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Abstract
This paper addresses exponential basis and compact formulation for solving
three-dimensional convection-diffusion-reaction equations that exhibit an accuracy
of order three or four depending on exponential expanding or uniformly spaced grid
network. The compact formulation is derived with three grid points in each spatial
direction and results in a block-block tri-diagonal Jacobian matrix, which makes it
more suitable for efficient computing. In each direction, there are two tuning
parameters; one associated with exponential basis, known as the frequency
parameter, and the other one is the grid ratio parameter that appears in exponential
expanding grid sequences. The interplay of these parameters provides more accurate
solution values in short computing time with less memory space, and their estimates
are determined according to the location of layer concentration. The Jacobian
iteration matrix of the proposed scheme is proved to be monotone and irreducible.
Computational experiments with convection dominated diffusion equation,
Schrödinger equation, Helmholtz equation, nonlinear elliptic Allen–Cahn equation,
and sine-Gordon equation support the theoretical convergence analysis.
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1 Introduction
We shall describe a numerical method to solve the general form of three-space dimensions
mildly nonlinear elliptic partial differential equations

ε

(
∂2U
∂x2 +

∂2U
∂y2 +

∂2U
∂z2

)
= ψ

(
x, y, z, U ,

∂U
∂x

,
∂U
∂y

,
∂U
∂z

)
, 0 < ε � 1, (x, y, z) ∈ Ω . (1.1)

We aim to determine the solution U = U(x, y, z), at the finite number of discrete grid
points of the solution domain Ω = (0, 1)3, with Dirichlet’s boundary data

U(0, y, z) = f1(y, z), U(1, y, z) = f2(y, z), 0 ≤ y, z ≤ 1, (1.2a)
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U(x, 0, z) = f3(x, z), U(x, 1, z) = f4(x, z), 0 ≤ x, z ≤ 1, (1.2b)

U(x, y, 0) = f5(x, y), U(x, y, 1) = f6(x, y), 0 ≤ x, y ≤ 1. (1.2c)

We shall assume that the function ψ(x, y, z, U , P, Q, R) appearing in (1.1) is continuous.
Moreover, the continuity of ∂ψ/∂U , ∂ψ/∂P, ∂ψ/∂Q, ∂ψ/∂R on the closed domain Ω , along
with ∂ψ/∂U ≥ 0, ensures the unique existence of the analytic solution to (1.1)–(1.2a)–
(1.2c) [18]. Elliptic partial differential equations (PDEs) appear at wide application area in
natural sciences and engineering such as acoustic, chaos, boundary layer, decalescence,
electricity, energy, power, force, hysteresis, resonance, opacity, refraction, conduction,
propagation, and turbulence. Laplace equation, Poisson’s equation, and Helmholtz equa-
tion are some of well-known second-order elliptic PDEs of linear type, and their exact
solution helps in realizing the qualitative character of scientific processes. Many com-
plex processes in which input variation is not proportional to changes in output yield
a nonlinear system of elliptic PDEs, for example, spatial localization of heat and mass
transfer process, crystal dislocation (sine-Gordon equation), and phase transition (ellip-
tic Allen–Cahn equation) [39]. The treatment of such PDEs models appearing in physical
phenomenon needs special attention either due to multiple character or non-existence
of classical solution values. Although the theory of existence and uniqueness ensures the
presence of solution, the exact solution of nonlinear elliptic PDEs, in general, is not pos-
sible alike linear PDEs. In addition to it, the exact solution cannot deal with discrete data
such as the dynamic response of the structure in earthquake modeling. In some cases, an
exact solution can serve the basis for testing computer algorithms for solving partial dif-
ferential equations. Thus, to deal with nonlinear elliptic PDEs, we need to apply numerical
techniques for computing approximate solution values that can optimize basic parameters
depending on the requirements.

In the recent past, efficient algorithms based on high-order approximations have yielded
optimal accuracies in the solution of elliptic PDEs. The forward and second central-
differencing operators are commonly applied to replace first- and second-order partial
derivatives. Such a discrete relation often leads to oscillatory or unbounded solution val-
ues in the case of convection dominant or low diffusion coefficient [47]. In other words,
the large value of Reynolds number results in unsatisfactory solution behavior despite the
well-behaved nature of the analytic solution and guaranteed existence of a unique solution.
There are two ways to treat them: either employing a reasonably ample number of spatial
grids or scaling down the order of local truncation error of equivalent finite-difference re-
placement. The utilization of a large number of spatial grid points leads to a dense sparse
matrix, and handling such a matrix consumes an ample amount of memory space; more-
over, computation of dense sparse matrix needs massive computing time. Therefore, en-
hancing accuracy to a finite-difference approximation of governing PDEs is more empha-
sized. The discretization processes come along with round-off and truncation errors. In
the modern fast computing scenario, loss of precision in view of decimal rounding is in-
significant. Therefore, we are left with the problem of minimizing discretization or trun-
cation errors: the deviation between the analytic solution of original PDEs and numerical
solution of discrete equations obtained via finite-difference replacement. A fourth-order
compact finite-difference approximation, multi-grid mechanism, and non-uniform grid
transformation are considered for solving boundary layer convection-diffusion equation
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by [9]. A detailed Maple procedure to derive nineteen-point high-order compact formula-
tion for three space dimensional linear elliptic PDEs with variable coefficients is described
in [10]. A fourth-order compact formulation on variable grid step sizes in all coordinate
directions is utilized for solving a three-dimensional Poisson’s equation on the domain
Ω [44]. A high-order compact formulation by using exponential approximation and off-
step discretization is developed for quasi-linear elliptic partial differential equations [29,
30]. Boundary value method and finite-difference discretization of spatial derivatives for
solving three-dimensional elliptic PDEs are considered by [3]. A variational method for
elliptic PDEs with sign-changing nonlinearity is described by [1]. Trigonometric Fourier
collocation methods, energy preserving scheme, and nonlinear stability analysis related to
Klein–Gordon equations are discussed in [41–43]. A second-order accuracy scheme with
non-graded Cartesian grids is described for variable coefficient Poisson’s equation by [27].
A temporary introduction of auxiliary function and converting a discretized form of 3D
linear elliptic PDEs into ordinary differential equations are considered in [32]. Similar to
the finite volume method, a family of the fourth-order compact differencing scheme for
discretizing a semi-linear convection-diffusion equation was described by [46]. Precondi-
tioners based on windowed Fourier frames and multigrid method for solving elliptic PDEs
are discussed in [2, 38]. A closed-form for the eigenvalues emanating from nineteen-point
compact formulation to the three-dimensional convection-diffusion equation was pre-
sented by [12]. A detailed discussion of fourth-order accurate finite-difference approxi-
mation for the 3D elliptic PDEs of mildly nonlinear type is described in [5, 11]. Recently,
third-order compact formulation on variable grid spacing and fourth-order approxima-
tion on uniform grid spacing for three space elliptic boundary value problems of mildly
nonlinear type have been developed by [20, 21].

On uniformly spaced grid points, the composite of averaging and central-difference op-
erator yields second-order accuracy to the first-order partial derivatives, while the second
central-difference operator results in second-order accuracy to the second-order partial
derivative. Therefore, the application of second central-difference operator and composite
of averaging and first central-difference operator results in a scheme having second-order
truncation errors, and it is compact too since it uses minimum grid points required to
discretize the presence of maximum order partial differentials in the given mathematical
model. In view of the earlier observations, our aim is to improve the order of truncation
errors so as to gain better accuracies in solution values in a minimal computing time as
well as with less memory storage. In the next section, we shall describe a non-uniformly
spaced grid network and derivations of compact operators on an exponential basis. An im-
proved accuracy compact scheme exhibiting the third- and fourth-order of convergence is
obtained in Sect. 3. In Sect. 4, irreducibility and monotonic property to the Jacobian ma-
trix analyzes the bounds of solution error and convergence. Experimental results about
linear and nonlinear convection-diffusion models are presented in Sect. 5. In the end, the
paper is accomplished with remarks and extension of the new scheme.

2 Grid topology and compact difference operators
The non-uniform grid spacing in the discretization of PDEs influences the magnitude of
truncation error that depends upon the length of adjacent grid points and derivative of
absolute functional value. Thus, it is least possible to attain consistent distribution of trun-
cation errors on an evenly spaced grid network, especially with the model that possesses
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boundary layer behavior or has multiple natures of solution values. The sub-domain that
adds maximum derivative value will be kept with low grid spacing, while the sub-domain
that has smooth functional derivative values may be arranged with comparatively large
grid spacing. By this technique, one can disperse truncation errors uniformly inside the
domain of integration. It is therefore advantageous to keep non-uniformity in grid spac-
ing for discretization procedure, which results in more precise solution values of PDEs
[7]. Among various variable grid spacing, an exponential expanding grid network demon-
strated decent results, if the governing PDEs exhibit layer behavior of solution or sin-
gularity. This is possible because exponential grid parameters can be adjusted according
to the location of the layer or singular points. The approximate solution of elliptic PDEs
(1.1) using finite-difference discretizations replaces the partial derivatives by estimated
difference operators, and solution values are computed at a finite number of discrete grid
points. Such type of three-dimensional grid points on a unit cuboid Ω = {(x, y, z) : 0 ≤
x, y, z ≤ 1} may be determined by the discrete set {(xi, yj, zk) : i = 0(1)I + 1, j = 0(1)J + 1, k =
0(1)K + 1}, where (x0, y0, z0) = (0, 0, 0), (xI+1, yJ+1, zK+1) = (1, 1, 1), and interior grid points at
i = 1(1)I, j = 1(1)J , k = 1(1)K , are obtained by the stretching relation

(xi, yj, zk) = (xi–1 + �xi, yj–1 + �yj, zk–1 + �zk), (2.1)

where the grid step sizes are given by (�xi+1,�yj+1,�zk+1) = (p�xi, q�yj, r�zk). Here, p, q,
and r are the grid expansion factor (stretching parameter) in x-, y-, and z-spatial directions
respectively, and its selection depends on the thickness of boundary layer in a turbulent
fluid flow [4, 6]. As we knew the length of diffusion space in each spatial direction, there-
fore, the first grid step size can be easily determined in the following manner:

�x1 =

⎧⎨
⎩

p–1
pI+1–1 , p �= 1,

1
I+1 , p = 1,

, �y1 =

⎧⎨
⎩

q–1
qJ+1–1 , q �= 1,

1
J+1 , q = 1,

,

�z1 =

⎧⎨
⎩

r–1
rK+1–1 , r �= 1,

1
K+1 , r = 1.

(2.2)

Such a set-up of grids is known as exponential expanding grid network, and it has been
applied to the digital simulation of electrochemical phenomena by [4, 8]. Based on the
exponential expanding grid, the optimal order discretization of elliptic PDEs in one and
two dimensions has been described in the past by [19, 22, 23, 28].

