈ N are fixed constants. Also, 
2 = 
4 holds if and only if Ǎ = Â,
μ̌ = μ̂, β̌2 = β̂2, i.e., A(i),μ(i),β2(i), i ∈N are fixed constants.

Proof From (17) and (24), one has


1


3
=

∑
i∈N πiβ1(i) Ǎ

μ̂
maxi∈N { μ(i)

β1(i) }
∑

i∈N πiA(i)

=
∑

i∈N πiβ1(i) maxi∈N {μ(i)
μ̂

1
β1(i) }

∑
i∈N πi( A(i)

Ǎ
)

≥
∑

i∈N πi( β1(i)
β̂1

)
∑

i∈N πi( A(i)
Ǎ

)
≥ 1. (31)

It is obvious that 
1 = 
3 holds when Ǎ = Â, μ̌ = μ̂, β̌1 = β̂1. Next, we demonstrate that
the converse is true. From the result of (31), we can see if 
1 = 
3, then β1(i) = β̂1 and
A(i) = Ǎ, i ∈ N , that is, β1(i) ≡ β1, A(i) ≡ A. Consequently, it holds maxi∈N {μ(i)} = μ̂,
which means μ(i) ≡ μ.

The proof of 
2 ≥ 
4 resembles that of the above. We omit it to avoid duplication. �

Remark 4.1
1. We say that Theorem 3.2 and Theorem 4.1 are compatible when 
1 ≥ 
3 holds, i.e.,

if 
1 < 1, then 
3 < 1 and the disease I1 will be extinct by Theorem 3.2. If 
3 > 1,
then 
1 > 1 and the disease I1 will be extinct according to Theorem 4.1. The situation
of I2 when 
2 ≥ 
4 holds is similar to I1.

2. Suppose that there is no switching, i.e., N = 1, then


1 = 
3 =
β1A
α1μ

μ + d1 + r1 + σ 2
1 A2

2α2
1μ2

, 
2 = 
4 =
Aβ1

μα2+A

μ + d2 + r2 + σ 2
1 A2

2(α2μ+A)2

.

Obviously, 
1 > 1 is equivalent to R∗
1 > 1 and 
2 > 1 is equivalent to R∗

2 > 1, where R∗
1 ,

R∗
2 can be seen in [15]. Our results are consistent with theirs. Therefore, we

generalize the model with multiple environments and obtain more general results.

5 Influence of Markovian switching upon incidence rate functions
This section proceeds to studying the influence of Markovian switching upon incidence
functions in model (4) and gives the conditions to judge disease extinction.

Lemma 5.1 For any initial value (S(0), I1(0), I2(0), R(0)) ∈R
4
+, and i0 ∈N , there is a unique

solution (S(t), I1(t), I2(t), R(t)) for t > 0 to model (4), and the solution lies in R4
+ with proba-

bility 1. Furthermore, the solution satisfies the inequality

N(t) ≤ N(0)e–μ̂t +
Ǎ
μ̂

≤ N(0) +
Ǎ
μ̂

, a.s. (32)

The proof is similar to that of Lemma 2.1. We omit here.
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Theorem 5.1 For the solution S(t), I1(t), I2(t), R(t) to model (4) with the initial value
S(0), I1(0), I2(0), R(0) ∈ R4

+, if


5 :=
∑

i∈N π (i)β1(i)( Ǎ
μ̂

)i

α1
∑

i∈N π (i)[μ(i) + d1(i) + r1(i)]
< 1, (33)


6 :=
∑

i∈N π (i)β2(i)( Ǎ
μ̂

)i

α2
∑

i∈N π (i)[μ(i) + d2(i) + r2(i)]
< 1, (34)

then

lim
t→∞ Ii(t) = 0, i = 1, 2, a.s. (35)

Proof We prove the first equality. Let V3(t) = ln I1(t), then one has

LV3(t) =
β1(Λt)SIΛt–1

1
α1 + I1

–
[
μ(Λt) + d1(Λt) + r1(Λt)

]
–

σ 2
1 (Λt)S2IΛt–2

1
2(α1 + I1)2

≤ β1(Λt)N(t)Λt

α1 + I1
–

[
μ(Λt) + d1(Λt) + r1(Λt)

