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Abstract
This paper is committed to studying adaptive control design of Mittag-Leffler
stabilization and synchronization for delayed fractional-order bidirectional associative
memory (BAM) neural networks. Considering better dynamic property and steady
state performance of the system, we adopt adaptive control approaches to stabilize
and synchronize two types of delayed fractional-order BAM neural network. It is a
remarkable fact, based on adaptive control scheme, the method of auxiliary
functions, Mittag-Leffler stabilization and synchronization theories with respect to
fractional-order systems, the adaptive controllers are very well designed in a
controlled system and two coupled systems, separately. Two examples are performed
to illustrate the advantage of the presented theoretic analysis and results.
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1 Introduction
Recently, the rapid development of fractional calculus has shown that it is an attractive
hot research topic, and fractional calculus has been used successfully in different scientific
and technological fields [1, 2]. For all we know, the generalized form of ordinary integer-
order calculus is said to be the fractional calculus, which originated in the 17th century
[3], at that time, fractional calculus could not be well studied in light of the lack of com-
prehensive and systematic theoretical knowledge. Along with the depth of understanding
of the fractional calculus, researchers found that fractional calculus can not only provide
a mathematical modeling tool, but also describe the complex dynamic behavior that ordi-
nary integer-order calculus cannot. Namely, a fractional-order system has more efficient
and accurate capabilities than conventional integer-order system and is closer to the real-
world cases. In many practical dynamic processes, a fractional-order system also has the
advantage of many degrees of freedom and the ability of general computation. Addition-
ally, the infinite memory characteristics of a fractional-order system, which can include
the genetic information of the past, are displayed incisively and vividly. It is precisely be-
cause of these excellent performances that the application and research of fractional-order
systems in many areas has developed well [4, 5]. However, a material fact worth noting is
that a fractional-order system cannot directly use the control strategies of conventional
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integer-order system due to the complexity and particularity of the fractional-order sys-
tem. As a consequence, how to choose effective tools and reasonable schemes to control
a fractional-order system is worthy of consideration.

In 1987, Kosko first put forward bidirectional associative memory (BAM) neural net-
works with double layers [6], which revealed the intimate connection between the neurons
arranged in the U-layer and the neurons arranged in the V-layer. In general, the neurons of
the U-layer are fully integrated with the neurons of the V-layer, meanwhile the neurons of
the U-layer and the V-layer have no interconnection. Because of this special performance
of double-layer networks, their numerous applications have shown interest and impor-
tance in the areas of artificial intelligence, combinatorial optimization, signal processing,
and image processing [7, 8]. In addition, as we all know, in the process of signal transmis-
sion between neurons on double-layer networks, some hereditary characteristics are em-
bodied in intelligent information processing of the two layers. Based on this important dis-
covery, it is very essential and significant that BAM neural networks are incorporated into
infinite memory terms. From the point of view of fractional-order neurodynamic systems,
unlike the locality of integer-order derivative, fractional-order derivative with singularity
and nonlocality has infinite memory and hereditary characteristics of diverse processes
with potential ability. Hence, the analysis and synthesis with respect to fractional-order
BAM neural networks is worth looking into.

Whether it is electronic or biological network, there exists a general phenomenon called
time delay [9]. In the transmission of signals between neurons, due to the finite speed
of propagation and the limited switching speed on the amplifier, it is inevitable that the
problem with time delays is always encountered. Particularly, for neural networks, there
are many parallel paths with different length and size of the nodes, because complex net-
works have the features of time and space, single and coupled networks with time delays
cannot be generalized. That is, the time delays of complex networks are not the same
due to different distributions of propagation delays. According to the degree of correla-
tion between time delay and time, time delay can be divided into constant delay [10] and
time-varying delay [11]. Although there exists constant delay in some networks, time de-
lay changes with time in general. For the time-varying delayed networks, the stability of
networks is not only influenced, but even the dynamic behaviors that occur in networks
may be complex and difficult to handle. In other words, the existence of time delays would
lead to a destruction of the networks dynamics, it can be seen that time delays have an
important influence on the dynamic characteristics of networks. So compared to the net-
works without time delays, it is significant and necessary to introduce the phenomenon
of time delays with more abundant dynamic properties into neural networks. Up to now,
all kinds of literature sources on delayed neural networks have attracted a lot of exper-
imental and theoretical attention [12, 13]. However, significant results for time-varying
delayed fractional-order systems are seldom reported. Thus, it is worthy to investigate a
challenging problem regarding time delays in fractional-order systems.

Stabilization and synchronization are common and typical phenomena in the real world.
Over the last few decades, stabilization and synchronization problems of complex control
systems made an enormous difference in the domains of physics, engineering, and science
[14, 15]. Just as its name implies, the meaning of stabilization is that a controlled system
is stable by applying an external force. That is, given an uncontrolled system of arbitrary
states, this uncontrolled system can reach a stable state mainly because the external con-
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troller applied to the controlled system plays a significant role. Unlike the stabilization
of a single network, synchronization usually occurs in two or more networks. Theoreti-
cally, in order to realize synchronization, there must be some variable coupling between
the systems, and as time goes by, the trajectories of coupled systems become increasingly
consistent. In short, synchronization could be construed as the tracking of target trajec-
tory. Among numerous synchronization phenomena, drive-response synchronization is
the most common type of synchronization, which is widely used in various networks [16].
To sum up, it can be said that both stabilization and synchronization are an indispensable
part of system dynamics. Particularly, in fractional-order systems, some attractive results
regarding stabilization and synchronization phenomena have been introduced [17, 18].
From another point of view, talking about fractional-order systems, we know that Mittag-
Leffler function is one of the important functions, and related properties of Mittag-Leffler
are often studied [19]. However, Mittag-Leffler stabilization and synchronization are lit-
tle investigated in double-layer systems. Considering this fact, it is worthwhile studying
Mittag-Leffler stabilization and synchronization that can get some results of small gains.

