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Abstract
A new constructive method for the finite-difference solution of the Laplace equation
with the integral boundary condition is proposed and justified. In this method, the
approximate solution of the given problem is defined as a sequence of 9-point
solutions of the local Dirichlet problems. It is proved that when the exact solution
u(x, y) belongs to the Hölder calsses C4,λ, 0 < λ < 1, on the closed solution domain, the
uniform estimate of the error of the approximate solution is of order O(h4), where h is
the mesh step. Numerical experiments are given to support analysis made.
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1 Introduction
Different finite-difference problems as approximations of the nonlocal problems with in-
tegral boundary condition have been studied by many authors (see [1–5] and references
given therein). They all were basically focusing on the following difficulties related to the
existence of a quadrature approximation of the integral condition on the side of the do-
main where nonlocal condition was given: (i) finding an approximate solution by solving
the obtained system of equations which are non-band matrices, (ii) determining the rate
of convergence of the approximate solution by appropriate smoothness conditions on the
given data. In [1], a system of finite difference equations for the Poisson problem has been
studied for the spectrum of the matrix to apply an iterative method. Moreover, the author
obtained some conditions, under which this system has a unique solution. In [2] and [3],
for the error of approximate solution, the order of estimation of O(h2) in the difference W 1

2

metric is obtained, where h is the mesh step. In [4], the radial basis function collocation
technique is used to find an approximate solution of an elliptic equation with nonlocal in-
tegral boundary condition. In [5], a finite-difference approximation for the problem with
integral boundary conditions is constructed by reducing the given problem to the prob-
lem with nonlocal conditions containing derivatives. The authors proved that when the
fourth-order partial derivatives of the exact solution are continuous on the closed solu-
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tion domain, the uniform estimate of order O(h2| ln h|) is obtained for the error of the
approximate solution.

In this paper, we propose and justify a new constructive method to solve a system of non-
local 9-point finite-difference problem for the Laplace equation with the integral boundary
condition. The solution of this nonlocal difference problem is defined as a solution of the
9-point Dirichlet problem by constructing approximate values of the solution on the side
where the integral condition was given. Therefore, the approximate solution is obtained
by solving a system with 9 diagonal matrices, for the realization of which many fast al-
gorithms have been proposed (see [6, 7]). Moreover, the uniform estimate of the error of
approximate solution is of order O(h4) when the given boundary functions on the sides be-
long to the Hölder classes C4,λ, 0 < λ < 1. Finally, numerical experiments are demonstrated
to support the theoretical results.

The proposed method with the 5-point scheme was announced in [8].
Other nonlocal boundary value problems are stated and developed in numerous papers

(see [9–20] and references therein).

2 Nonlocal boundary value problem
Let

R =
{

(x, y) : 0 < x < a, 0 < y < b
}

be an open rectangle, γ m, m = 1, 2, 3, 4, be its sides including the endpoints, numbered in
the clockwise direction, beginning with the side lying on the y-axis, and let γ =

⋃4
m=1 γ m

be the boundary of R and R = R∪γ . Let C0 denote the linear space of continuous functions
of one variable x on the interval [0, a] of the x-axis, and vanishing at the points x = 0 and
x = a. For a function f ∈ C0, we define the norm

‖f ‖C0 = max
0≤x≤a

∣∣f (x)
∣∣.

It is clear that the space C0 with this norm is complete.
Consider the following nonlocal boundary value problem:

�u = 0 on R, u = 0 on γ 1 ∪ γ 3, u = τ on γ 2, (1)

u(x, 0) = α

∫ b

ξ

u(x, y) dy + μ(x), 0 < x < a, 0 < ξ < b, (2)

where � ≡ ∂2/∂x2 + ∂2/∂x2 is the Laplacian, τ = τ (x) and μ = μ(x) are given functions
which belong to C0, and α is a given constant which satisfies the following inequality:

|α| <
1

b – ξ
. (3)

3 Nonlocal finite-difference problem and its reduction to the Dirichlet problem
We define a square mesh with size h = a

N = b
M∗ , where N , M∗ > 2 are integers, constructed

with the lines x, y = h, 2h, . . . . Let Dh be the set of nodes of this square grid and let Rh =
R ∩ Dh, Rh = R ∩ Dh. We put γ m

h = γ m ∩ Dh, m = 1, 2, 3, 4, and γh =
⋃4

m=1 γ m
h .



