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Abstract
Let Rr0 ,Rr1 : S

1 −→ S
1 be rotations on the unit circle S1 and define

f :Σ2 × S
1 −→ Σ2 × S

1 as

f (x, t) = (σ (x),Rrx1 (t)),

for x = x1x2 · · · ∈ Σ2 := {0, 1}N, t ∈ S
1, where σ :Σ2 −→ Σ2 is the shift, and r0 and r1

are rotational angles. It is first proved that the system (Σ2 × S
1, f ) exhibits maximal

distributional chaos for any r0, r1 ∈R (no assumption of r0, r1 ∈R \Q), generalizing
Theorem 1 in Wu and Chen (Topol. Appl. 162:91–99, 2014). It is also obtained that
(Σ2 × S

1, f ) is cofinitely sensitive and (M̂ 1,M̂ 1)-sensitive and that (Σ2 × S
1, f ) is

densely chaotic if and only if r1 – r0 ∈ R \Q.
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1 Introduction and preliminaries
A discrete dynamical system (briefly, dynamical system) is a pair (X, g), where X is a
compact metric space and g : X −→ X is a continuous map. Let N = {1, 2, 3, . . .} and
Z

+ = {0, 1, 2, . . .}. Sharkovsky’s amazing discovery [10], as well as Li and Yorke’s famous
work which introduced the concept of “chaos” known as Li–Yorke chaos today in a mathe-
matically rigorous way [4], have activated sustained interest and provoked the recent rapid
advancement of the frontier research on discrete chaos theory. In their study, Li and Yorke
suggested considering “divergent pairs” (x, y), which are proximal but not asymptotic and
called Li–Yorke pairs, i.e.,

lim inf
n→∞ d

(
gn(x), gn(y)

)
= 0 and lim sup

n→∞
d
(
gn(x), gn(y)

)
> 0.

A pair (x, y) is called a Li–Yorke pair of modulus δ if

lim inf
n→∞ d

(
gn(x), gn(y)

)
= 0 and lim sup

n→∞
d
(
gn(x), gn(y)

)
> δ.

Clearly, (x, y) is a Li–Yorke pair if and only if it is a Li–Yorke pair of modulus δ for some
δ > 0. The set of Li–Yorke pairs of modulus δ is denoted by LY(g, δ) and the set of Li–
Yorke pairs by LY(g). According to the idea of Li and Yorke [4], a subset D of X is a δ-
scrambled set of g , if D × D \� ⊂ LY(g, δ), where � = {(x, x) ∈ X × X : x ∈ X}. In particular,
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if D × D \ � ⊂ LY(g), then D is a scrambled set of g . If a scrambled set D of g is also
uncountable, it is called a Li–Yorke scrambled set for g , and g is said to be chaotic in the
sense of Li–Yorke, or Li–Yorke chaotic.

In 1985, Piórek [8] introduced the concept of generic chaos. Inspired by this, Snoha [11,
12] defined generic δ-chaos, dense chaos, and dense δ-chaos in 1990. The notion of Li–
Yorke sensitivity was firstly introduced by Akin and Kolyada [1] in 2003. More recent re-
sults on chaos can be found in [2, 3, 7, 17, 18, 20–31].

Definition 1 ([1, 8, 11, 12]) A dynamical system (X, g) is
(1) sensitive if there exists ε > 0 such that for any x ∈ X and any δ > 0, there exist

y ∈ B(x, δ) := {z ∈ X : d(z, x) < δ} and n ∈N, such that d(gn(x), gn(y)) ≥ ε;
(2) Li–Yorke sensitive if there exists ε > 0 such that for any x ∈ X and any δ > 0, there

exists y ∈ B(x, δ) such that (x, y) ∈ LY(g, ε);
(3) densely chaotic if LY(g) is dense in X × X ;
(4) densely δ-chaotic for some δ > 0 if LY(g, δ) is dense in X × X ;
(5) generically chaotic if LY(g) is residual in X × X ;
(6) generically δ-chaotic for some δ > 0 if LY(g, δ) is residual in X × X .

Distributional chaos. The notion of distributional chaos was first introduced in [9],
where it was called “strong chaos”, which is characterized by a distributional function of
distances between trajectories of two points. It is described as follows.