For control theory, it is widely known that adaptive control design has become an ex-
plored area of mathematical studies, and adaptive control is often used in many practical
applications in recent years due to the fact that adaptive control itself has better stable
performance and higher tracking accuracy [20]. Generally speaking, adaptive control can
be regarded as a feedback control that has the ability to change its performance charac-
teristics in response to its environment, so that the system can work in the best condition
according to predefined criteria. The difference from the classic feedback control is that
adaptive control is based on less prior knowledge about the model. That is to say, adaptive
control needs to extract the relevant information about the model constantly in the run-
ning process of the system, then the model will be gradually improved and more closer to
the real situation. As far as we know, the parameters of the traditional feedback controller
are fixed, when the internal properties and external disturbances of the system change a
lot, the performance of the system can be degraded and even become unstable. The emer-
gence of adaptive control effectively solves these problems, for example, adaptive control
is applied to aircraft systems with high requirements, so good performance over a wide
range of the altitudes and speeds of the airplane can be maintained. With the develop-
ment of adaptive control, some novel results have been shown in the relevant literature
[21, 22]. It should be noted that adaptive control is much more complicated than the clas-
sic feedback control, how to achieve the ultimate purpose of optimum control effect is a
challenging task. As a consequence, constructing highly-efficient, explored and analyzed
adaptive control is worth thinking about.

With the above discussion, we try to use adaptive control as a kind of better control
scheme to explore Mittag-Leffler stabilization and synchronization on two types of de-
layed fractional-order BAM neural network. For purpose of the realization with Mittag-
Leffler stabilization and synchronization in double-layer networks, the adaptive con-
trollers with system and adjustable parameters are designed. Moreover, on the basis of
essentially more general adaptive control conditions, the corresponding results on Mittag-
Leffler stabilization and synchronization are obtained. Roughly stated, our main contri-
butions of the paper are summed up into two points: (1) It is the first time that adap-
tive control design is applied to delayed fractional-order BAM neural networks. (2) Sev-
eral Mittag-Leffler stabilization and synchronization criteria are first put forward in two
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types of delayed fractional-order BAM neural network on the basis of adaptive control
scheme. There is no doubt that adaptive control strategy can be more targeted and ef-
ficient to improve the convergence character of fractional-order dynamics, and adaptive
control scheme combined with Gronwall-like inequality with generalized type can be con-
veniently applied in a wider range of application areas. Actually, adaptive control approach
only needs to set adjustable parameter values, so that it can be a powerful analysis tool
for high-performance systems. Besides, adaptive control design of other fractional-order
systems can be extended based on the obtained criteria. It is hoped that the theoretical
analysis in this paper can provide the heuristic results regarding adaptive control scheme
for fractional-order control theory.

This paper has the following four parts to constitute an overall analytical framework.
In Sect. 2, the relevant preliminaries are stated from the three aspects, namely: fractional
calculus, model description, definitions and properties. Several sufficient criteria are pro-
posed to realize Mittag-Leffler stabilization and synchronization by adaptive control ap-
proaches in Sect. 3. Section 4 is utilized to give two examples to demonstrate the efficiency
of our theoretic analysis. In the end, Sect. 5 summarizes the general conclusions.

2 Preliminaries
2.1 Fractional calculus
To facilitate the description of our model, two basic notions for fractional calculus are
recalled.

The Caputo derivative of order q > 0 of a function H (t) ∈ Cn+1([t0, +∞),R) is charac-
terized as

C
t0 Dq

t H (t) =
1

Γ (n – q)

∫ t

t0

H (n)(s)
(t – s)q–n+1 ds,

where t ≥ t0, n denotes a positive integer satisfying n – 1 < q < n, and Γ (·) stands for the
Gamma function.

Mittag-Leffler function Eq(·) with one-parameter is given as

Eq(s) =
+∞∑
k=0

sk

Γ (kq + 1)
,

where q > 0, s represents a complex number, and Γ (·) stands for the Gamma function.

Remark 2.1 Fractional calculus occupies a very important position in control science and
engineering. Particularly, the Caputo derivative has been the most frequently mentioned
fractional-order operator for neurodynamic systems, mainly on account of the fact that the
initial conditions with the Caputo derivative and the initial conditions with the integer-
order derivative have much in common, and the Caputo derivative has more representa-
tions based on the descriptions of real-world situations.

Remark 2.2 It is worth noting that there are essential differences between the conver-
gence property of traditional integer-order systems and that of fractional-order systems.
For integer-order systems, we know that the exponential function can be utilized to deal
with the dynamics problems. For fractional-order systems, the exponential function is no
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longer applicable because fractional-order systems possess abnormal and complex conver-
gence behaviors. So the exponential function can be replaced by Mittag-Leffler function
in fractional-order systems, which is a generally used function that can be widely applied
to different types of factional-order system.

2.2 Model description
Throughout the paper, Rn stands for the n-dimensional real space; given a real vector
α = (α1,α2, . . . ,αn)T ∈Rn, the norm is recorded as ‖α‖ =

∑n
i=1 |αi|.

