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limit when Nis even (i.e, N =2M). Then, taking N = 5 as an example, we discuss some
novel mixed lump-soliton and lump-soliton-breather solutions by using long wave
limit and choosing special conjugate complex parameters from the five-soliton
solution. Figures are plotted to reveal the dynamical features of such obtained lump
and mixed interaction solutions. These results may be useful for understanding the
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1 Introduction

Nonlinear evolution equations are well used to describe various significant nonlinear phe-
nomena in nature, which display significant prosperities as the soliton solution, infinite
number of conservation laws, symmetries, and Hamiltonian structures. Searching for ex-
act solutions of nonlinear evolution equations is important in scientific and engineering
applications because it offers rich knowledge on the mechanism of the complicated phys-
ical phenomena. A set of systematic methods have been used in the literature to obtain
reliable treatments of nonlinear evolution equations. So far, researchers have established
several methods to find the exact solutions, including the inverse scattering transform [1],
the Bicklund transformation [2-5], the Darboux transformation [6—14], the Riemann—
Hilbert approach [15-17] and Hirota’s bilinear method [18—28], Jacobian elliptic function
method and modified tanh-function method [29-33]. Each of these approaches has its
features, Hirota’s bilinear method is widely popular due to its simplicity and directness.
In Refs. [34, 35], some lump solutions and interaction solutions of Hirota—Satsuma—Ito
equation are computed via Hirota’s bilinear form through conducting symbolic computa-
tions. In Ref. [36], two kinds of lump solutions are constructed explicitly through Hirota’s
bilinear method. Hirota’s bilinear method can be used usually to construct the exact lo-
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calized wave solutions such as soliton, breather (alias periodic soliton), and lump. Soliton
has the property of stability caused by the balance of nonlinear and dispersive effects on
the medium [31, 32, 37]. Breather is the partially localized breathing waves with a periodic
structure in a certain direction [38—40]. Lump is a kind of rational function solutions in
all space directions, which have some physical applications in shallow water wave, plasma,
optic media, and Bose—Einstein condensate [41, 42].

In this paper, we consider the following (2 + 1)-dimensional asymmetrical Nizhnik—
Novikov—Veselov (ANNYV) equation:

Up + Uyyy + B(u / Uy dy) =0, (1)

where the subscripts respectively denote the partial derivatives with respect to the two
scaled space coordinates x, y and time ¢, u is the functions of x, y, and ¢, and u is the physical
field. The ANNV equation, which is an isotropic Lax integrable extension of the KdV equa-
tion, has been proposed in the modern string theory and theory of biological membranes.
Many papers focus on analyzing the exact solutions of Eq. (1). Boiti et al. [43] have first de-
rived Eq. (1) and solved it by the inverse scattering transformation. Dai et al. [44] have de-
rived the variable separation solutions of Eq. (1) by using extended tanh-function method.
Wazwaz [45] has investigated the multiple soliton solutions for generalized, asymmet-
ric, and modified NNV equation with the help of a simplified form of Hirota’s bilinear
method. Fan [46] has investigated the quasi-periodic wave solutions and established the
relations between the quasi-periodic wave solutions and soliton solutions of Eq. (1) based
on a multi-dimensional Riemann theta function and Hirota’s bilinear method. Zhao et al.
[47] have presented the lump stripe solution of Eq. (1) by using bilinear form. As far as
we know, the M-lump solutions and different types of localized wave interaction solu-
tions including lump-soliton and lump-soliton-breather solutions have not been reported
before.

The rest of this paper is arranged as follows. In Sect. 2, we firstly present the N-soliton
solutions of Eq. (1) by using Hirota’s bilinear method. Section 3 is devoted to the AM-lump
solutions by using long wave limit to even N-soliton solutions. In Sect. 4, we take odd
five-soliton solution as an example and give some mixed lump-soliton and lump-soliton-
breather solutions by using long wave limit and choosing special parameters. Some con-
clusions are given in the last section.