Next, we shall define differencing operators that approximate the explicit diffusion terms
and nonlinear appearance of convection term in the mathematical models (1.1). We shall
denote by Ui,j,k the exact value of U(x, y, z) at grid-point (xi, yj, zk), and ui,j,k is the ap-
proximate value obtained from the discrete relation of the proposed high accuracy com-
pact scheme. The notations Ux

i,j,k = (∂U/∂x)(xi ,yj ,zk ), Uxx
i,j,k = (∂2U/∂x2)(xi ,yj ,zk ), etc. will be

used for derivation purpose. The x-direction difference operators are obtained on the ba-
sis {1, eαx, e–αx},α �= 0, using three grid points set {xi–1, xi, xi+1}. The exponential function
spaces with basis Bx = {1, eαx, e–αx} are more flexible than polynomials basis B∗

x = {1, x, x2}.
The basis Bx is consistent with B∗

x in the limiting case α → 0. This is investigated in the
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following manner:

Span
{

1, eαx, e–αx} = Span

{
1,

1
2α

(
eαx – e–αx), 1

α2

(
eαx + e–αx – 2

)}
and

lim
α→0

1
2α

(
eαx – e–αx) = x, lim

α→0

1
α2

(
eαx + e–αx – 2

)
= x2.

The frequency parameter of the exponential part in the basis optimizes the solution
accuracies. This is because the C∞-differentiability of the exponential functions compen-
sates the loss of smoothness inherited by the polynomial functions.

Let us consider the linear combination

χ ≡ a000
200Ui–1,j,k + a000

000Ui,j,k + a000
100Ui+1,j,k – δxiUx

i,j,k . (2.3)

The evaluation of χ for U(x, y, z) = 1, eαx, and e–αx at the central grid-point location
(xi, yj, zk) yields three linear equations and may be solved for the three unknowns a000

000, a000
100,

and a000
200 uniquely [17]. The superscript triplets in the unknowns signify the location at

which derivative is calculated, while the subscript defines the central and neighboring grid
locations. In this way, we can compute the approximations of Ux

i,j,k . Using the same mech-
anism, it is easy to obtain three-point relations of a first-order partial derivative in the x-
direction at the neighboring grid locations xi–1 and xi+1. In a similar way, for β �= 0,γ �= 0,
the bases {1, eβy, e–βy} and {1, eγ z, e–γ z} on the grid point set {yj–1, yj, yj+1} and {zk–1, zk , zk+1}
determine the approximations of first-order partial derivatives in y- and z-directions re-
spectively. Approximations of second-order partial derivatives at the grid-point location
xi can be estimated on the same line by replacing δxiUx

i,j,k to δx2
i Uxx

i,j,k in the linear combi-
nation (2.3) and giving different names to the unknown coefficients. In this way, we can
get an approximation of diffusion terms. Now, let us define

φ1(μ, δs) = μδs
[
cosh(μδs) – 1

]
,

φ2(μ,σ , δs) = μδs
[
cosh(σμδs) – 1

]
,

φ3(μ,σ , δs) = μδs
[
cosh
(
(σ + 1)μδs

)
– 1
]
,

φ4(μ,σ , δs) = φ3(μ,σ , δs) – φ2(μ,σ , δs),

φ5(μ,σ , δs) = φ2(μ,σ , δs) – φ1(μ, δs),

φ6(μ,σ , δs) = φ1(μ, δs) – φ3(μ,σ , δs),

φ7(μ, δs) = μ2δs2 sinh(μδs),

φ8(μ,σ , δs) = μ2δs2 sinh(σμδs),

φ9(μ,σ , δs) = φ7(μ, δs) + φ8(μ,σ , δs),

ϕ(μ,σ , δs) = sinh
(
(σ + 1)μδs

)
– sinh(σμδs) – sinh(μδs),

where μ ∈ {α,β ,γ },σ ∈ {p, q, r} and δs ∈ {δxi, δyj, δzk}.



Jha and Singh Advances in Difference Equations        (2019) 2019:339 Page 6 of 27

Next, we shall define the following three-point compact discretizations to first- and
second-order partial derivatives in each coordinate direction:

⎡
⎢⎣

Ũx
i+1,j+b,k+c

Ũx
i,j+b,k+c

Ũx
i–1,j+b,k+c

⎤
⎥⎦ =

1
δxiϕ(p,α, δxi)

M(p,α, δxi)

⎡
⎢⎣

Ui+1,j+b,k+c

Ui,j+b,k+c

Ui–1,j+b,k+c

⎤
⎥⎦ , b, c ∈ {0,±1}, (2.4)

⎡
⎢⎣

Ũy
i+a,j+1,k+c

Ũy
i+a,j,k+c

Ũy
i+a,j–1,k+c

⎤
⎥⎦ =

1
δyjϕ(q,β , δyj)

M(q,β , δyj)

⎡
⎢⎣

Ui+a,j+1,k+c

Ui+a,j,k+c

Ui+a,j–1,k+c

⎤
⎥⎦ , a, c ∈ {0,±1}, (2.5)

⎡
⎢⎣

Ũz
i+a,j+b,k+1

Ũz
i+a,j+b,k

Ũz
i+a,j+b,k–1

⎤
⎥⎦ =

1
δzkϕ(r,γ , δzk)

M(r,γ , δzk)

⎡
⎢⎣

Ui+a,j+b,k+1

Ui+a,j+b,k

Ui+a,j+b,k–1

⎤
⎥⎦ , a, b ∈ {0,±1}, (2.6)

Ũxx
i,j+b,k+c =

1
δx2

i ϕ(p,α, δxi)

[
φ7(α, δxi)Ui+1,j+b,k+c – φ9(p,α, δxi)Ui,j+b,k+c

+ φ8(p,α, δxi)Ui–1,j+b,k+c

]
,

(b, c) ∈ {(0, 0), (±1, 0), (0,±1)
}

, (2.7)

Ũyy
i+a,j,k+c =

1
δy2

j ϕ(q,β , δyj)

[
φ7(β , δyj)Ui+a,j+1,k+c – φ9(q,β , δyj)Ui+a,j,k+c

+ φ8(q,β , δyj)Ui+a,j–1,k+c

]
,

(a, c) ∈ {(0, 0), (±1, 0), (0,±1)
}

, (2.8)

Ũzz
i+a,j+b,k =

1
δz2

kϕ(r,γ , δzk)

[
φ7(γ , δzk)Ui+a,j+b,k+1 – φ9(r,γ , δzk)Ui+a,j+b,k

+ φ8(r,γ , δzk)Ui+a,j+b,k–1

]
,

(a, b) ∈ {(0, 0), (±1, 0), (0,±1)
}

, (2.9)

where

M(μ,σ , δs) =

⎡
⎢⎣

φ4(μ,σ , δs) –φ3(μ,σ , δs) φ2(μ,σ , δs)
φ1(μ, δs) φ5(μ,σ , δs) –φ2(μ,σ , δs)

–φ1(μ, δs) φ3(μ,σ , δs) φ6(μ,σ , δs)

⎤
⎥⎦ .

Now, define the following three-point compact operators in each coordinate direction:

AxUi,j,k = δxiŨx
i,j,k , AyUi,j,k = δyjŨ

y
i,j,k , AzUi,j,k = δzkŨz

i,j,k , (2.10)

BxUi,j,k = δx2
i Ũxx

i,j,k , ByUi,j,k = δy2
j Ũyy

i,j,k , BzUi,j,k = δz2
kŨzz

i,j,k . (2.11)

For p = 1, the grid step sizes turn out constant and grids are uniformly spaced. More-
over, in the limiting case of frequency parameters α,β ,γ → 0, the exponential basis may
be treated as a polynomial basis. Thus, in the limiting case, difference operators Ax and Bx

become AxUi,j,k = 2μxδx = Ui+1,j,k – Ui–1,j,k , and BxUi,j,k = δ2
x = Ui+1,j,k – 2Ui,j,k + Ui–1,j,k . Sim-

ilarly, when q = r = 1 and β ,γ → 0, we obtain Ay = 2μyδy,Az = 2μzδz and By = δ2
y , Bz = δ2

z ,
where μx,μy,μz and δx, δy, δz are averaging and central difference operators respectively
in x-, y-, and z-directions. With the help of Taylor’s expansion, one can observe that

AxUi,j,k = δxiUx
i,j,k +

p
6
δx3

i
(
Uxxx

i,j,k – α2Ux
i,j,k
)

+ O
(
δx4

i
)

(2.12)
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and

BxUi,j,k = δx2
i Uxx

i,j,k +
1
3

(p – 1)δx3
i
(
Uxxx

i,j,k – α2Ux
i,j,k
)

+ O
(
δx4

i
)
. (2.13)

As a result,

1
δxi

AxUi,j,k = Ux
i,j,k + O

(
δx2

i
)
, ∀p, (2.14)

1
δx2

i
BxUi,j,k = Uxx

i,j,k +

⎧⎨
⎩

O(δxi), p �= 1,

O(δx2
i ), p = 1.

(2.15)

Therefore, the operators Ax and Bx result in a first-, and second-order accuracy to first-
and second-order partial derivatives on exponential expanding grid points. Similar obser-
vations for the operators Ay, By and Az, Bz in y- and z-directions follow by applying finite
series expansions. The applications of operators (2.10)–(2.11) to the mildly nonlinear el-
liptic PDEs (1.1) yield the system of algebraic equations

ε

( Bx

δx2
i

+
By

δy2
j

+
Bz

δz2
k

)
Ui,j,k

= ψ

(
xi, yj, zk , Ui,j,k ,

1
δxi

AxUi,j,k ,
1
δyj

AyUi,j,k ,
1

δzk
AzUi,j,k

)
. (2.16)

The truncation error associated with the difference scheme (2.16) is O(δxi + δyj + δzk),
and the use of such a low order accurate finite-difference formula may not result in best
possible accuracy, even if the unknown function is smooth [26]. The use of a high-order,
finite-difference scheme along with suitably chosen grid step size posterior can surmount
this. In the next section, we shall extend the order of truncation error that preserves the
compact character of the scheme.