We focus on the following delayed fractional-order BAM neural networks of the form

C
t0 Dq

t xi(t) = –βixi(t) +
m∑

j=1

aijfj
(
yj(t)

)
+

m∑
j=1

bijfj
(
yj

(
t – σj(t)

))
+ pi(t),

C
t0 Dq

t yj(t) = –γjyj(t) +
n∑

i=1

cjigi
(
xi(t)

)
+

n∑
i=1

djigi
(
xi

(
t – θi(t)

))
+ rj(t),

(1)

where t ≥ t0, i = 1, 2, . . . , n, j = 1, 2, . . . , m, 0 < q < 1, xi(t) and yj(t) mean the state vari-
ables, βi > 0 and γj > 0 represent the self-inhibition, aij, bij, cji and dji stand for the synaptic
strengths, pi(t) and rj(t) denote the external inputs, the time delays σj(t) and θi(t) are con-
tinuous and bounded on [0, +∞), the output functions fj(·), gi(·) satisfy fj(0) = 0, gi(0) = 0
and ∀v, v̄ ∈R,

∣∣fj(v) – fj(v̄)
∣∣ ≤ kj|v – v̄|, (2)

∣∣gi(v) – gi(v̄)
∣∣ ≤ hi|v – v̄|, (3)

in which kj > 0, hi > 0 (i = 1, 2, . . . , n, j = 1, 2, . . . , m).
The initial conditions regarding system (1) are described by

xi(t0 + s) = ψi(s), yj(t0 + s) = ϕj(s), s ∈ [–τ , 0], (4)

for i = 1, 2, . . . , n, j = 1, 2, . . . , m, where τ = max1≤i≤n,1≤j≤m{σj(t), θi(t)}, real-valued functions
ψi(s) and ϕj(s) defined on [–τ , 0] are continuous, and the corresponding norms are ex-
pressed as

‖ψ‖ =
n∑

i=1

sup
s∈[–τ ,0]

{∣∣ψi(s)
∣∣}, ‖ϕ‖ =

m∑
j=1

sup
s∈[–τ ,0]

{∣∣ϕj(s)
∣∣}. (5)

For Mittag-Leffler synchronization, we focus on another type of system (1) as the drive
system governed by

C
t0 Dq

t xi(t) = –βixi(t) +
m∑

j=1

aijfj
(
yj(t)

)
+

m∑
j=1

bijfj
(
yj

(
t – σj(t)

))
,

C
t0 Dq

t yj(t) = –γjyj(t) +
n∑

i=1

cjigi
(
xi(t)

)
+

n∑
i=1

djigi
(
xi

(
t – θi(t)

))
,

(6)
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in which t ≥ t0, i = 1, 2, . . . , n, j = 1, 2, . . . , m, where the initial conditions of system (6) are
the same as described for system (1).

We aim to design the following associated response system:

C
t0 Dq

t x̃i(t) = –βix̃i(t) +
m∑

j=1

aijfj
(
ỹj(t)

)
+

m∑
j=1

bijfj
(
ỹj

(
t – σj(t)

))
+ pi(t),

C
t0 Dq

t ỹj(t) = –γjỹj(t) +
n∑

i=1

cjigi
(
x̃i(t)

)
+

n∑
i=1

djigi
(
x̃i

(
t – θi(t)

))
+ rj(t),

(7)

in which t ≥ t0, i = 1, 2, . . . , n, j = 1, 2, . . . , m, and pi(t), rj(t) signify the control inputs that
need to be constructed appropriately.

The initial conditions for system (7) are given by

x̃i(t0 + s) = ψ̃i(s), ỹj(t0 + s) = ϕ̃j(s), s ∈ [–τ , 0], (8)

for i = 1, 2, . . . , n, j = 1, 2, . . . , m, where τ = max1≤i≤n,1≤j≤m{σj(t), θi(t)}, real-valued functions
ψ̃i(s) and ϕ̃j(s) defined on [–τ , 0] are continuous, and the corresponding norms are ex-
pressed as

‖ψ̃‖ =
n∑

i=1

sup
s∈[–τ ,0]

{∣∣ψ̃i(s)
∣∣}, ‖ϕ̃‖ =

m∑
j=1

sup
s∈[–τ ,0]

{∣∣ϕ̃j(s)
∣∣}. (9)

Let zi(t) = x̃i(t) – xi(t) for i = 1, 2, . . . , n and z̃j(t) = ỹj(t) – yj(t) for j = 1, 2, . . . , m, then the
error system between (6) and (7) is obtained by

C
t0 Dq

t zi(t) = –βizi(t) +
m∑

j=1

aijfj
(
z̃j(t)

)
+

m∑
j=1

bijfj
(
z̃j
(
t – σj(t)

))
+ pi(t),

C
t0 Dq

t z̃j(t) = –γjz̃j(t) +
n∑

i=1

cjigi
(
zi(t)

)
+

n∑
i=1

djigi
(
zi

(
t – θi(t)

))
+ rj(t),

(10)

where t ≥ t0, i = 1, 2, . . . , n, j = 1, 2, . . . , m, fj(z̃j(t)) = fj(ỹj(t)) – fj(yj(t)), gi(zi(t)) = gi(x̃i(t)) –
gi(xi(t)), and pi(t), rj(t) signify the control inputs that need to be constructed appropriately.

Naturally, the initial conditions for system (10) can be stated by

zi(t0 + s) = ψ̃i(s) – ψi(s), z̃j(t0 + s) = ϕ̃j(s) – ϕj(s), s ∈ [–τ , 0], (11)

for i = 1, 2, . . . , n, j = 1, 2, . . . , m, where τ = max1≤i≤n,1≤j≤m{σj(t), θi(t)}, real-valued functions
ψ̃i(s) – ψi(s) and ϕ̃j(s) – ϕj(s) defined on [–τ , 0] are continuous, and the corresponding
norms are expressed as

‖ψ̃ – ψ‖ =
n∑

i=1

sup
s∈[–τ ,0]

{∣∣ψ̃i(s) – ψi(s)
∣∣},

‖ϕ̃ – ϕ‖ =
m∑

j=1

sup
s∈[–τ ,0]

{∣∣ϕ̃j(s) – ϕj(s)
∣∣}.

(12)
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Remark 2.3 In the process of our model description, we adopt drive–response systems
(6) and (7) to realize Mittag-Leffler synchronization. The drive system (6) can be called a
master system, which is uncontrolled due to lack of control inputs. The response system
(7) is also said to be a slave system, which possesses control inputs. In theory, after a long
enough period of time, the error system (10) can realize Mittag-Leffler stability based on
some appropriate feedback control design, so the coupled systems (6) and (7) are referred
to be Mittag-Leffler synchronized.