2 The N-soliton solution of the (2 + 1)-dimensional ANNV equation
Taking the transformation

u=ug+2(Inf)yy, (2)
Equation (1) is converted into the following bilinear formulism:

(DyD, + DDy + 3uoD2)f - f =0, 3)
where the bilinear differential operator D is defined [48] by

DTD;D‘;(&Z “b) = (0, — ax’)m(ay - ay’)n(at - at’)p
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X ﬂ(x, _)’, t)b(x/,}/, t,) |x:x’,y:y’,t:t’» (4')

then Eq. (3) is equivalent to

2y =21y + LS = 2annly = Ofsafi
+ 6fifey + OUfanf — 614Qfx2 =0. (5)

Based on Hirota’s bilinear method, the N-soliton solution of Eq. (1) is obtained by sub-
stituting

N N N
f =1+ Zexp(ns) + ZAsj exp(ns + 77/‘) + ZAsjAskAjk

s=1 s<j s<j<k

N
X exp(ns + 1+ 1) + -+ + (HAsj> exp{z 775} (6)
s=1

s<j
into Eq. (2) with

albg + 3uga®

Ns = dsX + bsy + Gt +Nos,  Cs = _Sbios: (7)
S

(as — a;)*(bs — b)) + Bug(as — a;)* + (bs — by)(c; — ;)

(as + a;)3(bs + bj) + 3uo(as + a;)? + (bs + bj) (¢, + cj)’

Ag=
5,j=1,2,...,N, 8)

where the parameters 4, bs, and 7y are constants related to the amplitude and phase of the
Nth soliton, respectively. Motivated by the work of [9, 21], we have the following theorem.

Theorem 1 Let bs = psas (s=1,...,N),a; = lie,exp(ny) = -1 (=1,...,2M),p, = p;, s (n =
L...,M), arprer = a3y, p, (U= 1,...,P), and aspriop.k (k= 1,...,Q) be real constants. When
€ — 0, the N-soliton solution of Eq. (1) can reduce to the interaction solutions of M-lump, P-
breather, and Q-soliton, where N = 2M + 2P + Q, in which M, P, Q are nonnegative integers

and represent the numbers of lump, breather, and soliton, respectively.

Next, we will apply the above conclusion in Theorem 1 to give the M-lump, mixed lump-
soliton, and lump-soliton-breather solutions of Eq. (1).

3 M-lump solutions

In this section, we let P = Q = 0 (i.e., N = 2M) in Theorem 1, we can obtain M-lump so-
lutions of Eq. (1). By choosing parameters bs = p;as, as = lse in Eq. (6) with the provision
exp(nos) = -1, = 1,2,...,N (N is an even number), and then taking long wave limit as
€ — 0, the function f in Eq. (6) is translated into pure rational function. Therefore, the
general higher-order rational functions of Eq. (1) can be presented as [49, 50]

N 1 N N
fN:l_[ws"'El_[stZwl"’"'
s=1

S I#s)
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Figure 1 One-lump solution with parameters py = p5 =1 +iat t = 0. (a) Surface (top) and density (bottom)
plots of one lump; (b) the corresponding counter plot of (a)

1 N M N
o > ByBuBwm ]| @t )
$,K,...,m,n pESJkL...mn
where
Zpspj(ps +pj) 3ug
Bj=—"—""""", wi=x+py—-—t, j=1,2,...,N. (10)
7 uo(ps - p))? ’ Yp

If we choose p,, = p; ,; (n=1,2,...,M) for N = 2M with the condition B > 0, we can get
a class of nonsingular M-lump solutions.
(i) Setting N = 2 in Eq. (9), we have

f = wiw;y + B1y. (11)

Substituting Eq. (11) into the bilinear transformation in Eq. (2), we can obtain one-lump

solutions of Eq. (1). Figure 1 shows one lump with one peak and two valleys at ¢ = 0 if

parameters uo = —1,p; = p5 = 1 + i. In the following, we always set the parameter 1 = -1.
(ii) Setting N = 4 in Eq. (9), we have

[ = 01020304 + B3aw1w) + Baaw1 w3 + Byzwiwy + Brawyws
+ Biswawy + Biowswy + B12B3a + B13Bos + B1aBos. (12)
Substituting Eq. (12) into the bilinear transformation in Eq. (2), we can obtain two lumps

of Eq. (1). Figure 2 shows the elastic interaction between two lumps at different time with
parameters

i. (13)

W =
N =

pr1=p5=1+i P3=py=

From Fig. 2, we can clearly see that two lumps grow closer with time increasing, they
collide at ¢ = 0, then separate again, after the interaction, two lumps keep their shapes and
amplitudes invariant, so their interaction is elastic.