3 Third (fourth)-order compact scheme
We intend to formulate a third-order accurate compact difference scheme on an exponen-
tial expanding grid network for the mildly nonlinear elliptic PDEs (1.1), and for the same,
we begin with Poisson’s equation

ε

(
∂2U
∂x2 +

∂2U
∂y2 +

∂2U
∂z2

)
= ψ(x, y, z), (x, y, z) ∈ Ω . (3.1)

Consider the linear combination

L{Ui,j,k} = δx2
i δy2

j δz2
k
[
ψi,j,k + ρxδxiψ

x
i,j,k + ρyδyjψ

y
i,j,k + ρzδzkψ

z
i,j,k

+ ρxρyδxiδyjψ
xy
i,j,k + ρyρzδyjδzkψ

yz
i,j,k + ρxρzδxiδzkψ

xz
i,j,k

+ ρxxδx2
i ψ

xx
i,j,k + ρyyδy2

j ψ
yy
i,j,k + ρzzδz2

kψ
zz
i,j,k
]
, (3.2)

where ρx,ρy,ρz,ρxx,ρyy,ρzz are non-zero finite real constants, whose values are computed
in such a way that the resulting difference scheme yields high order of local truncation
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error. The notations ψi,j,k ≡ ψ(xi, yj, zk) = Uxx
i,j,k + Uyy

i,j,k + Uzz
i,j,k , ψx

i,j,k = (∂ψ/∂x)(xi ,yj ,zk ),ψxx
i,j,k =

(∂2ψ/∂x2)(xi ,yj ,zk ), etc. are adopted for simplicity in presentation.
The application of difference operator formulas (2.10)–(2.11) and their composites on

ψi,j,k in equation (3.1) and linear combination (3.2) results in the following value of con-
stants:

ρx = (p – 1)/3, ρy = (q – 1)/3, ρz = (r – 1)/3,

ρxx =
(
p2 – p + 1

)
/3, ρyy =

(
q2 – q + 1

)
/3, ρzz =

(
r2 – r + 1

)
/3.

Now, replacing the partial derivatives by the compact difference operators

⎡
⎢⎣

ψx
i,j,k

ψ
y
i,j,k

ψ z
i,j,k

⎤
⎥⎦ =

⎡
⎢⎣

δx–1
i Ax

δy–1
j Ay

δz–1
k Az

⎤
⎥⎦ψi,j,k ,

⎡
⎢⎣

ψxx
i,j,k

ψ
yy
i,j,k

ψ zz
i,j,k

⎤
⎥⎦ =

⎡
⎢⎣

δx–2
i Bx

δy–2
j Bx

δz–2
k Bx

⎤
⎥⎦ψi,j,k (3.3)

and

⎡
⎢⎣

ψ
xy
i,j,k

ψ
yz
i,j,k

ψxz
i,j,k

⎤
⎥⎦ =

⎡
⎢⎣

δx–1
i δy–1

j AxAy

δy–1
j δz–1

k AyAz

δx–1
i δz–1

k AxAz

⎤
⎥⎦ψi,j,k , (3.4)

in the linear combination (3.2), the exponential expanding grids finite-difference substi-
tute for Poisson’s equation (3.1) in three dimensions is obtained by the discrete relation

εL{Ui,j,k} = δx2
i δy2

j δz2
k

[ ∑
(l,m,n)∈M

Sl,m,nψl,m,n + Ti,j,k

]
, (3.5)

where summation runs over the set M = {i, i + 1, i – 1} × {j, j + 1, j – 1} × {k, k + 1, k – 1} ∼
{(i ± 1, j ± 1, k ± 1)}. The discrete Laplacian as a sum of nearest neighbors of the central
grid point is given by

L≡ ε

12
δy2

j δz2
k
[{

δx2
i α

2(p2 – p + 1
)

+ 12
}
Bx + 4(q – 1)BxAy

]

+
ε

12
δx2

i δz2
k
[{

δy2
j β

2(q2 – q + 1
)

+ 12
}
By + 4(r – 1)ByAz

]

+
ε

12
δx2

i δy2
j
[{

δz2
kγ

2(r2 – r + 1
)

+ 12
}
Bz + 4(p – 1)BzAx

]

+
ε

9
δx2

i δy2
j δz2

k
[
3α2(p – 1)Ax +

(
α2 + β2)(p – 1)(q – 1)AxAy

]

+
ε

9
δx2

i δy2
j δz2

k
[
3β2(q – 1)Ay +

(
α2 + γ 2)(p – 1)(r – 1)AxAz

]

+
ε

9
δx2

i δy2
j δz2

k
[
3γ 2(r – 1)Az +

(
β2 + γ 2)(q – 1)(r – 1)AyAz

]

+
ε

12
δz2

k
[(

1 – p + p2)δx2
i +
(
1 – q + q2)δy2

j
]
BxBy

+
ε

12
δy2

j
[(

1 – p + p2)δx2
i +
(
1 – r + r2)δz2

k
]
BxBz

+
ε

12
δx2

i
[(

1 – r + r2)δz2
k +
(
1 – q + q2)δy2

j
]
ByBz
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+
ε

9
(r – 1)δy2

j δz2
k
[
(q – 1)BxAyAz + 3BxAz

]

+
ε

9
(p – 1)δx2

i δz2
k
[
(r – 1)ByAxAz + 3ByAx

]

+
ε

9
(q – 1)δy2

j δx2
i
[
(p – 1)BzAyAx + 3BzAy

]
(3.6)

and

Si+1,j,k = ρxa000
100
(
1 + ρyb000

000 + ρzc000
000
)

+ ρxxd000
100,

Si–1,j,k = ρxa000
200
(
1 + ρyb000

000 + ρzc000
000
)

+ ρxxd000
200,

Si,j+1,k = ρyb000
010
(
1 + ρxa000

000 + ρzc000
000
)

+ ρyye000
010,

Si,j–1,k = ρyb000
020
(
1 + ρxa000

000 + ρzc000
000
)

+ ρyye000
020,

Si,j,k+1 = ρzc000
001
(
1 + ρxa000

000 + ρyb000
000
)

+ ρzzf 000
001 ,

Si,j,k–1 = ρzc000
002
(
1 + ρxa000

000 + ρyb000
000
)

+ ρzzf 000
002 ,

Si+1,j+1,k = ρxρya000
100b000

010,Si+1,j,k+1 = ρxρza000
100c000

001,Si,j+1,k+1 = ρyρzb000
010c000

001,

Si–1,j+1,k = ρxρya000
200b000

010,Si+1,j,k–1 = ρxρza000
100c000

002,Si,j+1,k–1 = ρyρzb000
010c000

002,

Si–1,j–1,k = ρxρya000
200b000

020,Si,j–1,k+1 = ρyρzb000
020c000

001,Si+1,j–1,k = ρxρya000
100b000

020,

Si–1,j,k+1 = ρxρza000
200c000

001,Si,j–1,k–1 = ρyρzb000
020c000

002,Si–1,j,k–1 = ρxρza000
200c000

002,

Si,j,k = 1 + ρxa000
000
(
1 + ρyb000

000
)

+ ρyb000
000
(
1 + ρzc000

000
)

+ ρzc000
000
(
1 + ρxa000

000
)

+ ρxxd000
000 + ρyye000

000 + ρzzf 000
000 .

The values of coefficients are given by

a000
100 = φ1(α, δxi)/ϕ(p,α, δxi), a000

200 = φ2(p,α, δxi)/ϕ(p,α, δxi),

b000
010 = φ1(β , δyj)/ϕ(q,β , δyj), b000

020 = φ2(q,β , δyj)/ϕ(q,β , δyj),

c000
001 = φ1(γ , δzk)/ϕ(r,γ , δzk), c000

002 = φ2(r,γ , δzk)/ϕ(r,γ , δzk),

d000
100 = φ3(α, δxi)/ϕ(p,α, δxi), d000

200 = φ4(p,α, δxi)/ϕ(p,α, δxi),

e000
010 = φ3(β , δyj)/ϕ(q,β , δyj), e000

020 = φ4(q,β , δyj)/ϕ(q,β , δyj),

f 000
001 = φ3(γ , δzk)/ϕ(r,γ , δzk), f 000

002 = φ4(r,γ , δzk)/ϕ(r,γ , δzk),

a000
000 = –

(
a000

100 + a000
200
)
, b000

000 = –
(
b000

010 + b000
020
)
, c000

000 = –
(
c000

001 + c000
002
)
,

d000
000 = –

(
d000

100 + d000
200
)
, e000

000 = –
(
e000

010 + e000
020
)
, f 000

000 = –
(
f 000
001 + f 000

002
)
,

and truncation error is obtained as

Ti,j,k =

⎧⎨
⎩

O(δxi + δyj + δzk)3, p �= 1 ∨ q �= 1 ∨ r �= 1,

O(δxi + δyj + δzk)4, p = q = r = 1.
(3.7)

The truncation error of the nineteen-point scheme (3.5) confers third-order and fourth-
order accuracy on exponential expanding and uniformly distributed grids respectively
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in a single formulation. Since the grid step sizes δxi, δyj, δzk are positive real values, the
linear dependence of two real numbers yields δyj = ζi,jδxi and δzk = ηi,kδxi for some fi-
nite constants ζi,j, ηi,k , known as grid-ratio parameters. As a result, the truncation er-
ror Ti,j,k ≈ O(δx3

i ) resembles third-order accuracy on exponential expanding grids and
Ti,j,k ≈ O(δx4

i ) presents fourth-order accuracy on uniformly distributed grids. Moreover,
the new scheme is developed on a minimum number of stencils in each coordinate direc-
tion to discretize the maximum order differentials present in elliptic PDEs (1.1); thus it is
compact and can be easily computed.