2.3 Definitions and properties
In this subsection, in order to better analyze the problems of Mittag-Leffler dynamics,
some important definitions about Mittag-Leffler dynamics and several relevant lemmas
are provided, which are utilized for our theoretical results later.

Definition 2.1 For any η > 0, if there exist T > 0, M(η) > 0 and δ > 0 satisfying for any
t ≥ t0 + T ,

∥∥x(t)
∥∥ +

∥∥y(t)
∥∥ ≤ M(η)Eq

(
–δ(t – t0)q),

when ‖ψ‖ + ‖ϕ‖ ≤ η, then the zero solution of system (1) is called Mittag-Leffler stabiliz-
able, where pi(t) = 0, rj(t) = 0 (i = 1, 2, . . . , n, j = 1, 2, . . . , m).

Remark 2.4 What needs to be pointed out is that the original reference in Definition 2.1
is from the definition of Mittag-Leffler synchronization for fractional-order single-layer
networks, which has been given in [2, Definition 4.2]. In view of the structural property
of double-layer networks and the connection between stability and synchronization, it is
not a difficult to see that the definition of Mittag-Leffler dynamics on single-layer net-
works is extended to double-layer networks, so there is no doubt that Definition 2.1 can
be obtained.

Remark 2.5 From Definition 2.1, we can learn that the sum of two final values will converge
to zero after a fixed amount of time, that is, the system can realize ultimate Mittag-Leffler
stability as time t goes to infinity. In addition, δ is also said to be the degree of Mittag-
Leffler stability.

Definition 2.2 If the controlled system of (1) realizes Mittag-Leffler stability based on
some appropriate feedback control design, then system (1) is called Mittag-Leffler stabi-
lizable.

Definition 2.3 If the error dynamics system (10) realizes Mittag-Leffler stability, then the
drive system (6) and the response system (7) are called Mittag-Leffler synchronizable.

Remark 2.6 It is easy to see that the definitions with respect to Mittag-Leffler stabilization
and synchronization are based on the stability definition of Mittag-Leffler. And it is also
important to notice that Mittag-Leffler dynamics involves asymptotic behavior due to the
properties of Mittag-Leffler function, namely, Mittag-Leffler stability means asymptotic
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stability, the same goes for Mittag-Leffler stabilization and Mittag-Leffler synchroniza-
tion.

Lemma 2.1 ([1]) Let 0 < q < 1 be given. If H (t) ∈ C1[t0, +∞), then

C
t0 Dq

t
∣∣H (t)

∣∣ ≤ sgn
(
H (t)

)C
t0 Dq

t H (t),

for t ≥ t0, where

C
t0 Dq

t
∣∣H (t)

∣∣ =
1

Γ (1 – q)

∫ t

t0

d
ds |H (s)|
(t – s)q ds.

Remark 2.7 Taking into account the complexity of Caputo derivative of the absolute value
function in fractional calculus, Lemma 2.1 gives the connection between the Caputo
derivative of function |H (t)| and Caputo derivative of function H (t), which provides a
convenient approach for fractional calculation.

Lemma 2.2 ([2]) If W (t) and U(t) are two continuous nonnegative functions satisfying

C
t0 Dq

t
(
W (t) + U(t)

) ≤ –δW (t),

where 0 < q < 1, δ > 0, then there exists a constant T > 0 such that

W (t) ≤ (
W (t0) + U(t0) + 

)
Eq

(
–δ(t – t0)q),

for any positive constant , where t ≥ t0 + T .

Remark 2.8 In order to ensure that Mittag-Leffler stabilization and synchronization can
be realized, Lemma 2.2 offers the convergence property regarding Gronwall-like inequality
of generalized type, which can deal with the problems of convergence very well in many
types of fractional-order systems, and it can be utilized to establish a criterion with respect
to fractional-order dynamics. Moreover, more relevant details about Lemma 2.2 can be
found in [2, Lemma 4.3].

3 Main results
After a detailed introduction and explanation, in this section, we present adaptive control
strategies, which can be used to realize Mittag-Leffler stabilization and synchronization
in the corresponding systems.

For the sake of narrative, the adaptive control schemes are first used to deal with Mittag-
Leffler stabilization and synchronization problems in double-layer networks, and then the
theoretical results are reviewed and analyzed.
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3.1 Mittag-Leffler stabilization
Theorem 3.1 Suppose positive constants μi, μ̆i, ξj, ξ̆j are arbitrary. If system (1) is con-
trolled based on the following adaptive control scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pi(t) = –wi(t)xi(t – θi(t)) – w̆i(t)xi(t),

rj(t) = –uj(t)yj(t – σj(t)) – ŭj(t)yj(t),
C
t0 Dq

t wi(t) = μi|xi(t – θi(t))|,
C
t0 Dq

t uj(t) = ξj|yj(t – σj(t))|,
C
t0 Dq

t w̆i(t) = μ̆i|xi(t)|,
C
t0 Dq

t ŭj(t) = ξ̆j|yj(t)|,

(13)

in which i = 1, 2, . . . , n, j = 1, 2, . . . , m, then Mittag-Leffler stabilization can be realized for
system (1).