(iii) Setting N = 6 in Eq. (9), we can obtain three-lump solution. In this case, there are
many soliton parameters and the solution is very complicated, so we omit its expression
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(a)t=-20 ®)t=-10 ©t=0

y

Figure 2 Surface (top) and density (bottom) plots of the interaction between two lumps with parameters in
Eq. (13) at different time

(a)t=-50 (b)t=-20 ©t=0

Figure 3 Surface (top) and density (bottom) plots of the interaction among three lumps with parameters in
Eq. (14) at different time

here. Figure 3 shows the elastic interaction among three lumps at different time with pa-

rameters

3

—1. 14
+ z i (14)

From Fig. 3, we can clearly see that three lumps array a triangle structure at ¢ = -50 and
grow closer with time increasing, they interact at ¢ = 0, after the interaction, then separate
and rearrange a triangle. As time goes on, they are farther and farther away, and their

shapes and amplitudes remain the same as before.
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4 The lump interacts with soliton or breather
In the previous section, we discussed the M-lump solutions of Eq. (1) by use of long wave
limit. In this section, we will consider the interaction solutions of different localized waves
such as the interaction of lump and soliton or breather by using long wave limit and choos-
ing conjugate spectral parameters. Here, we take N = 5 in Eq. (6) as an example.

Case 1. One lump interacts with soliton or breather. Putting bs = psa; (s = 1,2,3,4,5),a; =
li€,ay = lye, o1 = NG, = im, No3 = Noa = Nos = 0 and taking € — 0, then the function f in

Eq. (6) can be rewritten as

f =Bz + w102)l1h€> + (103 + Byswy + B3y + Biy + B13Bas) exp(ns)
X Ilhe® + (w1wy + Byawy + Brawy + B1a + B1aBog) exp(na)lilre®
+ Baa[w1wy + (Bas + Boa)wy + (Biz + Bia)wy + Bia + (Bis + Bua)
X (Bas + Baa) | exp(n3 + na)l1la€® + (w103 + Byswy + Bisws + Bia
+ B15Bas) exp(ns) i 2e” + Bss[ @102 + (Bas + Bas)wy + (Bis + Bis)ws
+ Biy + (Bi3 + B15)(Bas + Bas) | exp(n3 + ns)l11a€” + Bas[ w12
+ (Baa + Bys)w1 + (Bi + Bis)wy + By + (B + Bis)(Bas + Bas) |
x exp(n4 + ns)l1la€” + B3uB3sBus[ w1z + (Bas + By + Bas)wy

+ (Bi3 + Bia + Bi5)wy + Bz + (Bi3 + Bia + B15)(Baz + By

+Bas) | exp(ns + 14 + ns)l1boe” + O(€°), (15)
where
2p1p2(p1 + p2) Bup,
By = —=2%2 2 wi=x+py—-—t, j=12, (16)
27 uo(pr - po)? ’ ” bj /
2psa;pi(ps + p;
By= —DAPOEP) (a4, (17)

7 uo(ps - p))* - povja;
and

_ uo(ps —p)* ~ pspjlas - a))(psas - pja))

sj = ) (3§S<]§5) (18)
’ uo(ps —Pj)2 —pspj(ﬂs + ﬂj)(Psﬂs +P;’6lj)

The solution u given by Eq. (15) expresses the interaction solution of lump soliton and
breather or line solitons. Here, we will discuss two cases:
(i) When M =1,P =0,Q = 3 in Theorem 1, we can derive the interaction solution among

one lump and three solitons. Considering

* ) 2 2 2
p1=p;=1+i a3 =ds =3 p3=1 Pi=2, a5 =3 ps=3 (19)

when € — 0, the solution « given by Eq. (15) expresses the elastic interaction among one

lump and three solitons as shown in Fig. 4.
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(a)t=-30 b)t=-10 ©t=0

Figure 4 Surface (top) and density (bottom) plots of the mixed lump-soliton interaction among one lump
and three solitons with parameters in Eq. (19) at different time

(a) =-40 (b)t=-20 ©t=0

(d)t=10

y X

Figure 5 Surface (top) and density (bottom) plots of the mixed lump-soliton-breather interaction among

one lump, one breather, and one soliton at different time and parameters in Eq. (20)
. J

(i) When M = P = Q =1 in Theorem 1, we can derive the interaction solution among

one lump, one breather, and one soliton. Taking

* . 2 N , 2
p1=p5=1+2i, a3 =as = 3, p3=p;=1+i as =3 ps=1, (20
when € — 0, the solution « given by Eq. (15) expresses the elastic interaction among one
lump, one breather, and one soliton as shown in Fig. 5.