Next, we shall extend our scheme (3.5) to the mildly nonlinear elliptic PDEs (1.1) that
involve first-order partial derivatives implicitly as a nonlinear term. For this purpose, we
require some functional approximations on the set M = M∼ {(i, j, k)} defined by

ψ̃l,m,n = ψ
(
xl, ym, zn, Ul,m,n, Ũx

l,m,n, Ũy
l,m,n, Ũz

l,m,n
)
, (l, m, n) ∈M. (3.8)

New estimates of the first-order partial derivative at a central grid point are constructed
as follows:

Ûx
i,j,k = Ũx

i,j,k + ϑxδxi
[
ψ̃i+1,j,k – ψ̃i–1,j,k – εα2(Ui+1,j,k – Ui–1,j,k)

– ε
(
Ũyy

i+1,j,k – Ũyy
i–1,j,k
)

– ε
(
Ũzz

i+1,j,k – Ũzz
i–1,j,k
)]

, (3.9)

Ûy
i,j,k = Ũy

i,j,k + ϑyδyj
[
ψ̃i,j+1,k – ψ̃i,j–1,k – εβ2(Ui,j+1,k – Ui,j–1,k)

– ε
(
Ũzz

i,j+1,k – Ũzz
i,j–1,k
)

– ε
(
Ũxx

i,j+1,k – Ũxx
i,j–1,k
)]

, (3.10)

Ûz
i,j,k = Ũz

i,j,k + ϑzδzk
[
ψ̃i,j,k+1 – ψ̃i,j,k–1 – εγ 2(Ui,j,k+1 – Ui,j,k–1)

– ε
(
Ũxx

i,j,k+1 – Ũxx
i,j,k–1
)

– ε
(
Ũyy

i,j,k+1 – Ũyy
i,j,k–1
)]

, (3.11)

and the updated functional at a central grid point is given by

ψ̂i,j,k = ψ
(
xi, yj, zk , Ui,j,k , Ûx

i,j,k , Ûy
i,j,k , Ûz

i,j,k
)
. (3.12)

Here, ϑx,ϑy, and ϑz are free parameters, and their value will be determined in such a
manner that the resulting difference formula yields an order of optimal accuracy. With
the help of (3.5), (3.8), and (3.12), it is possible to obtain

Si,j,kψ̂i,j,k +
∑

(l,m,n)∈M
Sl,m,nψ̃l,m,n –

∑
(l,m,n)∈M

Sl,m,nψl,m,n = Ti,j,k , (3.13)

provided

ϑx = pqr
(
p2 + p + 1

)
/
[
2ετ (p + 1)

]
,

ϑy = pqr
(
q2 + q + 1

)
/
[
2ετ (q + 1)

]
,

ϑz = pqr
(
r2 + r + 1

)
/
[
2ετ (r + 1)

]
,

where

τ = 2(q + r)p2 + 2(r + p)q2 + 2(q + p)r2 – (5r – 2)p – (5p – 2)q
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– (5q – 2)r + pqr
[
2(pq + rq + pr) – 5(p + q + r) + 15

]
.

This gives the new difference scheme

εL{Ui,j,k} = δx2
i δy2

j δz2
k

[
Si,j,kψ̂i,j,k +

∑
(l,m,n)∈M

Sl,m,nψ̃l,m,n + Ti,j,k

]
. (3.14)

The nineteen-point extended compact finite-difference replacement (3.14) for approxi-
mating elliptic PDEs (1.1) exhibits truncation error of order three on the exponential ex-
panding grid network, and it is fourth-order accurate on uniformly distributed grid points.
The compact character of the updated scheme remains intact on either grid spacing, may
be evenly spaced or unequally spaced, and can be implemented through single high accu-
racy formulation. The computer implementation of scheme (3.14) may be obtained after
omitting the truncation error term Ti,j,k and making use of the following boundary data:

U0,j,k = f1(yj, zk), UI+1,j,k = f2(yj, zk), 0 ≤ j ≤ J + 1, 0 ≤ k ≤ K + 1, (3.15a)

Ui,0,k = f3(xi, zk), Ui,J+1,k = f4(xi, zk), 0 ≤ i ≤ I + 1, 0 ≤ j ≤ J + 1, (3.15b)

Ui,j,0 = f5(xi, yj), Ui,j,K+1 = f6(xi, yj), 0 ≤ i ≤ I + 1, 0 ≤ j ≤ J + 1. (3.15c)

By incorporating the boundary data in the system of nonlinear difference equations
(3.14), the Jacobian matrix yields block-block- tri-diagonal matrix, and it can be com-
puted by Newton’s iterative method. In case the function ψ is linear, the application of
the Gauss–Seidel iterative algorithm is a suitable choice. The compact difference equa-
tion (3.14) represents four types of high-order replacement to the mildly nonlinear ellip-
tic PDEs (1.1). When exponential fitting parameters α,β ,γ → 0, it yields a uniform mesh
fourth-order compact scheme (UM-FOCS) for the mesh parameters p = q = r = 1, and
an exponential expanding grid third-order compact scheme (EEG-TOCS) for the mesh
parameters p �= 1 ∨ q �= 1 ∨ r �= 1. If the exponential fitting parameters α,β ,γ are not suffi-
ciently small, it is an exponential fitted fourth-order compact scheme (EF-FOCS) on uni-
formly spaced grid points and an exponential fitted third-order compact scheme (EF-EEG-
TOCS) on the exponential expanding grid network.

4 Convergence analysis and bounds of discretization errors
We shall investigate the monotone and irreducible property of the Jacobian iteration ma-
trix derived from the compact scheme (3.14) and obtain bounds of discretization error.
The convergence of the scheme will follow from the fact that point-wise errors in exact
and approximate solution approach to zero for sufficiently small grid step sizes. To reduce
the algebraic complexity, we shall assume that r �= 1 for maintaining exponential expand-
ing nature of grids in z-direction and p = q = 1, making equally spaced grids in x- and
y-direction. Therefore, we can assume δxi = δyj ≈ μkδzk in the following analysis. The
nonlinear elliptic PDEs (1.1) at each grid point (xi, yj, zk) are represented by

ε
(
Uxx

i,j,k + Uyy
i,j,k + Uzz

i,j,k
)

= ψ
(
xi, yj, zk , Ui,j,k , Ux

i,j,k , Uy
i,j,k , Uz

i,j,k
)
. (4.1)
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The third-order accurate compact discretization (3.14) is the system of nonlinear differ-
ence equations

Fi,j,k + O
(
δz5

k
)

= 0, 1 ≤ i ≤ I, 1 ≤ j ≤ J , 1 ≤ k ≤ K , (4.2)

where

Fi,j,k = –εδy–2
j δz–2

k L{Ui,j,k} + δx2
i

[
Si,j,kψ̂i,j,k +

∑
(l,m,n)∈M

Sl,m,nψ̃l,m,n

]
.

The discrete equations (4.2) equate the mildly nonlinear equation (4.1) with local trun-
cation accuracy of order three, since r �= 1. If we denote approximate solution value of the
differential equation (4.1) by ui,j,k , then Ei,j,k = Ui,j,k – ui,j,k is referred to as point-wise so-
lution error at the grid point (xi, yj, zk). As a notational ease, the vector G = E , T, U, u,F in
lexical order is defined as

G = [G111,G121, . . . ,G1J1,G211,G221, . . . ,G2J1, . . . ,GI11,GI21, . . . ,GIJ1,

G112,G122, . . . ,G1J2,G212,G222, . . . ,G2J2, . . . ,GI12,GI22, . . . ,GIJ2,

...

G11K ,G12K , . . . ,G1JK ,G21K ,G22K , . . . ,G2JK , . . . ,GI1K ,GI2K , . . . ,GIJK ]T.

The matrix representation of the difference equation (4.2) is given by

F (U) + T = 0IJK×IJK , (4.3)

where T is a vector of fifth-order truncation error in the approximate scheme (4.2). For
the numerical solution, we drop the truncation error T and receive approximate solution
vector u that satisfies

F (u) = 0IJK×IJK . (4.4)

Like approximations (3.8) and (3.12) defined for the exact solution, we can measure the
function ψ with approximate solution values by defining

ψ̃l,m,n = ψ
(
xl, ym, zn, ul,m,n, ũx

l,m,n, ũy
l,m,n, ũz

l,m,n
)≈ Ψl,m,n, (l, m, n) ∈M, (4.5)

and

ψ̂i,j,k = ψ
(
xi, yj, zk , ui,j,k , ûx

i,j,k , ûy
i,j,k , ûz

i,j,k
)≈ Ψi,j,k . (4.6)

In this way, we can compute the difference of exact and estimated functional values as

Γ̃l,m,n = ψ̃l,m,n – Ψl,m,n, (l, m, n) ∈M, Êi,j,k = ψ̂i,j,k – Ψi,j,k . (4.7)
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This implies

Γ̃l,m,n = ψ
(
xl, ym, zn, ul,m,n, ũx

l,m,n, ũy
l,m,n, ũz

l,m,n
)

– ψ
(
xi, yj, zk , Ul,m,n, Ũx

l,m,n, Ũy
l,m,n, Ũz

l,m,n
)

= ψ
(
xl, ym, zn, ul,m,n, ũx

l,m,n, ũy
l,m,n, ũz

l,m,n
)

– ψ
(
xl, ym, zn, ul,m,n + El,m,n, ũx

l,m,n + Ẽx
l,m,n, ũy

l,m,n + Ẽy
l,m,n, ũz

l,m,n + Ẽ z
l,m,n
)
. (4.8)

Expanding the function ψ containing point-wise error El,m,n and its derivatives, we ob-
tain

Γ̃l,m,n = Al,m,nEl,m,n + Bl,m,nẼx
l,m,n + Cl,m,nẼy

l,m,n + Dl,m,nẼ z
l,m,n + O

(
E2

l,m,n
)
, (4.9)

where Al,m,n = –(∂ψ/∂ul,m,n), Bl,m,n = –(∂ψ/∂ũx
l,m,n), Cl,m,n = –(∂ψ/∂ũy

l,m,n), and Dl,m,n =
–(∂ψ/∂ũz

l,m,n) are finite real constants. Dropping the O(E2
l,m,n) terms from equation (4.9)

does not affect the error analysis, because we will take El,m,n → 0 later, and in that case
O(E2

l,m,n) automatically vanishes. Hence, it is enough to write (4.9) as

Γ̃l,m,n = Al,m,nEl,m,n + Bl,m,nẼx
l,m,n + Cl,m,nẼy

l,m,n + Dl,m,nẼ z
l,m,n. (4.10)