Let (X, g) be a dynamical system. For any pair (x, y) ∈ X × X, define the lower and upper
distributional functions as

Fx,y(t, g) = lim inf
n→∞

1
n

∣
∣{i : d

(
gi(x), gi(y)

)
< t, 0 ≤ i < n

}∣∣

and

F∗
x,y(t, g) = lim sup

n→∞
1
n

∣∣{i : d
(
gi(x), gi(y)

)
< t, 0 ≤ i < n

}∣∣,

respectively, where |A| denotes the cardinality of set A. Both functions Fx,y and F∗
x,y are

non-decreasing and Fx,y ≤ F∗
x,y.

According to Schweizer and Smítal [9], a dynamical system (X, g) is distributionally ε-
chaotic for some ε > 0 if there exists an uncountable subset S ⊂ X such that for any pair of
distinct points x, y ∈ S , one has that F∗

x,y(t, g) = 1 for all t > 0 and Fx,y(ε, g) = 0. The set S is
called a distributionally ε-scrambled set and the pair (x, y) a distributionally ε-chaotic pair.
If (X, g) is distributionally ε-chaotic for any 0 < ε < diam(X), then (X, g) is said to exhibit
maximal distributional chaos.

Let P be the collection of all subsets of Z+. A collection F ⊂ P is called a Furstenberg
family if it is hereditary upwards, i.e., F1 ⊂ F2 and F1 ∈ F imply F2 ∈ F . A family F is
proper if it is a proper subset of P , i.e., neither empty nor the whole P . It is easy to see
that F is proper if and only if Z+ ∈ F and ∅ /∈ F . Let Finf be the collection of all infinite
subsets of Z+ and Fcf the family of cofinite subset, i.e., the collection of subsets of Z+ with
finite complements.

For A ⊂ Z
+, define

d(A) = lim sup
n→∞

1
n

∣
∣A ∩ [0, n – 1]

∣
∣ and d(A) = lim inf

n→∞
1
n

∣
∣A ∩ [0, n – 1]

∣
∣.
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Then, d(A) and d(A) are the upper density and the lower density of A, respectively. Fix any
α ∈ [0, 1] and denote by M̂α (resp. M̂ α) the family consisting of sets A ⊂ Z

+ with d(A) ≥ α

(resp. d(A) ≥ α).
Using Furstenberg family, Wang et al. [6, 13, 14] introduced the notions of F -sensitivity,

(F1,F2)-sensitivity, and (F1,F2)-chaos for generalizing sensitivity, Li–Yorke sensitivity,
and Li–Yorke chaos, respectively.

Let F be a Furstenberg family. According to Moothathu [6], a dynamical system (X, g)
is

(1) F -sensitive if there exists ε > 0 such that for any nonempty open subset U of X ,
{n ∈ Z

+ : diam(gn(U)) ≥ δ} ∈ F .
(2) cofinitely sensitive if there exists ε > 0 such that for any nonempty open subset U of

X , {n ∈ Z
+ : diam(gn(U)) ≥ δ} ∈ Fcf .

Definition 2 ([13, 14]) Let F1, F2 be Furstenberg families. A dynamical system (X, g) is
(1) (F1,F2)-sensitive if there exists some ε > 0 such that for any x ∈ X and any δ > 0,

there exists y ∈ B(x, δ) such that {n ∈ Z
+ : d(gn(x), gn(y)) < t} ∈ F1 for any t > 0 and

{n ∈ Z
+ : d(gn(x), gn(y)) > ε} ∈ F2.

(2) (F1,F2)-chaotic if there exists an uncountable subset D ⊂ X such that for any
(x, y) ∈ D × D \ �, there exists δ > 0 such that {n ∈ Z

+ : d(gn(x), gn(y)) < t} ∈ F1 for
any t > 0 and {n ∈ Z

+ : d(gn(x), gn(y)) > δ} ∈ F2.

From Definition 2, it can be verified that a dynamical system is Li–Yorke chaotic (resp.,
distributionally chaotic, Li–Yorke sensitive) if and only if it is (Finf ,Finf )-chaotic (resp.,
(M̂ 1,M̂ 1)-chaotic, (Finf ,Finf )-sensitive).