Case 2. Two lumps interact with one soliton. When M = 2,P = 0,Q =1 in Theorem 1,
we can derive the interaction solution among two lumps and one soliton. Putting b; =
pjaj,a; = e (j=1,2,3,4),bs = psas, o1 = 1§y = Moz = Mg = i, Nos = 0 and taking € — 0,
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Table 1 Mixed interaction solutions from five-soliton

N-soliton  Mixed lump-soliton and Parameters
lump-soliton-breather interaction solutions

N=5 one lump + three solitons bs=psas (s=1,2,3,4,5), a1 =he, a; = ¢,

a3 =04 =kK1,p1 =p5=y1+i01,p3=V2,04= V3,
ds = K2, Ps5 = Ya, o1 =N, = 7T, 103 = Noa = Nos =0,
e—0

one lump + one breather + one soliton bs=psas (s=1,2,3,4,5), a1 =he, a; = e,
a3 =a4 =K1, p1 =p5 =y1 +i01,p3s =p; =y2 +i0y,
ds =K2,Ps5 = V3,101 =N, = 7, 103 = Noa = Nos =0,
e—0

two lumps+one soliton bs =psas, as =1se (s=1,2,3,4), bs = psas,
p1 =p5 =y +io,p3=p; =Y2 +i02,05 = K2, 5 = V3,
No1 =15 =103 =1Nps =7, Nos =0, — 0

Note: x5, ¥1,2,3.4, 01,2 are nonzero real constants.

then the function f in Eq. (6) can be rewritten as

[ = (01020304 + B3aw1w; + Byaw1 w3 + Byzw1wy + B1awyws + Bizwywy
+ B1yw3ws + B1oBss + Bi3Bas + BiaBo3) i blslae® + {w1wpwzws
+ Biswiwyws + B3sw1 )y + Bysw1 0304 + Biswywswy + w1 [ (BssBas
+ B3a)wy + (BasBas + Baa)ws + (BasBss + Ba3)wa | + o[ (BisBas
+ B1a)ws + (B15Bss + Bi3)ws| + (B1sBas + Bia)wsws + w1 (BasBss
+ By3)Bus + ByuBss + BysBas | + @[ (B15Bss + B13)Bus + B1aBss
+ B15B3a] + 03[ (B15Bas + B12)Bus + B1aBas + BisBa | + a4
X [(B15Bas + B12)Bss + B13Bs + BisBas| + Bi3Byy + By3Bus

+ B34(B15Bas + B12) + B35 (B1aBas + B15Bos) + B[ (B1sBas

+ B12)Bss + B13Bas + B1sBas |} exp(ns) i bolslae® + O(€), (21)
where
3ug )
wj=x+py—-—t, j=1,2,3,4, (22)
bj
2 stj\Ps j
By PP D) g g (23)

I uo(ps —P/)2
2psasps(ps + ps)

Bgs = (s=1,2,3,4). (24)
) uo(ps — ps)? —Pspéﬂé
Taking
.11, .11, . . a5)
= =—+ =i, = =—+ =i, as =1, =1,
p1=py 575 P3=p, 3%3 5 ps

the solution u given by Eq. (21) expresses the elastic interaction among one soliton and
two lumps as shown in Fig. 6.
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Figure 6 The interaction solution between one line soliton and two lumps at different time and parameters
in Eq. (25)

5 Conclusions

In this paper, based on Hirota’s bilinear method, we have obtained N-soliton solution of
Eq. (1). By using long wave limit and choosing special parameters to N-soliton solution,
we have given a general conclusion to obtain mixed lump-breather-soliton interaction
solutions. Especially, by using long wave limit to even N-soliton (N = 2M) solution un-
der special parameters, M-lumps and their dynamic properties have been obtained and
discussed in Figs. 1-3. In addition, we choose the case N = 5 as an example. The mixed
lump-soliton interaction solution including one lump and three solitons (see Fig. 4), mixed
lump-soliton-breather interaction solution including one lump, one breather, and one soli-
ton (see Fig. 5), and mixed lump-soliton interaction solution including two lumps and one
soliton (see Fig. 6) are derived by using long wave limit and choosing special conjugate
complex parameters. Table 1 shows some mathematical features to obtain lump-soliton
and lump-breather-soliton from five-soliton solutions of Eq. (1) on how to select appropri-
ate parameters. The results given in this paper show that the long wave limit is a direct and
powerful mathematical tool to construct mixed interaction solutions of different kinds of
localized waves to nonlinear evolution equation, which would be used to investigate other
nonlinear models in mathematics and physics.
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