]

≤
N∑

i=1

β1(i)N(t)i

α1
1{Λt=i} –

[
μ(Λt) + d1(Λt) + r1(Λt)

]

≤
N∑

i=1

β1(i)(N(0)e–μ̂t + Ǎ
μ̂

)i

α1
1{Λt=i} –

[
μ(Λt) + d1(Λt) + r1(Λt)

]

=
N∑

i=1

β1(i)( Ǎ
μ̂

)i

α1
1{Λt=i} + c6e–μ̂t –

[
μ(Λt) + d1(Λt) + r1(Λt)

]

=
β1(Λt)( Ǎ

μ̂
)Λt

α1
+ c6e–μ̂t –

[
μ(Λt) + d1(Λt) + r1(Λt)

]

for a constant c6. Then

d ln I1(t) ≤LV3(t) +
σ1(Λt)SIΛt–1

α1 + I1
dB1(t). (36)

With the help of Lemma 3.2 and (33), we arrive at the conclusion limt→∞ I1(t) = 0. The
proof of the second equality resembles that of the first one.

The proof is completed. �

6 Examples and simulations
In this section, we present some examples and numerical simulations to reveal some dif-
ferent phenomena which are not available without switching.

Let (Λt)t≥0 be a continuous time Markov chain with state space N = {1, 2}, and its Q-
matrix is

Q1 =

(
–p p
q –q

)

.

Hence, its stationary distribution π = (π1,π2) = ( q
p+q , p

p+q ).



Wang and Liu Advances in Difference Equations        (2019) 2019:322 Page 17 of 20

Figure 1 The trajectory of stochastic SIRS model (2) with parameters in Example 3 and the initial value
S(0) = 1.2, I1(0) = 0.7, I2(0) = 0.5, R(0) = 0.8

Example 1 In order to prove the result of Theorem 3.1, we assume that p = 1, q = 2, α1 = 1,
and α2 = 1. The values of other parameters are presented as follows:

⎧
⎨

⎩

A(1) = 0.3

A(2) = 0.4,

⎧
⎨

⎩

μ(1) = 0.1

μ(2) = 0.08,

⎧
⎨

⎩

d1(1) = 0.3

d1(2) = 0.2,

⎧
⎨

⎩

r1(1) = 0.4

r1(2) = 0.5,
(37)

⎧
⎨

⎩

β1(1) = 0.15

β1(2) = 0.3,

⎧
⎨

⎩

β2(1) = 0.84

β2(2) = 0.57,
⎧
⎨

⎩

σ1(1) = 1

σ1(2) = 0.7,

⎧
⎨

⎩

σ2(1) = 0.8

σ2(2) = 1.

(38)

Then (14) and (15) are satisfied, the diseases I1 and I2 will die out according to results of
Theorem 3.1. Its simulation can be seen in Fig. 1(a).

Example 2 Next, we explain the results of Theorem 3.2. Assume that p = 1, q = 3, let
σ1(1) = 0.1, σ1(2) = 0.2, σ2(1) = 0.3, and σ2(2) = 0.2, and other values of parameters are the
same as those in (38). Then, by formulas 1 and (17), we obtain that (1)R∗

1 = 0.5062 < 1 in
subsystem 1, (2)R∗

1 = 1.2821 > 1 in subsystem 2, and 
1 = 0.9585 < 1, which means that the
disease I1 in subsystem 1 goes to extinction and the disease I1 in subsystem 2 is persistent,
while owing to Markovian switching, the overall behavior of I1 in model (2) will die out.