Shift and rotation. Let Σ = {0, 1} and consider a product space Σ2 = ΣN with the product
topology which is compact and metrizable. Let Σ2 endow with the following metric:

d1(x, y) =

⎧
⎨

⎩
0, x = y,

1
min{m≥1:xm �=ym} , x �= y,

for any x = x1x2 · · · , y = y1y2 · · · ∈ Σ2.
Define the shift σ : Σ2 −→ Σ2 by σ (x) = x2x3 · · · for any x = x1x2 · · · ∈ Σ2. Clearly, σ is

continuous. If X is a closed and invariant subset of Σ2, then (X,σ |X) is called a shift space
or subshift.

Any element A of the set Σn is called an n-word over Σ and the length of A is n, denoted
by |A|. A word over Σ is an element of the set

⋃
n∈N Σn. Let A = a1 · · ·an ∈ Σn and B =

b1 · · ·bm ∈ Σm. Denote AB = a1 · · ·anb1 · · ·bm and A = a1 · · ·an, where

ai =

⎧
⎨

⎩
0, ai = 1,

1, ai = 0.

Clearly, AB ∈ Σn+m and A ∈ Σn. For any a ∈ Σ , denote an as an n-length concatenation of
a (for example, 03 = 000), and a∞ = aa · · · as an infinite concatenation. If x = x1x2 · · · ∈ Σ2

and i ≤ j ∈ N, then let x[i,j] = xixi+1 · · ·xj and x(i,j] = x[i+1,j]. For any B = b1 · · ·bn ∈ ⋃
n∈N Σn,

the set [B] = {x1x2 · · · ∈ Σ2 : xi = bi, 1 ≤ i ≤ n} is called the cylinder generated by B. For any
n ∈N, let Bn = {[b1 · · ·bn] : bi ∈ Σ , 1 ≤ i ≤ n}.
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The function ℘ :
⋃

n∈N Σn −→ Z
+ is defined by

℘(A) = |A| –
|A|∑

j=1

aj =
∣∣{j : 1 ≤ j ≤ |A|, aj = 0

}∣∣,

for any A = a1 · · ·a|A| ∈ ⋃
n∈N Σn.

Consider the unit circle S
1 defined by

S
1 =

{
(x, y) : x2 + y2 = 1

} ⊂R
2.

Identifying R
2 with the complex plane C, one can write

S
1 =

{
e2π iθ : 0 ≤ θ < 1

} ⊂C.

Consider a rotation Rr of angle 2πr on the circle, given by

Rr
(
e2π iθ) = e2π i(θ+r).

There is a natural distance d2(z1, z2) between points z1 and z2 on S
1, given by the arc

length distance. It is normalized by dividing with 2π .
This paper considers the following dynamical system.
Let Rr0 , Rr1 : S1 −→ S

1 be rotations and define f : Σ2 × S
1 −→ Σ2 × S

1 by

f (x, t) =
(
σ (x), Rrx1

(t)
)
,

for any x = x1x2 · · · ∈ Σ2, t ∈ S
1 (so, rx1 = r0 or r1). Note that the nth iteration of f at the

point (x, t) ∈ Σ2 × S
1 is given by

f n(x, t) =
(
σ n(x), Rrxn ◦ · · · ◦ Rrx2

◦ Rrx1
(t)

)
.

Let d be the product metric on the product space Σ2 × S
1, i.e.,

d
(
(x, t1), (y, t2)

)
= max

{
d1(x, y), d2(t1, t2)

}
,

for any (x, t1), (y, t2) ∈ Σ2 × S
1.

Wang et al. [15] proved that a dynamical system having a regular shift-invariant set is
distributionally chaotic and posed the following question:

Question 3 ([15]) Is the system (Σ2 × S
1, f ) distributionally chaotic when r0, r1 ∈ R \ Q

with r0 �= ±r1?

Recently, Wu and Chen [19] gave a positive answer to this question and proved that
(Σ2 × S

1, f ) is Li–Yorke sensitive. By further discussing (Σ2 × S
1, f ), we in this paper in-

vestigate the chaos of (Σ2 × S
1, f ) for any r0, r1 ∈ R (not assuming r0, r1 ∈ R \ Q). More

precisely, we first prove that (Σ2 × S
1, f ) is distributionally chaotic for any r0, r1 ∈ R.

Meanwhile, we obtain that (1) it is cofinitely sensitive and (M̂ 1,M̂ 1)-sensitive, and (2)
it is densely chaotic if and only if r1 – r0 ∈R \Q.
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2 Distributional chaos for (Σ2 × S
1, f )

The following lemma will be the key to prove the distributional chaoticity for (Σ2 ×S
1, f ).