Proof Under the controller (13), the controlled system (1) is rewritten as

C
t0 Dq

t xi(t) = –βixi(t) +
m∑

j=1

aijfj
(
yj(t)

)
+

m∑
j=1

bijfj
(
yj

(
t – σj(t)

))

– wi(t)xi
(
t – θi(t)

)
– w̆i(t)xi(t),

C
t0 Dq

t yj(t) = –γjyj(t) +
n∑

i=1

cjigi
(
xi(t)

)
+

n∑
i=1

djigi
(
xi

(
t – θi(t)

))

– uj(t)yj
(
t – σj(t)

)
– ŭj(t)yj(t),

(14)

where t ≥ t0, i = 1, 2, . . . , n, j = 1, 2, . . . , m.
We construct an auxiliary function

W (t) =
n∑

i=1

∣∣xi(t)
∣∣ +

m∑
j=1

∣∣yj(t)
∣∣. (15)

Through Lemma 2.1, by (14) we can derive

C
t0 Dq

t W (t) ≤
n∑

i=1

sgn
(
xi(t)

)C
t0 Dq

t xi(t) +
m∑

j=1

sgn
(
yj(t)

)C
t0 Dq

t yj(t)

≤
n∑

i=1

[
–βi

∣∣xi(t)
∣∣ +

m∑
j=1

|aij|
∣∣fj

(
yj(t)

)∣∣ +
m∑

j=1

|bij|
∣∣fj

(
yj

(
t – σj(t)

))∣∣

– wi(t)
∣∣xi

(
t – θi(t)

)∣∣ – w̆i(t)
∣∣xi(t)

∣∣
]

+
m∑

j=1

[
–γj

∣∣yj(t)
∣∣

+
n∑

i=1

|cji|
∣∣gi

(
xi(t)

)∣∣ +
n∑

i=1

|dji|
∣∣gi

(
xi

(
t – θi(t)

))∣∣

– uj(t)
∣∣yj

(
t – σj(t)

)∣∣ – ŭj(t)
∣∣yj(t)

∣∣
]



Cheng et al. Advances in Difference Equations        (2019) 2019:337 Page 10 of 20

≤
n∑

i=1

[
–βi

∣∣xi(t)
∣∣ +

m∑
j=1

|aij|kj
∣∣yj(t)

∣∣ +
m∑

j=1

|bij|kj
∣∣yj

(
t – σj(t)

)∣∣

– wi(t)
∣∣xi

(
t – θi(t)

)∣∣ – w̆i(t)
∣∣xi(t)

∣∣
]

+
m∑

j=1

[
–γj

∣∣yj(t)
∣∣

+
n∑

i=1

|cji|hi
∣∣xi(t)

∣∣ +
n∑

i=1

|dji|hi
∣∣xi

(
t – θi(t)

)∣∣

– uj(t)
∣∣yj

(
t – σj(t)

)∣∣ – ŭj(t)
∣∣yj(t)

∣∣
]

≤
n∑

i=1

[
–βi

∣∣xi(t)
∣∣ +

m∑
j=1

|cji|hi
∣∣xi(t)

∣∣ – w̆i(t)
∣∣xi(t)

∣∣

+
m∑

j=1

|dji|hi
∣∣xi

(
t – θi(t)

)∣∣ – wi(t)
∣∣xi

(
t – θi(t)

)∣∣
]

+
m∑

j=1

[
–γj

∣∣yj(t)
∣∣ +

n∑
i=1

|aij|kj
∣∣yj(t)

∣∣ – ŭj(t)
∣∣yj(t)

∣∣

+
n∑

i=1

|bij|kj
∣∣yj

(
t – σj(t)

)∣∣ – uj(t)
∣∣yj

(
t – σj(t)

)∣∣
]

. (16)

In the following, consider another auxiliary function

U(t) =
n∑

i=1

[
1

2μi

(
wi(t) – w�

i
)2 +

1
2μ̆i

(
w̆i(t) – w̆�

i
)2

]

+
m∑

j=1

[
1

2ξj

(
uj(t) – u�

j
)2 +

1
2ξ̆j

(
ŭj(t) – ŭ�

j
)2

]
. (17)

By (16) and (17), it holds

C
t0 Dq

t
(
W (t) + U(t)

) ≤
n∑

i=1

[
–βi

∣∣xi(t)
∣∣ +

m∑
j=1

|cji|hi
∣∣xi(t)

∣∣ – w̆�
i
∣∣xi(t)

∣∣

+
m∑

j=1

|dji|hi
∣∣xi

(
t – θi(t)

)∣∣ – w�
i
∣∣xi

(
t – θi(t)

)∣∣
]

+
m∑

j=1

[
–γj

∣∣yj(t)
∣∣ +

n∑
i=1

|aij|kj
∣∣yj(t)

∣∣ – ŭ�
j
∣∣yj(t)

∣∣

+
n∑

i=1

|bij|kj
∣∣yj

(
t – σj(t)

)∣∣ – u�
j
∣∣yj

(
t – σj(t)

)∣∣
]

. (18)

Selecting w̆�
i , w�

i , ŭ�
j and u�

j large enough to satisfy

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w̆�
i ≥ –βi +

∑m
j=1 |cji|hi + δ1,

ŭ�
j ≥ –γj +

∑n
i=1 |aij|kj + δ2,

w�
i ≥ ∑m

j=1 |dji|hi,

u�
j ≥ ∑n

i=1 |bij|kj,

(19)
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where δ1 and δ2 are positive constants, we get

C
t0 Dq

t
(
W (t) + U(t)

) ≤ –δW (t), (20)

where δ = min{δ1, δ2}.
According to Lemma 2.2, it follows from (20) that for any positive constant  there exists

T ≥ 0 such that

∥∥x(t)
∥∥ +

∥∥y(t)
∥∥ ≤ (

W (t0) + U(t0) + 
)
Eq

(
–δ(t – t0)q)

≤ M(η)Eq
(
–δ(t – t0)q),

for any t ≥ t0 + T , when ‖ψ‖ + ‖ϕ‖ ≤ η, where

M(η) = η +  +
n∑

i=1

[
1

2μi

(
wi(t0) – w�

i
)2 +

1
2μ̆i

(
w̆i(t0) – w̆�

i
)2

]

+
m∑

j=1

[
1

2ξj

(
uj(t0) – u�

j
)2 +

1
2ξ̆j

(
ŭj(t0) – ŭ�

j
)2

]
.