Dosiyev and Reis Advances in Difference Equations        (2019) 2019:340 Page 3 of 15

Let

[0, a]h =
{

x = xi, xi = ih, i = 0, 1, . . . , N , h =
a
N

}

be the set of points divided by the step size h on [0, a].
Let C0

h be the linear space of grid functions defined on [0, a]h that vanish at x = 0 and
x = a. The norm of a function fh ∈ C0

h is defined as

‖fh‖C0
h

= max
x∈[0,a]h

|fh|.

We introduce the operator Bh by

Buh(x, y) ≡ (
u(x + h, y) + u(x – h, y) + u(x, y + h) + u(x, y – h)

)
/5

+
(
u(x + h, y + h) + u(x + h, y – h) +

+ u(x – h, y + h) + u(x – h, y – h)
)
/20.

For the approximate solution of the nonlocal problem (1)–(2), we consider a solution of
the following system of difference equations (see [1]):

uh = Buh on Rh, uh = 0 on γ 1
h ∪ γ 3

h , uh = τh on γ 2
h , (4)

uh(x, 0) = α

M∑

k=1

ρkuh(x,ηk) + μh on γ 4
h , (5)

where equation (5) is obtained by approximating the integral in (2) and using Simpson’s
rule with ρ1 = ρM = h

3 , ρj = h
3 (3 + (–1)j) for j = 2, 3, . . . , M – 1, ηj = ξ + (j – 1)h, j = 1, 2, . . . , M,

h = a
N , (M – 1)h + ξ = b, μh is the trace of μ on γ 4

h , and ξ

h is an integer.
We reduce a solution of the nonlocal differential problem to the solution of the local

Dirichlet problem.
Let vh be the solution of the finite-difference Dirichlet problem

vh = Bvh on Rh, vh = τh on γ 2
h , vh = 0 on γh/γ 2

h , (6)

and we put

ϕ̃i,h(x) = vh(x,ηi), i = 1, 2, . . . , M, (7)

where τh is the trace of τ on γ 2
h .

Let wh be a solution of the following finite difference Dirichlet problem:

wh = Bwh on Rh, wh = 0 on γh/γ 4
h , wh = f̃h on γ 4

h , (8)

where f̃h ∈ C0
h , is an arbitrary function.

We define a linear operator Bh
i from C0

h to C0
h as follows:

Bh
i f̃h(x) = wh(x,ηi), i = 1, 2, . . . , M, (9)

where wh is the solution of problem (8).
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Let

w∗
h(x, y) =

1
b
‖̃fh‖C0

h
(b – y) on Rh.

We have

∣∣wh(x, y)
∣∣ ≤ w∗

h(x, y), (x, y) ∈ γh. (10)

Since w∗
h = Bw∗

h on Rh, from (9)–(10) and by a comparison theorem (see [21, Chap. 4]),
we have

∥∥Bh
i f̃h

∥∥
C0

h
≤ ‖̃fh‖C0

h

(
1 –

ξ + (i – 1)h
b

)
, i = 1, 2, . . . , M, (11)

and then for the norm of operator Bh
i , we get

∣∣Bh
i
∣∣ < 1, i = 1, 2, . . . , M. (12)

Let

ϕ̃h = α

M∑

k=1

ρkϕ̃k,h(x), x ∈ [0, a]h, (13)

where ϕ̃k,h(x) is the function from (7).
In the view of inequality (3), we have

|α|
M∑

k=1

ρk = q0 < 1. (14)

Inequalities (12) and (14) yield

q0
∣∣Bh

1
∣∣ = q < 1. (15)

Lemma 1 A solution of the finite difference problem (4)–(5) can be represented as

uh = vh + wh, (16)

where vh is the solution of problem (6) and wh is the solution of problem (8) with f̃h being a
solution of the following nonlinear equation:

f̃h = ϕ̃h + μh + α

M∑

k=1

ρkBh
k f̃h on γ 4

h . (17)

Proof According to (4), (6), and (8), relation (16) holds on Rh and the boundary sides γ m
h ,

m = 1, 2, 3.