Lemma 4 ([5, 16]) There exists an uncountable subset E of Σ2 such that for any distinct
points x = x1x2 · · · , y = y1y2 · · · in E, they satisfy xn = yn for infinitely many n and xm �= ym

for infinitely many m.

Theorem 5 There exists an uncountable subset T ⊂ Σ2 × S
1 which is a distributionally

β-scrambled set of f for any 0 < β ≤ diam(Σ2 × S
1) = 1, i.e., (Σ2 × S

1, f ) exhibits maximal
distributional chaos.

Proof Let L1 = L1 = 2 and Lk+1 = 2Lk + 2Lk , Lk+1 = Lk + Lk+1 for any k ∈ N. From
Lemma 4, it follows that there exists an uncountable subset E ⊂ Σ2 such that for any two
distinct points x = x1x2 · · · , y = y1y2 · · · ∈ E, xn = yn holds for infinitely many n and xm �= ym

holds for infinitely many m. For any x = x1x2 · · · ∈ E, take x̃ = x̃1̃x2̃x3 · · · as

x̃ = xL1
1 x̃[1,L1]x2L1 +L1

2 · · · x̃[1,Lk ]x
2Lk +Lk
k+1 · · · .

Set T = {̃x : x ∈ E} × {1}. Clearly, T is uncountable.
Now, we claim that T is a distributionally β-scrambled set of f for any 0 < β ≤ 1.
Fixing any pair of distinct points (x, 1), (y, 1) ∈ T , it follows from the construction of of

T that there exist two different points u = u1u2 · · · , v = v1v2 · · · ∈ E and two increasing
sequences {pk}∞k=1, {qk}∞k=1 of N such that for any k ∈N,

(a) ũ = x, ṽ = y,
(b) upk = vpk , uqk = vqk .
(1) Note that ℘ (̃u[1,2Lpk ]) = ℘ (̃v[1,2Lpk ]) for any k ∈N. This implies that

Rrx2Lpk
◦ · · · ◦ Rrx2

◦ Rrx1
= Rry2Lpk

◦ · · · ◦ Rry2
◦ Rry1

. (2.1)

For any 2Lpk ≤ j ≤ Lpk +1 – Lpk , the first Lpk respective symbols of σ j(x) and σ j(y) coin-
cide, implying that

d1
(
σ j(x),σ j(y)

) ≤ 1
Lpk

→ 0 (k → ∞).

Meanwhile, applying (2.1) yields that for any 2Lpk ≤ j ≤ Lpk +1 – Lpk ,

Rrxj
◦ · · · ◦ Rrx2

◦ Rrx1
(1) = Rryj

◦ · · · ◦ Rry2
◦ Rry1

(1).

Then, for any t > 0, there exists some K ∈ N such that for any k ≥ K and any 2Lpk ≤ j ≤
Lpk +1 – Lpk ,

d
(
f j(x, 1), f j(y, 1)

)
< t.

Consequently,

F∗
(x,1),(y,1)(t, f )
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= lim sup
n→∞

1
n

∣∣{k : d
(
f k(x, 1), f k(y, 1)

)
< t, 0 ≤ k < n

}∣∣

≥ lim sup
k→∞

1
Lpk +1 – Lpk

∣
∣{n : d

(
f j(x, 1), f j(y, 1)

)
< t, 0 ≤ j < Lpk +1 – Lpk

}∣∣

≥ lim sup
k→∞

Lpk +1 – 3Lpk

Lpk +1 – Lpk

= lim sup
k→∞

2Lpk

2Lpk + 2Lpk

= 1.

(2) It is easy to see that for any 2Lqk ≤ j ≤ Lqk +1 – 1, the first respective symbols of σ j(x)
and σ j(y) are distinct, implying that d1(σ j(x),σ j(y)) = 1. Then, for any 2Lqk ≤ j ≤ Lqk +1 – 1
and any 0 < β ≤ 1,

d
(
f j(x, 1), f j(y, 1)

) ≥ β .

Therefore,

F(x,1),(y,1)(β , f )

= lim inf
n→∞

1
n

∣∣{k : d
(
f k(x, 1), f k(y, 1)

)
< β , 0 ≤ k < n

}∣∣

≤ lim inf
k→∞

1
Lqk +1 – 1

∣
∣{j : d

(
f kj(x, 1), f j(y, 1)

)
< β , 0 ≤ j ≤ Lqk +1 – 1

}∣∣

≤ lim inf
k→∞

2Lqk

Lqk +1 – 1

= lim inf
k→∞

2Lqk

3Lqk + 2Lqk

= 0.