Hence, under the adaptive controller (13), it can be claimed that system (1) realizes
Mittag-Leffler stabilization. �

3.2 Mittag-Leffler synchronization
Theorem 3.2 Suppose positive constants μi, μ̆i, ξj, ξ̆j are arbitrary. If the response system
(7) is controlled based on the following adaptive control scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pi(t) = –wi(t)zi(t – θi(t)) – w̆i(t)zi(t),

rj(t) = –uj(t)z̃j(t – σj(t)) – ŭj(t)z̃j(t),
C
t0 Dq

t wi(t) = μi|zi(t – θi(t))|,
C
t0 Dq

t uj(t) = ξj|z̃j(t – σj(t))|,
C
t0 Dq

t w̆i(t) = μ̆i|zi(t)|,
C
t0 Dq

t ŭj(t) = ξ̆j|z̃j(t)|,

(21)

in which i = 1, 2, . . . , n, j = 1, 2, . . . , m, then Mittag-Leffler synchronization can be realized
for the drive system (6) and response system (7).

Proof By the controller (21), the error system (10) is rewritten as

C
t0 Dq

t zi(t) = –βizi(t) +
m∑

j=1

aijfj
(
z̃j(t)

)
+

m∑
j=1

bijfj
(
z̃j
(
t – σj(t)

))

– wi(t)zi
(
t – θi(t)

)
– w̆i(t)zi(t),

C
t0 Dq

t z̃j(t) = –γjz̃j(t) +
n∑

i=1

cjigi
(
zi(t)

)
+

n∑
i=1

djigi
(
zi

(
t – θi(t)

))

– uj(t)z̃j
(
t – σj(t)

)
– ŭj(t)z̃j(t),

(22)

where t ≥ t0, i = 1, 2, . . . , n, j = 1, 2, . . . , m.
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We design an auxiliary function

W (t) =
n∑

i=1

∣∣zi(t)
∣∣ +

m∑
j=1

∣∣z̃j(t)
∣∣. (23)

Through Lemma 2.1, by (23) we can derive

C
t0 Dq

t W (t) ≤
n∑

i=1

sgn
(
zi(t)

)C
t0 Dq

t zi(t) +
m∑

j=1

sgn
(
z̃j(t)

)C
t0 Dq

t z̃j(t)

≤
n∑

i=1

[
–βi

∣∣zi(t)
∣∣ +

m∑
j=1

|aij|
∣∣fj

(
z̃j(t)

)∣∣ +
m∑

j=1

|bij|
∣∣fj

(
z̃j
(
t – σj(t)

))∣∣

– wi(t)
∣∣zi

(
t – θi(t)

)∣∣ – w̆i(t)
∣∣zi(t)

∣∣
]

+
m∑

j=1

[
–γj

∣∣z̃j(t)
∣∣

+
n∑

i=1

|cji|
∣∣gi

(
zi(t)

)∣∣ +
n∑

i=1

|dji|
∣∣gi

(
zi

(
t – θi(t)

))∣∣

– uj(t)
∣∣z̃j

(
t – σj(t)

)∣∣ – ŭj(t)
∣∣z̃j(t)

∣∣
]

≤
n∑

i=1

[
–βi

∣∣zi(t)
∣∣ +

m∑
j=1

|aij|kj
∣∣z̃j(t)

∣∣ +
m∑

j=1

|bij|kj
∣∣z̃j

(
t – σj(t)

)∣∣

– wi(t)
∣∣zi

(
t – θi(t)

)∣∣ – w̆i(t)
∣∣zi(t)

∣∣
]

+
m∑

j=1

[
–γj

∣∣z̃j(t)
∣∣

+
n∑

i=1

|cji|hi
∣∣zi(t)

∣∣ +
n∑

i=1

|dji|hi
∣∣zi

(
t – θi(t)

)∣∣

– uj(t)
∣∣z̃j

(
t – σj(t)

)∣∣ – ŭj(t)
∣∣z̃j(t)

∣∣
]

≤
n∑

i=1

[
–βi

∣∣zi(t)
∣∣ +

m∑
j=1

|cji|hi
∣∣zi(t)

∣∣ – w̆i(t)
∣∣zi(t)

∣∣

+
m∑

j=1

|dji|hi
∣∣zi

(
t – θi(t)

)∣∣ – wi(t)
∣∣zi

(
t – θi(t)

)∣∣
]

+
m∑

j=1

[
–γj

∣∣z̃j(t)
∣∣ +

n∑
i=1

|aij|kj
∣∣z̃j(t)

∣∣ – ŭj(t)
∣∣z̃j(t)

∣∣

+
n∑

i=1

|bij|kj
∣∣z̃j

(
t – σj(t)

)∣∣ – uj(t)
∣∣z̃j

(
t – σj(t)

)∣∣
]

. (24)

In the following, consider another auxiliary function

U(t) =
n∑

i=1

[
1

2μi

(
wi(t) – w�

i
)2 +

1
2μ̆i

(
w̆i(t) – w̆�

i
)2

]

+
m∑

j=1

[
1

2ξj

(
uj(t) – u�

j
)2 +

1
2ξ̆j

(
ŭj(t) – ŭ�

j
)2

]
. (25)
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By (24) and (25), it holds

C
t0 Dq

t
(
W (t) + U(t)

) ≤
n∑

i=1

[
–βi

∣∣zi(t)
∣∣ +

m∑
j=1

|cji|hi
∣∣zi(t)

∣∣ – w̆�
i
∣∣zi(t)

∣∣

+
m∑

j=1

|dji|hi
∣∣zi

(
t – θi(t)

)∣∣ – w�
i
∣∣zi

(
t – θi(t)

)∣∣
]

+
m∑

j=1

[
–γj

∣∣z̃j(t)
∣∣ +

n∑
i=1

|aij|kj
∣∣z̃j(t)

∣∣ – ŭ�
j
∣∣z̃j(t)

∣∣

+
n∑

i=1

|bij|kj
∣∣z̃j

(
t – σj(t)

)∣∣ – u�
j
∣∣z̃j

(
t – σj(t)

)∣∣
]

. (26)