Dosiyev and Reis Advances in Difference Equations        (2019) 2019:340 Page 5 of 15

From (13) and (17), it follows that

f̃h = μh + α

M∑

k=1

ρk
[
ϕ̃k,h(x) + Bh

k̃ fh
]

on γ 4
h .

Relying on (7) and (9), we have

f̃h = μh + α

M∑

k=1

ρk
[
vh(x,ηi) + wh(x,ηi)

]
on γ 4

h .

By virtue of (6) and (8), we obtain

vh(x, 0) + wh(x, 0) = μh + α

M∑

k=1

ρk
[
vh(x,ηi) + wh(x,ηi)

]
on γ 4

h .

Due to (5), this shows that relation (16) is also satisfied on γ 4
h . �

Thus, the unknown function on γ 4
h in problem (8) is a solution of the nonlinear equation

(17).

Theorem 2 There exists a unique solution f̃h of the nonlinear equation (17).

Proof Consider the following sequences in C0
h :

ψ̃0
i,h = 0, ψ̃n

i,h = Bh
i

(

ϕ̃h + μh + α

M∑

k=1

ρkψ̃
n–1
k,h

)

,

i = 1, 2, . . . , M; n = 1, 2, . . . . (18)

From this, for the positive integers m and n with m > n, we get

ψ̃m
i,h – ψ̃n

i,h = Bh
i

(

α

M∑

k=1

ρk
(
ψ̃m–1

k,h – ψ̃n–1
k,h

)
)

, i = 1, 2, . . . , M.

Applying inequality (11), we reach

∥∥ψ̃m
i,h – ψ̃n

i,h
∥∥

C0
h
≤ q

∥∥ψ̃m–1
i,h – ψ̃n–1

i,h
∥∥

C0
h
, (19)

where q is defined by (15). In a similar way, from (19) we obtain

∥∥ψ̃m
i,h – ψ̃n

i,h
∥∥

C0
h
≤ qn+1 1 – qm–n

1 – q
(‖ϕ̃h‖C0

h
+ ‖μh‖C0

h

)
,

which shows that sequences (18) are Cauchy. Since C0
h is complete, there are limits

lim
n→∞ ψ̃n

i,h = ψ̃i,h ∈ C0
h , i = 1, 2, . . . , M.
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By using (11) and (15),

lim
n→∞ Bh

kψ̃
n
i,h = Bh

kψ̃i,h ∈ C0
h , i, k = 1, 2, . . . , M. (20)

Using (20) and taking the limit of (18) as n → ∞, we have

ψ̃i,h = Bh
i

(

ϕ̃h + μh + α

M∑

k=1

ρkψ̃k,h

)

, i = 1, 2, . . . , M. (21)

We multiply both sides of equation (21) by αρi and sum over i = 1, 2, . . . , M to get

ϕ̃h + μh + α

M∑

i=1

ρiψ̃i,h = ϕ̃h + μh + α

M∑

i=1

ρiBh
i

(

ϕ̃h + μh + α

M∑

k=1

ρkψ̃k,h

)

. (22)

In view of relations (17) and (22), we obtain a solution of the nonlinear equation (17) as

f̃h = ϕ̃h + μh + α

M∑

k=1

ρkψ̃k,h.

To show the uniqueness, let f̃h,p ∈ C0
h , p = 1, 2, be two functions satisfying relation (17).