Similarly, the error equation at the central grid point is given by

Γ̂i,j,k = Ai,j,kEi,j,k + Bi,j,k Êx
i,j,k + Ci,j,k Êy

i,j,k + Di,j,k Ê z
i,j,k . (4.11)

Explicit expressions for Ẽx
l,m,n, Ẽy

l,m,n, Ẽ z
l,m,n and Êx

i,j,k , Êy
i,j,k , Ê z

i,j,k are determined from ap-
proximations (2.4)–(2.6) and (3.9)–(3.11) respectively upon replacing U by E . In this way,
we obtain a system of discrete equations for discretization errors as follows:

F (u) – F (U)

=
[

–εδy–2
j δz–2

k L{Ei,j,k}

+ δx2
i

[
Si,j,kΓ̂i,j,k +

∑
(l,m,n)∈M

Sl,m,nΓ̃l,m,n

]]
i=1(1)I,j=1(1)J ,k=1(1)K

; (4.12)

that is,

F (u) – F (U) = HE . (4.13)

Now, combining equations (4.3), (4.4), and (4.13), one obtains

HE = T, (4.14)

where H = [Hl,m], l, m = 1(1)IJK is a block-block tri-diagonal matrix. Since the conver-
gence is analyzed in the limiting case, when maxk δzk → 0, the block-block tri-diagonal
coefficient matrix is estimated to be H = [Hl Hm Hu], where Hl = [Hl

l Hl
m Hl

u],Hm =
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[Hm
l Hm

m Hm
u ], and Hu = [Hu

l Hu
m Hu

u]. Here, the bold subscript and superscript (l, m, u)
represent the lower, main, and upper tri-diagonal or block-tri-diagonal matrices. The
finite-order Taylor series expansion to the elements of each tri-diagonal matrices results
in the following form:

Hl
l = Hl

u =
[

0, –
μ2

k – r2 + r + 1
r + 1

+ O(δzk), 0
]

,

Hl
m =
[

–
μ2

k – r2 + r + 1
r + 1

+ O(δzk), –
4(2μ2

k + r2 – r – 1)
r + 1

+ O(δzk),

–
μ2

k – r2 + r + 1
r + 1

+ O(δzk)
]

,

Hm
l = Hm

u =
[

–1 + O(δzk), –
–μ2

k + r2 + r + 1
r

+ O(δzk), –1 + O(δzk)
]

,

Hm
m =
[

–
–μ2

k + r2 + r + 1
r

+ O(δzk),
4{2μ2

k + (r + 1)2}
r

+ O(δzk),

–
–μ2

k + r2 + r + 1
r

+ O(δzk)
]

,

Hu
l = Hu

u =
[

0, –
μ2

k + r2 + r – 1
r(r + 1)

+ O(δzk), 0
]

,

Hu
m =
[

–
μ2

k + r2 + r – 1
r(r + 1)

+ O(δzk), –
4{2μ2

k – r2 – r + 1}
r(r + 1)

+ O(δzk),

–
μ2

k + r2 + r – 1
r(r + 1)

+ O(δzk)
]

.

The main diagonal elements 4{2μ2
k + (r + 1)2}/r + O(δzk) of the matrix H are positive

in the limiting value of δzk → 0 for all k, since the grid expansion parameter r and the
grid-ratio parameter μk are positive real numbers. Also, all of non-diagonal entries are
either zero or negative provided |r –

√
5/2| < 1/2 and maxr{(1 + r – r2)/2, (–1 + r + r2)/2} ≤

μ2
k ≤ 1 + r + r2. The positive diagonal entries and non-positive off-diagonal entries of the

matrix H make it irreducible, and it can be visualized via the connected graph associated
with the matrix H. With a prescribed set of IJK distinct points in a plane, draw a directed
line segment from point l to m for each non-zero entry Hl,m in the matrix H. In this way,
we observe that the two distinct locations represented by the points l and m are either
directly connected or there is a finite number of directed line segments that join them.
This proves the strongly connected property of the graph of matrix H. As a consequence,
the matrix H is irreducible [14, 40, 45].

Next, we will prove that the real square matrix H is monotone. Given that the matrix
H contains either zero or negative real values at non-diagonal and positive main diagonal
elements, it suffices to establish the weak row elements sum criterion. For this purpose,
we suppose A = min Ai,j,k , B = min Bi,j,k , C = min Ci,j,k , D = min Di,j,k , i = 1(1)I, j = 1(1)J , k =
1(1)K . Let ϑl (l = 1(1)IJK) be the sum of elements from each lth row in the irreducible
matrix H. For sufficiently small grid step size (assuming δz = maxk δzk) and |r –

√
5/2| <

1/2, one finds

ϑ1 ≥ λ1 > 0, ϑl ≥ λ2 > 0, l = 2(1)I – 1, ϑI ≥ λ3 > 0,
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m = 2(1)J – 1:

ϑI(m–1)+1 ≥ λ4 > 0, ϑI(m–1)+l ≥ λ5 > 0, l = 2(1)I – 1, ϑI(m–1)+I ≥ λ6 > 0,

ϑI(J–1)+1 ≥ λ7 > 0, ϑI(J–1)+l ≥ λ8 > 0, l = 2(1)I – 1, ϑI(J–1)+I ≥ λ9 > 0,

n = 2(1)K – 1:

ϑ(n–1)JI+1 ≥ λ10 > 0, ϑ(n–1)JI+l ≥ λ11 > 0, l = 2(1)I – 1,

ϑ(n–1)JI+I ≥ λ12 > 0,

m = 2(1)J – 1:

ϑ(n–1)JI+(m–1)I+1 ≥ λ13 > 0,

ϑ(n–1)JI+(m–1)I+l ≥ λ14 ≥ 0, l = 2(1)I – 1, ϑ(n–1)JI+(m–1)I+I ≥ λ15 > 0,

ϑ(n–1)JI+I(J–1)+1 ≥ λ16 > 0,

ϑ(n–1)JI+I(J–1)+l ≥ λ17 > 0, l = 2(1)I – 1, ϑ(n–1)JI+I(J–1)+I ≥ λ18 > 0,

ϑJI(K–1)+1 ≥ λ19 > 0, ϑJI(K–1)+l ≥ λ20 > 0, l = 2(1)I – 1,

ϑJI(K–1)+I ≥ λ21 > 0,

m = 2(1)J – 1:

ϑJI(K–1)+I(m–1)+1 ≥ λ22 > 0,

ϑJI(K–1)+I(m–1)+l ≥ λ23 > 0, l = 2(1)I – 1, ϑJI(K–1)+I(m–1)+I ≥ λ24 > 0,

ϑJI(K–1)+I(J–1)+1 ≥ λ25 > 0,

ϑJI(K–1)+I(J–1)+l ≥ λ26 > 0, l = 2(1)I – 1, ϑJI(K–1)+I(J–1)+I ≥ λ27 > 0,

where the expressions of λζ for ζ = 1(1)27 are given in the Appendix.
Therefore, except leaving the principal diagonal of irreducible matrix H, the sum of en-

tries from each row in H is positive real values for an adequately small value of δz. Also,
the sum of row elements corresponding to the main diagonal is zero or positive depend-
ing on the value of constant A. Hence, the condition A ≥ 0 makes all of the row sums
strictly positive and that associated with the principal diagonal becomes non-negative.
This proves that the irreducible matrix H is monotone [14]. As a result, the square matrix
H is invertible and each entry of H–1 is either a negative real number or zero.

Let us denote H–1 = [H–1
l,m]l,m=1(1)IJK . Applying the matrix identity H–1(HI) = I , where

I is column vector of order IJK × 1 having each value as one, we get

∑
m=1(1)IJK

H–1
l,mϑm = 1, l = 1(1)IJK . (4.15)

Therefore, by the use of Taylor’s expansions, one can compute the upper bounds on the
non-positive elements of matrix H–1 in the following manner:
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For l = 1(1)IJK :