Selecting w̆�
i , w�

i , ŭ�
j and u�

j large enough to satisfy

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w̆�
i ≥ –βi +

∑m
j=1 |cji|hi + δ1,

ŭ�
j ≥ –γj +

∑n
i=1 |aij|kj + δ2,

w�
i ≥ ∑m

j=1 |dji|hi,

u�
j ≥ ∑n

i=1 |bij|kj,

(27)

where δ1 and δ2 are positive constants, we get

C
t0 Dq

t
(
W (t) + U(t)

) ≤ –δW (t), (28)

where δ = min{δ1, δ2}.
According to Lemma 2.2, it follows from (28) that for any positive constant  there exists

T ≥ 0 such that

∥∥z(t)
∥∥ +

∥∥z̃(t)
∥∥ ≤ (

W (t0) + U(t0) + 
)
Eq

(
–δ(t – t0)q)

≤ M(η)Eq
(
–δ(t – t0)q),

for any t ≥ t0 + T , when ‖ψ̃ – ψ‖ + ‖ϕ̃ – ϕ‖ ≤ η, where

M(η) = η +  +
n∑

i=1

[
1

2μi

(
wi(t0) – w�

i
)2 +

1
2μ̆i

(
w̆i(t0) – w̆�

i
)2

]

+
m∑

j=1

[
1

2ξj

(
uj(t0) – u�

j
)2 +

1
2ξ̆j

(
ŭj(t0) – ŭ�

j
)2

]
.

Hence, under the adaptive controller (21), it can be claimed that the drive system (6) and
response system (7) realize Mittag-Leffler synchronization. �

Remark 3.1 As we have seen, the auxiliary functions (15), (17), (23), and (25) are actu-
ally Lyapunov-like functions. Taking auxiliary functions (15) and (23) for example, this
form of auxiliary functions are chosen because they make full use of the properties of two
variables in BAM networks, so it is natural to go back to the considered systems (1) and
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(10). Additionally, the construction of auxiliary functions (17) and (25) is very ingenious,
it is easy to find that “2” in the denominator and “2” in the index just cancel each other out
when taking the derivatives of auxiliary functions (17) and (25), the results are not affected
and the calculation is much simper.

Remark 3.2 In the course of our derivation, a Caputo fractional-order derivative can be
calculated in two ways for the auxiliary function W (t) in (15). The first method is to
use the definition of Caputo fractional-order derivative directly, and then Lemma 2.1 is
utilized to simplify results. The second method is that auxiliary function W (t) can be
treated as two functions, and then Lemma 2.1 is utilized for each function. No matter
which approach, the Caputo fractional-order derivative of W (t) can be shown to satisfy
C
t0 Dq

t W (t) ≤ ∑n
i=1 sgn(xi(t))C

t0 Dq
t xi(t) +

∑m
j=1 sgn(yj(t))C

t0 Dq
t yj(t). Similarly, these two meth-

ods are used to calculate the Caputo fractional-order derivative for the auxiliary function
W (t) in (23).

Remark 3.3 As introduced in Theorems 3.1 and 3.2, it is shown that there are similari-
ties and differences in the analysis of Mittag-Leffler stabilization and synchronization. For
the method of auxiliary functions, we can find that the auxiliary functions constructed
with respect to Mittag-Leffler stabilization or synchronization are similar. In addition, for
Mittag-Leffler stabilization, system (1) itself is controlled based on a suitable adaptive con-
troller, and the realization of stabilization for system (1) implies that system (14) must re-
alize Mittag-Leffler stability. For Mittag-Leffler synchronization, the response system (7)
is controlled based on a suitable adaptive controller, and the realization of synchronization
for the drive–response systems (6) and (7) implies that the error system (22) must realize
Mittag-Leffler stability.

Remark 3.4 It is clear that the adaptive control schemes are very effective for dealing with
Mittag-Leffler dynamics problems of fractional-order systems in Theorems 3.1 and 3.2.
There is no doubt that the key-point of the proposed control method is the application
of a family of fractional-order nonlinear systems. Through the transformation of auxiliary
functions, the function terms of the adaptive control design are eliminated, and then the
results of Mittag-Leffler dynamics can be obtained by using Lemma 2.2. In fact, Lemma 2.2
becomes the principal ingredient in the proof process which brings together the adaptive
control and Mittag-Leffler dynamics. That is, if there exists a lemma which can find a
bridge between the adaptive control and other dynamics in fractional-order systems, then
the results regarding other dynamics can be derived. It follows that the main idea of the de-
signed adaptive control can be used widely due to the flexibility. Hence, there is generality
in this adaptive control approach for fractional-order systems.

Remark 3.5 What is noteworthy is that the change of adaptive control gains μi, μ̆i, ξj,
ξ̆j will affect the change of control inputs under adaptive control strategies (13) and (21),
and meanwhile, the stabilization and synchronization speeds will also change accordingly.
Hence, when adaptive control strategy is utilized for fractional-order dynamics, the adap-
tive control gains μi, μ̆i, ξj, ξ̆j can be selected according to the requirements of designer,
such as appropriate control inputs and fast convergence speed.
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Remark 3.6 In the contemporary literature, from the perspective of the control design,
there are many new results about the network control systems; for example, see [23, 24].
However, in fractional-order systems, the adaptive control strategy based on double-layer
networks has not been studied, yet; so Theorems 3.1 and 3.2 are new. Comparing with sim-
ilar findings in [2], the obtained results in this paper generalize the cases on single-layer
networks and add a meaningful criterion regarding Mittag-Leffler stabilization, which re-
veals the differences and connections between Mittag-Leffler stabilization and synchro-
nization and has certain representativeness.

Remark 3.7 Looking through the whole process of analysis, there is no doubt that the
prominent role of design schemes with respect to adaptive controllers cannot be ignored.
Besides, according to the characteristics of adjustable parameters, adaptive control is more
advantageous for complex systems, such as the controlled system with unknown features
or large disturbances. Namely, it is an interesting issue that adaptive control is applied to
more systems in future studies.