Then, we obtain the following inequality:

‖̃fh,1 – f̃h,2‖C0
h

=

∥∥∥∥∥
α

m∑

k=1

ρkBh
k (̃fh,1 – f̃h,2)

∥∥∥∥∥
C0

h

≤ q‖̃fh,1 – f̃h,2‖C0
h
,

where 0 < q < 1 is defined by (15). Hence f̃h,1 = f̃h,2. �

4 Convergence of the finite-difference problem
We say that F ∈ Ck,λ(E), if F has kth derivatives on E satisfying Hölder condition with
exponent λ. We assume that τ (x) and μ(x) in (1) and (2) are from C4,λ, 0 < λ < 1, on γ 2 and
γ 4, respectively, and τ (2m)(0) = τ (2m)(a) = 0, μ(2m)(0) = μ(2m)(a) = 0, m = 0, 1, 2. By using the
nth iteration ψ̃n

i,h, n ≥ 1 of (18), we define the function

f̃ n
h = ϕ̃h + μh + α

M∑

k=1

ρkψ̃
n
k,h. (23)

Hence, for the approximate solution of the nonlocal problem (1)–(2), we define the fol-
lowing difference problem:

ũn
h = Bhũn

h on Rh, ũn
h = τh on γ 2

h , ũn
h = 0 on γ 1

h ∪ γ 3
h , (24)

ũn
h = f̃ n

h on γ 4
h . (25)

Theorem 3 The following estimate holds:

max
(x,y)∈Rh

∣∣̃un
h – u

∣∣ ≤ c1h4 + q0
qn+1

1
1 – q1

c∗, (26)
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where ũn
h is a solution of problem (24)–(25), u is the exact solution of nonlocal boundary

value problem (1)–(2), c1 and c∗ are constants independent of h, q0 is defined by (14), and
q1 = 1 – ξ

b .

Proof Let U be the exact solution of the system of the following problem:

�U = 0 on R, U = τ on γ 2, U = 0 on γ 1 ∪ γ 3, (27)

U(x, 0) = α

M∑

k=1

ρkU(x,ηk) + μ(x), 0 ≤ x ≤ a. (28)

Let V be a solution of the Dirichlet problem

�V = 0 on R, V = τ on γ 2, V = 0 on γ /γ 2, (29)

and denote by

ϕk(x) = V (x,ηk) for k = 1, 2, . . . , M, (30)

where ηk = ξ + (k – 1)h, k = 1, 2, . . . , M. We define the function

ϕ = α

M∑

k=1

ρkϕk . (31)

Consider the Dirichlet problem

�W = 0 on R, W = 0 on γ /γ 4, W = f on γ 4, (32)

where f is an unknown function from C0. The linear operator Bi : C0 → C0 is defined as

Bif (x) = W (x,ηi) ∈ C0, i = 1, 2, . . . , M.

Then following inequality holds for the norm |Bi|:

|Bi| <
(

1 –
ξ + (i – 1)h

b

)
, i = 1, 2, . . . , M.

By analogy with the results in [18], it is shown that a solution U of problem (27)–(28) can
be represented as U = V + W where V and W are the solutions of problem (29) and (32),
respectively, when f is defined by

f = ϕ + μ + α

M∑

k=1

ρkψk . (33)

Here the functions ψ1,ψ2, . . . ,ψM are from C0, and are defined as the solutions of the
nonlinear equations

ψi = Bi

(

ϕ + μ + α

M∑

k=1

ρkψk

)

, i = 1, 2, . . . , M. (34)
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Therefore, the nonlocal problem (27)–(28) is reduced to the following Dirichlet problem:

�U = 0 on R, U = τ on γ 2, U = 0 on γ 1 ∪ γ 3, (35)

U(x, 0) = f , 0 ≤ x ≤ a, (36)

where f is defined by (33). The solution ψi, i = 1, 2, . . . , M, of system (34) is found as a limit
of the infinite sequence of functions {ψn

i }∞n=0 in C0 defined by

ψ0
i = 0, ψn

i = Bi

(

ϕ + μ + α

M∑

k=1

ρkψ
n–1
k

)

,

i = 1, 2, . . . , M; n = 1, 2, . . . . (37)

Since τ (x) in (29) belongs to C4,λ(γ 2) and τ (2m)(0) = τ (2m)(a) = 0, m = 0, 1, 2, it follows from
[22] that

max
(x,y)∈Rh

|vh – Vh| ≤ c2h4, (38)

where vh is a solution of problem (6), Vh is the trace of the solution of (29) on Rh and c2 is
a constant independent of h. Let ϕh, ψi,h, and ψn

i,h be the trace of ϕ, ψi, and ψn
i on [0, a]h,

respectively, and let (Bi(F))h be the trace of Bi(F) on [0, a]h for any function F ∈ C4,λ[0, a].
By (7), (13), (30), (31), and (38), we obtain