H–1
l,1 ≤ 1/ϑ1 ≤ λ–1

1 + O(δz),

I–1∑
b=2

H–1
l,b ≤ 1/ Min

b=2(1)I–1
ϑb ≤ λ–1

2 + O(δz),

H–1
l,I ≤ 1/ϑI ≤ λ–1

3 + O(δz),

J–1∑
b=2

H–1
l,I(b–1)+1 ≤ 1/ Min

b=2(1)J–1
ϑI(b–1)+1 ≤ λ–1

4 + O(δz),

J–1∑
b=2

I–1∑
a=2

H–1
l,I(b–1)+a ≤ 1/ Min

b=2(1)J–1,a=2(1)I–1
ϑI(b–1)+a ≤ λ–1

5 + O(δz),

J–1∑
b=2

H–1
l,I(b–1)+I ≤ 1/ Min

b=2(1)J–1
ϑI(b–1)+I ≤ λ–1

6 + O(δz),

H–1
l,I(J–1)+1 ≤ 1/ϑI(J–1)+1 ≤ λ–1

7 + O(δz),

I–1∑
a=2

H–1
l,I(J–1)+a ≤ 1/ Min

a=2(1)I–1
ϑI(J–1)+a ≤ λ–1

8 + O(δz),

H–1
l,I(J–1)+I ≤ 1/ϑI(J–1)+I ≤ λ–1

9 + O(δz),

K–1∑
c=2

H–1
l,(c–1)JI+1 ≤ 1/ Min

c=2(1)K–1
ϑ(c–1)JI+1 ≤ λ–1

10 + O(δz),

K–1∑
c=2

I–1∑
a=2

H–1
l,IJ(c–1)+a ≤ 1/ Min

a=2(1)I–1,c=2(1)K–1
ϑIJ(c–1)+a ≤ λ–1

11 + O(δz),

K–1∑
c=2

H–1
l,IJ(c–1)+I ≤ 1/ Min

c=2(1)K–1
ϑIJ(c–1)+I ≤ λ–1

12 + O(δz),

K–1∑
c=2

J–1∑
b=2

H–1
l,IJ(c–1)+I(b–1)+1

≤ 1/ Min
b=2(1)J–1,c=2(1)K–1

ϑIJ(c–1)+I(b–1)+1 ≤ λ–1
13 + O(δz),

K–1∑
c=2

J–1∑
b=2

I–1∑
a=2

H–1
l,IJ(c–1)+I(b–1)+a

≤ 1/ Min
a=2(1)I–1,b=2(1)J–1,c=2(1)K–1

ϑ(c–1)JI+(b–1)I+a ≤ λ–1
14 + O(δz),

K–1∑
c=2

J–1∑
b=2

H–1
l,IJ(c–1)+I(b–1)+I

≤ 1/ Min
b=2(1)J–1,c=2(1)K–1

ϑIJ(c–1)+I(b–1)+I ≤ λ–1
15 + O(δz),

K–1∑
c=2

H–1
l,(c–1)JI+I(J–1)+1 ≤ 1/ Min

c=2(1)K–1
ϑ(c–1)JI+I(J–1)+1 ≤ λ–1

16 + O(δz),
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K–1∑
c=2

L–1∑
a=2

H–1
l,IJ(c–1)+I(J–1)+a

≤ 1/ Min
a=2(1)I–1,c=2(1)K–1

ϑIJ(c–1)+I(J–1)+a ≤ λ–1
17 + O(δz),

K–1∑
c=2

H–1
l,IJ(c–1)+I(J–1)+I ≤ 1/ Min

c=2(1)K–1
ϑIJ(c–1)+I(J–1)+I ≤ λ–1

18 + O(δz),

H–1
l,JI(K–1)+1 ≤ 1/ϑJI(K–1)+1 ≤ λ–1

19 + O(δz),

I–1∑
a=2

H–1
l,JI(K–1)+a ≤ 1/ Min

a=2(1)I–1
ϑJI(K–1)+a ≤ λ–1

20 + O(δz),

H–1
l,IJ(K–1)+I ≤ 1/ϑIJ(K–1)+I ≤ λ–1

21 + O(δz),

J–1∑
b=2

H–1
l,JI(K–1)+I(b–1)+1 ≤ 1/ Min

b=2(1)J–1
ϑJI(K–1)+(b–1)I+1 ≤ λ–1

22 + O(δz),

K–1∑
b=2

I–1∑
a=2

H–1
l,JI(K–1)+(b–1)I+a

≤ 1/ Min
a=2(1)I–1,b=2(1)J–1

ϑJI(K–1)+(b–1)I+a ≤ λ–1
23 + O(δz),

J–1∑
b=2

H–1
l,(K–1)IJ+I(b–1)+I ≤ 1/ Min

b=2(1)J–1
ϑJI(K–1)+I(b–1)+I ≤ λ–1

24 + O(δz),

H–1
l,JI(K–1)+I(J–1)+1 ≤ 1/ϑJI(K–1)+I(J–1)+1 ≤ λ–1

25 + O(δz),

I–1∑
a=2

H–1
l,(K–1)IJ+(J–1)I+a ≤ 1/ Min

a=2(1)I–1
ϑ(K–1)IJ+(J–1)I+a ≤ λ–1

26 + O(δz),

H–1
l,JI(K–1)+I(J–1)+I ≤ 1/ϑJI(K–1)+I(J–1)+I ≤ λ–1

27 + O(δz).

Incorporating the above inequalities in the error equation (4.14), we get

‖E‖∞ ≤ ∥∥H–1∥∥∞ · ‖T‖∞ ≤
(

λ–1
14 +

27∑
t=1

t �=14

λ–1
t

)
O
(
δz5)

≤
⎧⎨
⎩

δz3ε/(6Aμ2) + O(δz5), A > 0,

O(δz5), A = 0.
(4.16)

That is to say,

‖E‖∞ ≤ Min
{
δz3ε/

(
6Aμ2) + O

(
δz5), O

(
δz5)} = O

(
δz3), A ≥ 0. (4.17)

This proves that the discretization errors ‖E‖ → 0, as δz → 0+.
Inequality (4.17) establishes the maximum truncation error appearing in the high-order

discretization formula (3.14). An accuracy of third order can be achieved by choosing the
value of one or all of the grid expansion parameters as not equal to one. In the above proof,
we have assumed that A ≥ 0, which suggests that ∂ψ/∂U ≥ 0, as an essential criterion for
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the convergence. By the same arguments, one can establish that the compact scheme (3.14)
achieves accuracy of order four if grid points are chosen equally spaced. We summarize
the above result in the following manner:

Theorem 4.1 The exponential basis compact scheme (3.14) on the exponential expanding
grid network has third order of convergence, provided ∂ψ/∂U ≥ 0, p, q, r ∈ (

√
5–1
2 ,

√
5+1
2 ),

and p �= 1, q �= 1, or r �= 1.

5 Numerical simulations
We briefly test the empirical execution of the third-order scheme and affirm that the char-
acter of approximate solution values corresponds to the theoretical analysis. In each ex-
periment, the domain of integration is a unit cube, and known analytic solution regulates
Dirichlet’s boundary data as well as right-hand side function, if any. The maximum abso-
lute error l(I,J ,K )∞ and root-mean-square error l(I,J ,K )

2 , with I, J , and K number of grid points
in x-, y-, and z-direction and corresponding computational order of convergence (Θ∞)
and (Θ2), are examined for two types of fourth-order schemes: UM-FOCS and EF-FOCS
on uniformly spaced grid points with standard basis and exponential basis respectively.
The experiments with exponential basis third-order compact scheme on exponential ex-
panding grid points (EF-EEG-TOCS) and third-order scheme on exponential expanding
grid points (EEG-TOCS) with standard basis will provide superior accuracies compared
with UM-FOCS and EF-FOCS.

l
(I,J ,K )
∞ = max

i,j,k

∣∣U(xi, yj, zk) – ui,j,k
∣∣, (5.1)

l
(I,J ,K )
2 =

√√√√ I∑
i=1

J∑
j=1

K∑
k=1

1
IJK
∣∣U(xi, yj, zk) – ui,j,k

∣∣2, (5.2)

Θ∞ = log2

[
l
(I,J ,K )∞

l
(2I+1,2J+1,2K+1)∞

]
, Θ2 = log2

[
l
(I,J ,K )
2

l
(2I+1,2J+1,2K+1)
2

]
. (5.3)

For solving a linear system of difference equations, the Gauss–Seidel iterative algorithm
is applied, while solutions to the nonlinear difference equations are obtained by employing
the Newton–Raphson method [13, 24, 37]. The error tolerance as a stopping criterion is
taken to be ≤ 10–10 along with zero vector as an initial solution guess. The optimum val-
ues of frequency parameters α,β ,γ , and grid expansion factors p, q, r are acquired from
the simulations with I = J = K . The computational convergence order for the uniformly
spaced grid points is four and the same reverberates in the tabulated results. But that con-
vergence order of truncation error does not reflect when the grids are dispersed unevenly
[16]. Maple programs are implemented for deriving nonlinear algebraic equations, op-
timized code generation, and symbolic computations. The C programs demonstrate the
numerical calculations. All the computing is performed on 2.6 GHz Intel Core i7 processor
on the Mac operating system.

Example 5.1 The study of steady-state convection, diffusion, and reactive phenomena is
significant in heat and mass transfer. The behavior of physical quantities in fluid flow fol-
lows the convection-diffusion model, for example, heat and momentum; diffusion process
in an environment such as pollutant transport in groundwater and atmosphere are some
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Table 1a Errors and order for UM-FOCS in Example 5.1

τ = 1.0 τ = 0.1 τ = 0.01

L + 1 l
(I,J,K)
2 Θ2 l

(I,J,K)
2 Θ2 l

(I,J,K)
2 Θ2

4 5.67e–04 – 4.36e–02 – 1.02e+01 –
8 2.86e–05 4.3 2.82e–03 4.0 2.32e+00 2.1
16 6.55e–07 5.4 1.70e–04 4.0 4.65e–01 2.3

Table 1b Errors and order for UM-FOCS in Example 5.1

τ = 1.0 τ = 0.1 τ = 0.01

L + 1 l
(I,J,K)
2 Θ2 l

(I,J,K)
2 Θ2 l

(I,J,K)
2 Θ2

4 4.83e–04 – 4.13e–02 – 1.02e+01 –
8 2.38e–05 4.30 2.61e–03 4.0 2.31e–00 2.2
16 1.34e–06 4.10 1.55e–04 4.1 4.61e–01 2.3

Table 1c Errors for the EF-EEG-TOCS in Example 5.1

L + 1 p q r α β γ l
(I,J,K)
2 Θ∞

τ = 0.1
4 1.50 1.10 0.80 11 1 2 8.19e–04 –
8 1.20 1.10 0.90 9 1 2 8.45e–05 3.3
16 1.09 1.06 0.98 82 1 2 5.87e–06 3.8
τ = 0.01
4 1.60 1.40 0.90 1 1 1 2.80e–01 –
8 1.40 1.30 0.70 1 1 1 3.30e–02 3.1
16 1.20 1.30 0.80 1 1 1 1.84e–03 4.2

Table 1d Errors for the EF-EEG-TOCS in Example 5.1 at τ = 0.01

L + 1 p q r α β γ l
(I,J,K)
2 Θ∞

4 1.50 1.50 0.90 1 1 1 9.13e–01 –
8 1.50 1.50 0.70 1 1 1 4.81e–02 4.2
16 1.20 1.20 0.80 1 1 1 1.99e–03 4.6

of the important application areas. The mathematical model derived from such models is
given by

ε

(
∂2U
∂x2 +

∂2U
∂y2 +

∂2U
∂z2

)
= aU + b

∂U
∂x

+ c
∂U
∂y

+ d
∂U
∂z

+ g(x, y, z), (5.4)

where U(x, y, z) = [1 – (1 – x)e–x/τ ] cos(π{y + z}) denotes the theoretical steady-state tem-
perature distribution on a unit cube in analytic form. We shall determine U(x, y, z) numer-
ically when the temperature of each lateral surface is known. The source function g(x, y, z)
will be obtained for given U(x, y, z), known values of a, b = ρucp, c = ρvcp, d = ρwcp, and
they are functions of (x, y, z) ∈ Ω ⊆R

3. The physical quantities ε, cp, and ρ denote thermal
conductivity, specific heat, and specific mass respectively for the conducting material. The
velocity component in x-, y-, and z-directions is u, v, and w respectively [35, 36]. Since the
solution changes sharply with a change in the value of parameter τ , we analyze them for
ε = 1 and different values of τ in the following cases.