4 Illustrative examples
In this section, for the purpose of substantiating the validity of the above theoretical cri-
teria, two numerical examples are put forward through computer simulation.

Example 4.1 We focus on a class of delayed fractional-order BAM neural networks

C
t0 Dq

t x(t) = –0.11x(t) + 0.15f
(
y(t)

)
+ 0.12f

(
y
(
t – σ (t)

))
+ p(t),

C
t0 Dq

t y(t) = –0.13y(t) – 0.14g
(
x(t)

)
– 0.16g

(
x
(
t – θ (t)

))
+ r(t),

(29)

where t ≥ 0, q = 0.96, f (·) = g(·) = tanh(·), σ (t) = 1, θ (t) = 0.9, then τ = 1.
Under system (29) without adaptive controller, the time response curves of system (29)

are depicted in Fig. 1, which shows that state trajectories cannot convergence to the origin.
Taking μ = 0.01, μ̆ = 0.01, ξ = 0.01, ξ̆ = 0.01 and setting initial values as w(0) = 0.1,

w̆(0) = 0.1, u(0) = 0.25, ŭ(0) = 0.05, the time evolution of stabilization curves of system
(29) with initial conditions x(s) = 1, y(s) = –2 for s ∈ [–1, 0] is portrayed in Fig. 2. The
adaptive control gains w(t), w̆(t), u(t), ŭ(t) are described in Figs. 3 and 4, respectively.

Figure 1 Time response curves of system (29)
without adaptive controller
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Figure 2 Time evolution of stabilization curves of x
and y

Figure 3 Time evolution of the adaptive control
gains w(t), w̆(t)

Figure 4 Time evolution of the adaptive control
gains u(t), ŭ(t)

Example 4.2 We focus on the following type of delayed fractional-order BAM neural net-
work as a drive system:

C
t0 Dq

t x(t) = –1.2x(t) + 1.8f
(
y(t)

)
+ 1.3f

(
y
(
t – σ (t)

))
,

C
t0 Dq

t y(t) = –1.4y(t) – 1.6g
(
x(t)

)
– 1.1g

(
x
(
t – θ (t)

))
,

(30)

where t ≥ 0, q = 0.96, f (·) = g(·) = sin(·), σ (t) = 1, θ (t) = 0.9, then τ = 1.
The computer simulation of system (30) starting from initial conditions x(s) = 4, y(s) =

–5 for s ∈ [–1, 0] is depicted in Fig. 5, which displays a chaotic attractor in system (30).
The associated response system is designed by

C
t0 Dq

t x̃(t) = –1.2x̃(t) + 1.8f
(
ỹ(t)

)
+ 1.3f

(
ỹ
(
t – σ (t)

))
+ p(t),

C
t0 Dq

t ỹ(t) = –1.4ỹ(t) – 1.6g
(
x̃(t)

)
– 1.1g

(
x̃
(
t – θ (t)

))
+ r(t),

(31)

where t ≥ 0, q = 0.96, f (·) = g(·) = sin(·), σ (t) = 1, θ (t) = 0.9, and τ = 1.



Cheng et al. Advances in Difference Equations        (2019) 2019:337 Page 17 of 20

Figure 5 Chaotic attractor of system (30)

Figure 6 Time evolution of synchronization curves
of x and x̃

Figure 7 Time evolution of synchronization curves
of y and ỹ

Figure 8 Time evolution of synchronization error
of z

Taking μ = 0.01, μ̆ = 0.01, ξ = 0.01, ξ̆ = 0.01 and setting initial values as w(0) = 0.05,
w̆(0) = 0.2, u(0) = 0.25, ŭ(0) = 0.2, Figs. 6–9 portray the time evolution regarding adap-
tive synchronization curves and adaptive synchronization errors of systems (30) and (31)
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Figure 9 Time evolution of synchronization error
of z̃

Figure 10 Time evolution of the adaptive control
gains w(t), w̆(t)

Figure 11 Time evolution of the adaptive control
gains u(t), ŭ(t)

starting from initial values x(s) = 2, y(s) = 3, x̃(s) = –2, ỹ(s) = –3 for s ∈ [–1, 0], respectively.
Figures 10 and 11 depict the adaptive control gains w(t), w̆(t), u(t), ŭ(t), respectively.

Remark 4.1 Comparing with the numerical simulation results of Mittag-Leffler stabiliza-
tion and synchronization, the object of stabilization and the object of synchronization
that converge to the origin are different. For Mittag-Leffler stabilization, the curves of two
states x and y converge to the origin, while for Mittag-Leffler synchronization, the curves
of two errors z and z̃ converge to the origin. Additionally, Figs. 3, 4, 10, and 11 show that
the adaptive controllers are very well designed.

5 Conclusion
The research of dynamic behavior of fractional-order systems by various control schemes
has attracted extensive attention, nevertheless, the analysis and design of a kind of double-
layer network by adaptive control approach has seldom been studied. In this paper, for a
class of delayed fractional-order BAM neural networks, we use adaptive control strategy to
exploit Mittag-Leffler stabilization and synchronization. Our main results of the paper are
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that adaptive controllers with adjustable parameters are constructed to stabilize and syn-
chronize two types of delayed double-layer network. Based on the adaptive control design,
the method of auxiliary functions and Mittag-Leffler dynamics theory of fractional-order
systems, several sufficient criteria guaranteeing the realization of Mittag-Leffler stabiliza-
tion in a controlled system and the realization of Mittag-Leffler synchronization in two
coupled systems are shown. Moreover, the corresponding numerical simulations show
the validity of the proposed results.

It should be noted that the adaptive controllers only contain some adjustable param-
eters and a little priori information about system itself. As the future work, much room
for improvement remains based on adaptive control strategy, the corresponding adap-
tive controllers can be designed appropriately according to the requirements of different
fractional-order systems. Indeed, those issues may be considerable research topics in the
future.
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