‖ϕ̃h – ϕh‖C0
h
≤ c3h4, (39)

where c3 is a constant independent of h. By using (18) and (37), we have, for all i =
1, 2, . . . , M,

∥∥ψ̃1
i,h – ψ1

i,h
∥∥

C0
h

≤ ∥∥Bh
i (ϕ̃h – ϕh)

∥∥
C0

h

+
∥∥Bh

i (ϕh + μh) –
(
Bi(ϕ + μ)

)
h

∥∥
C0

h
. (40)

Applying (11) and (39), it follows that

∥∥Bh
i (ϕ̃h – ϕh)

∥∥
C0

h
≤ c4h4, i = 1, 2, . . . , M, (41)

where c4 is a constant independent of h. Similar to inequality (38), we have

∥∥Bh
i (ϕh + μh) –

(
Bi(ϕ + μ)

)
h

∥∥
C0

h
≤ c5h4, (42)

where c5 is a constant independent of h. From the relations (40)–(42), we have

∥∥ψ̃1
i,h – ψ1

i,h
∥∥

C0
h
≤ c6h4, (43)
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where c6 is a constant independent of h. For n ≥ 2, we have

∥∥ψ̃n
i,h – ψn

i,h
∥∥

C0
h

=

∥∥∥∥∥
Bh

i

(

ϕ̃h + μh + α

M∑

k=1

ρkψ̃
n–1
k,h

)

–

(

Bi

(

ϕ + μ + α

M∑

k=1

ρkψ
n–1
k

))

h

∥∥∥∥∥
C0

h

.

Then,

∥∥ψ̃n
i,h – ψn

i,h
∥∥

C0
h
≤ ∥∥Bh

i (ϕ̃h + μh) –
(
Bi(ϕ + μ)

)
h

∥∥
C0

h

+

∥∥∥∥∥
Bh

i

(

α

M∑

k=1

ρkψ̃
n–1
k,h – α

M∑

k=1

ρkψ
n–1
k

)∥∥∥∥∥
C0

h

+

∥∥∥∥∥
Bh

i

(

α

M∑

k=1

ρkψ
n–1
k

)

–

(

Bi

(

α

M∑

k=1

ρkψ
n–1
k

))

h

∥∥∥∥∥
C0

h

,

i = 1, 2, . . . , M. (44)

By analogy with (54) in [20], it follows that

max
1≤k≤M

∥∥Bh
i ψ

n–1
k –

(
Biψ

n–1
k

)
h

∥∥
C0

h
≤ c7h4, (45)

where c7 is a constant independent of h. From (45), we find that

∥∥∥∥∥
Bh

i

(

α

M∑

k=1

ρkψ
n–1
k

)

–

(

Bi

(

α

M∑

k=1

ρkψ
n–1
k

))

h

∥∥∥∥∥
C0

h

≤
M∑

k=1

|αρk|
∥∥Bh

i ψ
n–1
k –

(
Biψ

n–1
k

)
h

∥∥
C0

h

≤ c8h4, (46)

where c8 = |α|(b – ξ )c7. In the view of (11), (14), (42), (44), and (46), we have

∥∥ψ̃n
i,h – ψn

i,h
∥∥

C0
h
≤ c9h4 + q0

∥∥ψ̃n–1
i,h – ψn–1

i,h
∥∥

C0
h
, (47)

where q0 is defined by (14) and c9 is a constant independent of h. By virtue of (43) and
(47), we obtain

∥∥ψ̃n
i,h – ψn

i,h
∥∥

C0
h
≤ c10h4(1 + q0 + q2

0 + · · · + qn–1
0

) ≤ c11h4, (48)

where c10 and c11 are constants independent of h. According to (37), it follows that