Case-1: When a = 0, it represents a convection-diffusion phenomenon, and errors in
Table 1a with b = c = d = 1 and Table 1b with b = x + y, c = y + z, d = x + z, at τ = 1, 0.1
and 0.01, show degenerate solution in particular at small value τ = 0.01 by using UM-
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Table 1e Errors and order for UM-FOCS in Example 5.1

τ = 1.0 τ = 0.1 τ = 0.01

L + 1 l
(I,J,K)
2 Θ2 l

(I,J,K)
2 Θ2 l

(I,J,K)
2 Θ2

4 5.51e–04 – 4.26e–02 – 9.99-00 –
8 2.78e–05 4.3 2.76e–03 3.9 2.28-00 2.1
16 6.45e–07 5.4 1.67e–04 4.0 4.58e–01 2.3

Table 1f Errors and order for UM-FOCS in Example 5.1

τ = 1.0 τ = 0.1 τ = 0.01

L + 1 l
(I,J,K)
2 Θ2 l

(I,J,K)
2 Θ2 l

(I,J,K)
2 Θ2

4 4.69e–04 – 4.02e–02 – 9.99e–00 –
8 2.31e–05 4.30 2.55e–03 4.0 2.26e–00 2.1
16 1.30e–06 4.10 1.51e–04 4.1 4.54e–01 2.3

Table 1g Errors and order for EEG-TOCS in Example 5.1 at τ = 0.01

L + 1 p q r l(I,J,K)∞ Θ∞ l
(I,J,K)
2 Θ2

4 1.59 0.82 1.02 7.41e–01 – 2.88e–01 –
8 1.35 0.74 1.13 9.09e–02 3.0 1.70e–02 4.1
16 1.17 0.82 1.07 8.07e–03 3.5 1.28e–03 3.7

Table 1h Errors for the EF-EEG-TOCS in Example 5.1 at τ = 0.01

L + 1 p q r α β γ l
(I,J,K)
2 Θ∞

4 1.50 1.50 0.90 1 1 1 8.99e–01 –
8 1.50 0.90 0.70 1 1 1 5.62e–02 4.0
16 1.30 0.90 0.80 1 1 1 2.45e–03 4.5

FOCS. Significant improvement in the solution values at τ = 0.01 by using EF-EEG-TOCS
is presented in Table 1c and Table 1d for b = c = d = 1 and b = x + y, c = y + z, d = x + z,
respectively.

Case-2: When a = 1, it is convection-diffusion-reaction equation, and errors in Table 1e
with b = c = d = 1 and Table 1f with b = x + y, c = y + z, d = x + z, at τ = 1, 0.1 and 0.01, show
degenerate solution for significantly small value τ = 0.01 by using UM-FOCS. An intense
improvement in the solution values at τ = 0.01 by using EF-EEG-TOCS is observed in
Table 1g and Table 1h for b = c = d = 1 and b = x + y, c = y + z, d = x + z, respectively.

Example 5.2 Consider the linear convection-diffusion equation

ε

(
∂2U
∂x2 +

∂2U
∂y2 +

∂2U
∂z2

)
+

∂U
∂x

+
∂U
∂y

+
∂U
∂z

= 0, (x, y, z) ∈ Ω . (5.5)

We will determine boundary values from the analytic solution U(x, y, z) = e–x/ε + e–y/ε +
e–z/ε . A solution of (5.5) independent of small parameter ε was discussed by [15, 21]. Ex-
periments with ε = 1, 2–2, 2–4 exhibit uniform solution behavior with UM-FOCS, and im-
plementing a variable structure of grids or exponential fitting results in almost the same
solution behavior. Further diminishing values of ε = 2–5 and 2–6 require exponential ex-
panding grid spacing and exponential fitted method due to deteriorating errors and nu-
merical order. In Table 2a, we have presented root-mean-square errors and order at ε = 2–5
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Table 2a Errors and order for UM-FOCS and EEG-TOCS in Example 5.2

L + 1 p q r l
(I,J,K)
2 Θ∞ p q r l

(I,J,K)
2 Θ∞

4 1.0 1.0 1.0 1.81e–01 – 1.40 1.40 1.30 1.89e–01 –
8 1.0 1.0 1.0 3.65e–02 2.3 1.30 1.20 1.20 1.21e–02 4.0
16 1.0 1.0 1.0 3.40e–03 3.4 1.10 1.10 1.40 8.39e–04 3.8
32 1.0 1.0 1.0 2.15e–04 4.0 1.10 1.10 1.03 3.90e–05 4.4

Table 2b Errors and computational rate for the EF-EEG-TOCS in Example 5.2

L + 1 p q r α β γ l
(I,J,K)
2 Θ∞

4 1.40 1.40 1.30 20 33 34 2.98e–02 –
8 1.30 1.20 1.20 32 32 31 1.67e–03 4.2
16 1.10 1.10 1.40 32 32 33 1.34e–04 3.6
32 1.09 1.09 1.10 32 32 33 9.15e–06 3.9

Table 2c Errors and order for UM-FOCS and EEG-TOCS in Example 5.2

L + 1 p q r l
(I,J,K)
2 Θ∞ p q r l

(I,J,K)
2 Θ∞

4 1.0 1.0 1.0 3.37e–01 – 1.59 1.60 1.60 3.61e–01 –
8 1.0 1.0 1.0 1.37e–01 1.3 1.40 1.40 1.40 2.82e–02 3.7
16 1.0 1.0 1.0 2.57e–02 2.4 1.12 1.21 1.21 1.84e–03 3.9
32 1.0 1.0 1.0 2.40e–03 3.4 1.05 1.06 1.05 2.44e–04 3.1

Table 2d Errors and computational rate for the EF-EEG-TOCS in Example 5.2

L + 1 p q r α β γ l
(I,J,K)
2 Θ∞

4 1.40 1.40 1.40 65 64 63.9 1.95e–03 –
8 1.30 1.20 1.30 64 64 63.9 1.29e–04 3.9
16 1.10 1.10 1.20 64 64 63.9 1.64e–05 3.0
32 1.01 1.01 1.09 64 64 63.9 1.98e–06 3.0

for both uniform grids fourth-order and exponential expanding grid third-order compact
schemes without an exponential fitting operator, that is, by taking α,β ,γ → 0 in scheme
(3.14). Considering the exponential expanding grid network, a slight improvement reflects
in the root-mean-squared errors. Additionally, the exponential fitted operator method EF-
EEG-TOCS reflects almost true behavior of exact solution values in Table 2b at ε = 2–5.
A similar observation can be drawn by using uniform and exponential expanding grid
network high-order compact schemes from Table 2c and EF-EEG-TOCS from Table 2d at
ε = 2–6.

Example 5.3 Consider the singular Schrödinger equation describing the quantum effect
in a physical system and motion of an electron in the Coulomb field of a nucleus:

ε

(
∂2U
∂x2 +

∂2U
∂y2 +

∂2U
∂z2

)
+
(

1 +
ξ

x2 + y2 + z2

)
U = g(x, y, z), (x, y, z) ∈ Ω . (5.6)

The application of exponential basis quasi-variable meshes high-order compact scheme
(3.14) to the Schrödinger equation (5.6) with ξ > 0 and ε = 1, involving singular coefficient
a(x, y, z) = 1 + ξ /[x2 + y2 + z2], needs special attention [20]. This is because the application
of scheme (3.14) to the singular equation (5.6) yields a(xi–1, yj–1, zk–1) = 1 + ξ /[x2

i–1 + y2
j–1 +

z2
k–1], and at i = j = k = 1, we come across a(x0, y0, z0) = 1 + ξ /[x2

0 + y2
0 + z2

0], which leads to
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Table 3a Errors and order for UM-FOCS and EEG-TOCS in Example 5.3

L + 1 p q r l
(I,J,K)
2 Θ∞ p q r l

(I,J,K)
2 Θ∞

4 1.0 1.0 1.0 9.06e–04 – 1.20 1.30 1.30 8.75e–05 –
8 1.0 1.0 1.0 5.96e–05 3.9 1.20 1.10 1.10 5.86e–06 3.9
16 1.0 1.0 1.0 3.69e–06 4.0 1.10 1.10 1.00 7.34e–07 3.0

Table 3b Errors and computational rate for the EF-EEG-TOCS in Example 5.3

L + 1 p q r α β γ l
(I,J,K)
2 Θ∞

4 1.20 1.30 1.30 0.9 0.6 0.8 6.10e–05 –
8 1.20 1.10 1.10 0.1 0.2 0.1 5.92e–06 3.4
16 1.09 1.09 1.02 0.1 0.1 0.1 4.91e–07 3.6

Table 3c Errors and computational rate for the EF-EEG-TOCS in Example 5.3

L + 1 p q r α β γ l
(I,J,K)
2 Θ∞

4 0.62 0.62 0.62 0.10 0.10 0.10 9.17e–03 –
8 0.62 0.62 0.62 0.10 0.10 0.10 2.14e–03 2.1
16 0.62 0.62 0.62 0.10 0.10 0.10 6.74e–04 1.7

zero divisors. In such situations, we substitute x–1
i–1 = x–1

i +x–2
i δxi +x–3

i δx2
i +x–4

i δx3
i +O(δx4

i ),
(similarly for y–1

j–1 and z–1
k–1) in the scheme and drop the higher-order terms for comput-

ing purpose, as it forms a part of truncation error. More precisely, we can express Ul,m,n,
(l, m, n) ∈ M in terms of compact operators defined by (2.10)–(2.11) and their compos-
ites. Such a replacement of Ul,m,n, (l, m, n) ∈ M in terms of compact operators in the nu-
merical scheme may consist of the terms like δx3

i SxSySzUi,j,k = O(δx3
i δx2

i δy2
j δz2

k) ≈ O(δx9
i )

and must be omitted, as it again forms a part of truncation error. To test the accuracies,
analytical solution U(x, y, z) = ( 2

π
)3/4e–x2–y2–z2 is taken so as to satisfy the normalizing con-

dition
∫∞

–∞
∫∞

–∞
∫∞

–∞ |U(x, y, z)|2 dx dy dz = 1 [33]. Numerical simulations are performed in
Table 3a with UM-FOCS and EEG-TOCS for ξ = 10 in the limiting case α,β ,γ → 0. Re-
sults in Table 3b that exhibit better accuracies compared with Table 3a are obtained by
EF-EEG-TOCS. At ξ = 20, both UM-FOCS and EEG-TOCS fail, while EF-EEG-TOCS
computes the solution with reasonably good accuracies, see Table 3c.