Let d2(1) = 0.2, d2(2) = 0.35, r2(1) = 0.25, r2(2) = 0.4, thus, by simple calculation, we get
that (1)R∗

2 = 1.0994 > 1 in subsystem 1, (2)R∗
2 = 0.5556 < 1 in subsystem 2, and 
2 = 0.9345 <

1, which means that the disease I2 in subsystem 1 is persistent and the disease I2 in sub-
system 2 goes to extinction, while due to Markovian switching, the overall behavior of I2

in model (2) will die out. Its trajectory can be seen in Fig. 1(b).
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Figure 2 The trajectory of stochastic SIRS model (2)
with parameters in Example 3 and the initial value S(0)
= 1.2, I1(0) = 0.7, I2(0) = 0.5, R(0) = 0.8

Example 3 To proceed, we give an example to illustrate the results of Case 1 in Theo-
rem 4.1. Assume p = 8, q = 1. Let the values of parameters be given in the following form:

⎧
⎨

⎩

A(1) = 0.3

A(2) = 0.4,

⎧
⎨

⎩

μ(1) = 0.1

μ(2) = 0.08,

⎧
⎨

⎩

d1(1) = 0.15

d1(2) = 0.1,
⎧
⎨

⎩

r1(1) = 0.3

r1(2) = 0.15,

⎧
⎨

⎩

d2(1) = 0.2

d2(2) = 0.35,

(39)

⎧
⎨

⎩

r2(1) = 0.25

r2(2) = 0.4,

⎧
⎨

⎩

β1(1) = 0.2

β1(2) = 0.1,
⎧
⎨

⎩

β2(1) = 0.84

β2(2) = 0.57,

⎧
⎨

⎩

σ1(1) = 0.12

σ1(2) = 0.1,

⎧
⎨

⎩

σ2(1) = 0.3

σ2(2) = 0.2.

(40)

Then, by formula (24), we can obtain that (1)R∗
1 = 0.9731 < 1, (2)R∗

1 = 1.1364 > 1, 
3 =
1.0011 > 1, (1)R∗

2 = 1.0994 > 1, (2)R∗
2 = 0.5556 < 1, and 
2 = 0.6137 < 1. These values indi-

cate that the disease of I1 will become extinct in subsystem 1 and be persistent in subsys-
tem 2, while the overall behavior of I1, taking advantage of the results of Theorem 4.1, will
be persistent. For the disease of I2, it will continue in subsystem 1 and go to extinction
in subsystem 2, and the whole behavior, under the effect of Markovian switching, will die
out. Its simulation can be seen in Fig. 2.

Case 2 and Case 3 can be verified similarly.

Example 4 At last, we verify the results in Theorem 5.1. Assume p = 2, q = 1. Take the
values of parameters as follows:

⎧
⎨

⎩

A(1) = 0.3

A(2) = 0.25,

⎧
⎨

⎩

μ(1) = 0.2

μ(2) = 0.15,

⎧
⎨

⎩

d1(1) = 0.05

d1(2) = 0.03,
⎧
⎨

⎩

r1(1) = 0.3

r1(2) = 0.4,

⎧
⎨

⎩

d2(1) = 0.1

d2(2) = 0.05,

(41)
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Figure 3 The trajectory of stochastic SIRS model (4)
with parameters in Example 4 and the initial value S(0)
= 1.2, I1(0) = 0.7, I2(0) = 0.5, R(0) = 0.8

⎧
⎨

⎩

r2(1) = 0.4

r2(2) = 0.5,

⎧
⎨

⎩

β1(1) = 0.4

β1(2) = 0.1,
⎧
⎨

⎩

β2(1) = 0.45

β2(2) = 0.13,

⎧
⎨

⎩

σ1(1) = 0.12

σ1(2) = 0.1,

⎧
⎨

⎩

σ2(1) = 0.3

σ2(2) = 0.2.

(42)

Then (33) and (34) are satisfied. According to the result of Theorem 5.1, (35) holds. We
can see its simulation in Fig. 3.

7 Conclusions and future research
In this paper, we have studied a stochastic SIRS model with two incidence rates and Marko-
vian switching. We obtain that when the intensities of stochastic perturbation are large
enough, the diseases will be extinct. Then the thresholds for judging the extinction or per-
sistence of diseases are established by adopting appropriate inequality techniques when
the intensities are small. We also prove that our conclusions are compatible. At last, we
present some examples and simulations to verify our analytical results.

In addition, some other issues deserve to be further investigated. In this paper, the model
with saturated incidence rates is studied, we can change the specific incidence functions
into general ones in the future. Moreover, the models with state-dependent Markovian
switching instead of state-independent regime switching in this paper can be further dis-
cussed. We leave these questions for our future work.
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