Hence, T is a distributionally β-scrambled set for any 0 < β ≤ 1, i.e., (Σ2 ×S
1, f ) exhibits

maximal distributional chaos. �

3 Other chaos for (Σ2 × S
1, f )

This section shall show that (Σ2 ×S
1, f ) is cofinitely sensitive and (M̂ 1,M̂ 1)-sensitive and

obtain a sufficient and necessary condition for a dense chaos.

Theorem 6 The system (Σ2 × S
1, f ) is cofinitely sensitive.

Proof Given any point (x, t) ∈ Σ2 × S
1 and any δ > 0, take K = [ 1

δ
] + 2 and assume that

x = x1x2x3 · · · . Choose y = y1y2y3 · · · ∈ Σ2 by the following formula:

yn =

⎧
⎨

⎩
xn, 1 ≤ n ≤ K ,

xn, n > K .
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Clearly, d((x, t), (y, t)) < δ. For any n > K , it can be verified that

d
(
f n(x, t), f n(y, t)

) ≥ d1
(
σ n(x),σ n(y)

)
= 1,

implying that (Σ2 × S
1, f ) is cofinitely sensitive, due to the arbitrariness of δ and (x, t) �

Theorem 7 The system (Σ2 × S
1, f ) is (M̂ 1,M̂ 1)-sensitive. In particular, it is Li–Yorke

sensitive.

Proof Given any (x, t) ∈ Σ2 × S
1 and any δ > 0, choose L1 = L1 = [ 1

δ
] + 2 and Lk+1 = 2Lk +

2Lk , Lk+1 = Lk + Lk+1 for any k ∈ N. Take y = y1y2y3 · · · ∈ Σ2 as the following inductive
method:

(1) y[1,L2] = x[1,L1]x[1,L1]x[2L1+1,L2];
(2) y[L2n+1,L2n+1] = y[1,L2n]x[2L2n+1,L2n+1] for any n ∈N;
(3) y[L2n+1+1,L2n+2] = y[1,L2n+1]x[2L2n+1+1,L2n+2] for any n ∈N.

Clearly, d((x, t), (y, t)) = d1(x, y) = 1
L1+1 < δ. Similarly as in the proof of Theorem 5, it can

be verified that
(1) for any ε > 0, {n ∈ Z

+ : d(f n(x, t), f n(y, t)) < t} ∈ M̂ 1;
(2) for any 0 < β ≤ 1, {n ∈ Z

+ : d(f n(x, t), f n(y, t)) ≥ β} ∈ M̂ 1,
implying that (Σ2 ×S

1, f ) is (M̂ 1,M̂ 1)-sensitive, due to the arbitrariness of δ and (x, t). �

Theorem 8 The system (Σ2 × S
1, f ) is densely chaotic if and only if r1 – r0 ∈R \Q.

Proof (
⇒) Suppose on the contrary that r1 – r0 ∈ Q. Then there exist t0 ∈ S
1 and η > 0

such that

ξ := inf

{
d2(z1, z2) : z1 ∈ B(t0,η), z2 ∈

⋃

n∈Z
Rn

r1–r0

(
B(1,η)

)}
> 0.

Fix any x ∈ Σ2 and set U = B(x,η) × B(1,η) and V = B(x,η) × B(t0,η). Clearly, both U and
V are nonempty open subsets of Σ2 × S

1.
Now, we claim that (U × V ) ∩ LY(f ) = ∅.
In fact, for any ((y, t1), (z, t2)) ∈ U × V and any n ∈ Z

+, it can be verified that for any
n ∈ Z

+,

Rryn ◦ · · · ◦ Rry2
◦ Rry1

(t1)

= e2π i(
∑n

k=1 ryk )t1 = e2π i[r0℘(y[1,n])+r1(n–℘(y[1,n]))]t1

= e2π i[r0℘(z[1,n])+r1(n–℘(z[1,n]))] · e2π i[(r1–r0)(℘(z[1,n])–℘(y[1,n]))]t1

and

Rrzn ◦ · · · ◦ Rrz2
◦ Rrz1

(t2) = e2π i(
∑n

k=1 rzk )t2 = e2π i[r0℘(z[1,n])+r1(n–℘(z[1,n]))]t2,

implying that

d2
(
Rryn ◦ · · · ◦ Rry2

◦ Rry1
(t1), Rrzn ◦ · · · ◦ Rrz2

◦ Rrz1
(t2)

)
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= d2
(
e2π i[(r1–r0)(℘(z[1,n])–℘(y[1,n]))]t1, t2

)

= d2
(
R℘(z[1,n])–℘(y[1,n])

r1–r0 (t1), t2
) ≥ ξ .