Example 5.4 The nonlinear three-dimensional elliptic Allen–Cahn equation describes
the reaction-diffusion process of phase separation in a multi-component alloy system, in-
cluding order-disorder transitions [33, 39]. The equations take the form

ε

(
∂2U
∂x2 +

∂2U
∂y2 +

∂2U
∂z2

)
= U – U3 + g(x, y, z), (x, y, z) ∈ Ω . (5.7)

To test the new high-order compact difference scheme, we have chosen theoretical so-
lution as U(x, y, z) = e3(e1–2z – ze–z) sin(x) sin(y) and ε = 1. Root-mean-square errors, com-
putational order, and the number of iterations to achieve the error tolerance of 10–10 are
presented in Tables 4a–4c for UM-FOCS, EEG-TOCS, and EF-EEG-TOCS to illustrate
the efficiency in a comparative manner.
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Table 4a Errors and computational rate for the UM-FOCS in Example 5.4

L + 1 p q r α β γ Itr l
(I,J,K)
2 Θ∞

4 1.00 1.00 1.00 0.01 0.01 0.01 20 3.78e–04 –
8 1.00 1.00 1.00 0.01 0.01 0.01 58 2.00e–05 3.9
16 1.00 1.00 1.00 0.01 0.01 0.01 145 1.14e–06 4.0

Table 4b Errors and computational rate for the EEG-TOCS in Example 5.4

L + 1 p q r α β γ Itr l
(I,J,K)
2 Θ∞

4 1.10 1.00 1.03 0.01 0.01 0.01 14 4.97e–05 –
8 1.10 1.00 1.00 0.01 0.01 0.01 39 4.79e–06 3.3
16 1.05 1.00 1.00 0.01 0.01 0.01 88 2.80e–07 3.9

Table 4c Errors and computational rate for the EF-EEG-TOCS in Example 5.4

L + 1 p q r α β γ Itr l
(I,J,K)
2 Θ∞

4 1.10 1.00 1.03 1.00 2.00 2.00 15 1.46e–05 –
8 1.10 1.00 1.00 2.00 1.00 1.00 36 1.57e–06 3.3
16 1.05 1.00 1.00 2.00 1.00 1.00 55 9.23e–08 3.9

Example 5.5 We consider the celebrated elliptic sine-Gordon elliptic PDEs with a small
parameter, appearing in condensed matter physics, plane rotator spin model, Josephson
effect, statistical mechanics, and spin waves in ferromagnetisms [12, 39]. The dimension-
less form of the equation is

ε

(
∂2U
∂x2 +

∂2U
∂y2 +

∂2U
∂z2

)
= sin(U) + g(x, y, z), (x, y, z) ∈ Ω . (5.8)

To analyze the solution accuracies, forcing function g and boundary data are obtained
using the theoretic solution

U(x, y, z) =
1

sinh(
√

1+4ε
2ε

)
sinh

(√
1 + 4ε

2ε
x
)

sin

(√
1 + 4ε

2ε
y
)

sin

(√
1 + 4ε

2ε
z
)

.

Computed root-mean-squared errors and convergence order are presented in Ta-
bles 5a–5e for the various arrangement of grid spacing. The tabulated results are in agree-
ment with theoretical estimates exhibiting the importance of exponential basis and expo-
nential expanding grids. It is noted that for ε = 1 and 0.1, the fourth-order compact scheme
with p = q = r = 1 yields accurate solution values with the small value of fitted parameters
α = β = γ = 0.01. A further small value of ε = 0.01 results in drops in computational or-
der with the fourth-order compact scheme and non-zero exponential fitted parameters.
Combination of exponential fitted parameters and grid expansion factors generates accu-
rate solution values along with expected computational order. In Table 5a, when ε = 1, the
UM-FOCS can be easily considered due to smoothness in the solution. However, as the
value of ε decreases to 0.1, a small improvement in solution is observed by EF-EEG-TOCS
(Table 5c) over UM-FOCS (Table 5b). A further diminishing value of ε = 0.01, the errors,
and computational order observed by UM-FOCS (Table 5d) are unsatisfactory. Signifi-
cant improvement by EF-EEG-TOCS is observed in Table 5e since it reduces errors and
iteration number significantly.
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Table 5a Errors and order for UM-FOCS in Example 5.5 at ε = 1

L + 1 p q r α β γ Itr l
(I,J,K)
2 Θ∞

4 1.00 1.00 1.00 0.01 0.01 0.01 10 3.45e–07 –
8 1.00 1.00 1.00 0.01 0.01 0.01 21 1.75e–08 4.0
16 1.00 1.00 1.00 0.01 0.01 0.01 31 5.41e–10 4.6

Table 5b Errors and order for UM-FOCS in Example 5.5 at ε = 0.1

L + 1 p q r α β γ Itr l
(I,J,K)
2 Θ∞

4 1.00 1.00 1.00 0.01 0.01 0.01 10 1.04e–03 –
8 1.00 1.00 1.00 0.01 0.01 0.01 21 9.07e–05 3.5
16 1.00 1.00 1.00 0.01 0.01 0.01 31 5.60e–06 4.0

Table 5c Errors and order for EF-EEG-TOCS in Example 5.5 at ε = 0.1

L + 1 p q r α β γ Itr l
(I,J,K)
2 Θ∞

4 0.90 0.90 1.00 1.00 1.00 1.00 9 5.04e–04 –
8 0.88 0.92 1.00 1.00 1.00 1.00 18 3.34e–05 3.9
16 0.90 1.00 1.00 1.00 1.00 1.00 26 2.15e–06 4.0

Table 5d Errors and order for UM-FOCS in Example 5.5 at ε = 0.01

L + 1 p q r α β γ Itr l
(I,J,K)
2 Θ∞

4 1.00 1.00 1.00 0.01 0.01 0.01 10 1.65e–01 –
8 1.00 1.00 1.00 0.01 0.01 0.01 21 7.49e–02 1.1
16 1.00 1.00 1.00 0.01 0.01 0.01 31 3.29e–03 4.5

Table 5e Errors and order for EF-EEG-TOCS in Example 5.5 at ε = 0.01

L + 1 p q r α β γ Itr l
(I,J,K)
2 Θ∞

4 0.90 0.70 1.00 023 1.00 1.00 5 5.59e–02 –
8 0.89 0.64 1.01 200 1.00 1.00 8 3.66e–03 2.5
16 1.20 1.00 1.00 042 1.00 1.00 9 1.88e–04 4.2

Example 5.6 Consider the nonlinear elliptic PDEs appearing in the steady-state combus-
tion process and mass transfer in inhomogeneous anisotropic media

ε

(
∂2U
∂x2 +

∂2U
∂y2 +

∂2U
∂z2

)
=
(
Ux + Uy + Uz)U + g(x, y, z), (x, y, z) ∈ Ω . (5.9)

The source function g(x, y, z) and boundary values are determined from the analytic so-
lution U(x, y, z) = ex sinh( πy

2 ) sin( πz
2 ) [21, 30, 31, 34]. By using the uniformly spaced grids

fourth-order scheme, the accuracies and computational order remain intact for ε = 1 and
0.1. However, as the ε becomes smaller, say ε = 0.01 and 0.001, the accuracy measures,
namely numerical order and root-mean-square error, grow; as a result, it is necessary to
implement quasi-variables meshes and exponential fitted third-order scheme, and the im-
proved results are tabulated in Table 6 at α = β = γ = 0.1.

6 Conclusion and remarks
The proposed high-order compact schemes numerically solve the three-space dimen-
sional elliptic partial differential equations with small parameters. With necessary mod-
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Table 6 Errors and order for UM-FOCS and EEG-TOCS in Example 5.6

L + 1 p q r l
(I,J,K)
2 Θ∞ p q r l

(I,J,K)
2 Θ∞

4 1.6 1.00 1.00 4.22e–03 – 1.5 1.00 1.30 7.54e–03 –
8 1.3 1.20 1.30 3.64e–04 3.5 1.1 1.20 1.10 7.58e–04 3.3
16 1.0 1.07 1.14 2.68e–05 3.8 1.0 1.11 1.18 6.57e–05 3.5

ifications and with the help of compact operators, it is possible to solve singular elliptic
equations without loss of order and accuracies. The third-order compact formulation with
an exponential basis and exponential expanding grids generate improved solution accu-
racies in comparison with fourth-order uniformly spaced grid network. In the limiting
case α,β ,γ → 0 and p = q = r = 1, the proposed third-order exponential basis scheme
on the exponential expanding grid network returns a fourth-order accurate scheme on
uniformly spaced grid points, and therefore, the new scheme may be regarded as a gen-
eralization to the existing high-order compact formulation. The proposed nineteen-point
high-order compact discretization produces a stable scheme which is efficient in terms of
operation count and does not experience difficulties near boundaries [25]. To the great
extent, a general non-uniform distribution of grid points can be received by exchanging
grid expansion factors p, q, r to pi, qj, rk respectively in the suggested third-order compact
scheme. It is feasible to extend such high-order compact discretization for hyperbolic and
parabolic PDEs.

Appendix: Values of λt, t = 1(1)26 appearing in Section 4

λ1 = λ3 = λ7 = λ9 =
(
10μ2 + 2r2 + 9r + 9

)
/(r + 1) + O(δz),

λ2 = λ4 = λ6 = λ8 =
(
11μ2 + r2 + 5r + 5

)
/(r + 1) + O(δz),

λ5 = 12μ2/(r + 1) + O(δz), λ10 = λ12 = λ16 = λ18 = 11 + O(δz),

λ11 = λ13 = λ15 = λ17 = 6 + O(δz),

λ14 =

⎧⎨
⎩

6Aμ2δz2/ε + O(δz3), A �= 0,

0, A = 0,

λ19 = λ21 = λ25 = λ27 =
(
10μ2 + 9r2 + 9r + 2

)
/
[
r(r + 1)

]
+ O(δz),

λ20 = λ22 = λ24 = λ26 =
(
11μ2 + 5r2 + 5r + 1

)
/
[
r(r + 1)

]
+ O(δz).
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