Therefore,

lim inf
n→∞ d

(
f n(y, t1), f n(z, t2)

)

≥ lim inf
k→∞

d2
(
Rryn ◦ · · · ◦ Rry2

◦ Rry1
(t1), Rrzn ◦ · · · ◦ Rrz2

◦ Rrz1
(t2)

) ≥ ξ > 0.

This means that (U × V ) ∩ LY(f ) = ∅. Hence, f is not densely chaotic, which is a contra-
diction.

(⇐
) For any nonempty open subsets U , V of Σ2 ×S
1, choose (u, t1) ∈ U , (v, t2) ∈ V and

K ∈N such that B((u, t1), 1
K ) ⊂ U and B((v, t2), 1

K ) ⊂ V . From r1 – r0 ∈R \Q, it follows that
there exists an increasing sequence {pn}∞n=1 ⊂ N such that d2(Rpn

r1–r0 (t1), t2) < 1
n for any n ∈

N. Let L1 = L1 = K and Ln+1 = 2Ln + pn, Ln+1 = Ln + Ln for any n ∈N. Take û = û1û2û3 · · ·
and v̂ = v̂1v̂2v̂3 · · · ∈ Σ2 as

û = u[1,L1]u[1,L1]1p1 0L1 · · ·u[1,Ln]1pn 0Ln · · ·

and

v̂ = v[1,L1]v[1,L1]0p1+L1 · · · v[1,Ln]0pn+Ln · · · ,

respectively. Clearly, (û, t1) ∈ U and (v̂, t2) ∈ V .
(1) Noting that û2Ln+1 = 1 and v̂2Ln+1 = 0, it follows that

d
(
f 2Ln (û, t1), f 2Ln (v̂, t2)

) ≥ d1
(
σ 2Ln (û),σ 2Ln (v̂)

)
= 1,

implying that

lim sup
n→∞

d
(
f n(û, t1), f n(v̂, t2)

) ≥ lim sup
n→∞

d
(
f 2Ln (û, t1), f 2Ln (v̂, t2)

) ≥ 1.

(2) From the fact that the first Ln respective symbols of σ 2Ln+pn (û) and σ 2Ln+pn (v̂) co-
incide, it follows that

d1
(
σ 2Ln+pn (û),σ 2Ln+pn (v̂)

) ≤ 1
Ln

<
1
n

. (3.1)

Meanwhile, it can verified that

d2
(
Rû2Ln+pn

◦ · · · ◦ Rû2 ◦ Rû1 (t1), Rv̂2Ln+pn
◦ · · · ◦ Rv̂2 ◦ Rv̂1 (t2)

)
= d2

(
Rpn

r1–r0 (t1), t2
)

<
1
n

.

This, together with (3.1), implies that

d
(
f 2Ln+pn (û, t1), f 2Ln+pn (v̂, t2)

)
<

1
n

.
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Then,

lim inf
n→∞ d

(
f n(û, t1), f n(v̂, t2)

) ≤ lim inf
n→∞ d

(
f 2Ln+pn (û, t1), f 2Ln+pn (v̂, t2)

)
= 0.

Therefore, ((û, t1), (v̂, t2)) ∈ (U × V ) ∩ LY(f ). Hence, (Σ2 × S
1, f ) is densely chaotic. �

Applying Theorem 8, the following can be verified.

Corollary 9 The following statements are equivalent:
(1) r1 – r0 ∈R \Q;
(2) (Σ2 × S

1, f ) is densely chaotic;
(3) (Σ2 × S

1, f ) is densely δ-chaotic for any 0 < δ < 1;
(4) (Σ2 × S

1, f ) is generically chaotic;
(5) (Σ2 × S

1, f ) is generically δ-chaotic for any 0 < δ < 1.
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