∥∥ψ1
i
∥∥

C0 ≤
(

1 –
ξ

b

)(‖ϕ‖C0 + ‖μ‖C0
)
, (49)
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∥∥ψn
i – ψn–1

i
∥∥

C0 ≤ |Bi||α|
M∑

k=1

|ρk|
∥∥ψn–1

i – ψn–2
i

∥∥
C0 , i = 1, 2, . . . , M, (50)

where ϕ is defined by (31). From (49) and (50), we have

∥∥ψn
i – ψn–1

i
∥∥

C0 ≤ qn
1
(‖ϕ‖C0 + ‖μ‖C0

)
, i = 1, 2, . . . , M,

where q1 = 1 – ξ

b . Moreover, for any m = 1, 2, . . . , we obtain

∥∥ψn+m
i – ψn

i
∥∥

C0 ≤ qn+1
1

(
1 – qm

1
1 – q1

)(‖ϕ‖C0 + ‖μ‖C0
)
, i = 1, 2, . . . , M. (51)

Since

∥∥ψn
i – ψi

∥∥
C0 ≤ ∥∥ψn+m

i – ψn
i
∥∥

C0 +
∥∥ψn+m

i – ψi
∥∥

C0 , i = 1, 2, . . . , M, (52)

by taking the limit as m → ∞, from (51) and (52), it follows that

∥∥ψn
i – ψi

∥∥
C0 ≤ qn+1

1
1 – q1

(‖ϕ‖C0 + ‖μ‖C0
)
, i = 1, 2, . . . , M. (53)

From (48) and (53), we have

∥∥ψ̃n
i,h – ψi,h

∥∥
C0

h
≤ c11h4 +

qn+1
1

1 – q1

(‖ϕ‖C0 + ‖μ‖C0
)
, i = 1, 2, . . . , M. (54)

Let Uh(x, y) be the solution of the system of grid equations

Uh = BhUh on Rh, Uh = τ on γ 2
h , Uh = 0 on γ 1

h ∪ γ 3
h , (55)

Uh = fh on γ 4
h , (56)

which approximates problem (35)–(36) when fh is the trace of f on [0, a]h. Since τ , μ, ϕ,
and ψi, i = 1, 2, . . . , M, belong to C4,λ, 0 < λ < 1, on the interval 0 ≤ x ≤ 1, and the (2m)th
order derivatives vanish at the endpoints for m = 0, 1, 2 (see [20]), by [22], we have

max
(x,y)∈Rh

|Uh – U| ≤ c12h4, (57)

where U is the solution of problem (35)–(36) and c12 is a constant independent of h. In
view of inequalities (39) and (54), we obtain

∥∥̃f n
h – fh

∥∥
C0

h
≤ c13h4 + q0

qn+1
1

1 – q1

(‖ϕ‖C0 + ‖μ‖C0
)
, (58)

where q0 is defined by (14) and c13 is a constant independent of h. By the grid maximum
principle and from (58), we have

max
(x,y)∈Rh

∣∣̃un
h – Uh

∣∣ ≤ c13h4 + q0
qn+1

1
1 – q1

(‖ϕ‖C0 + ‖μ‖C0
)
, (59)
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where ũn
h is the solution of problem (24)–(25) and Uh is the solution of problem (55)–(56).

According to estimates (57) and (59), the following inequality holds:

max
(x,y)∈Rh

∣∣̃un
h – U

∣∣ ≤ c14h4 + q0
qn+1

1
1 – q1

(‖ϕ‖C0 + ‖μ‖C0
)
, (60)

where U is the solution of problem (35)–(36) and c14 is a constant independent of h.
Using the estimate (60) and by the maximum principle for the Laplace equation with the

truncation error of Simpson’s rule, which is order of O(h4), we obtain the final estimate

max
(x,y)∈Rh

∣∣̃un
h – u

∣∣ ≤ max
(x,y)∈Rh

∣∣̃un
h – U

∣∣ + max
(x,y)∈Rh

|U – u|

≤ c1h4 + q0
qn+1

1
1 – q1

c∗, (61)

where u is the solution of problem (1)–(2), c1 is a constant independent of h, and c∗ =
‖ϕ‖C0 + ‖μ‖C0 . �

Remark 4 In (61), the right-hand side is of order O(h4), when

qn+1
1

1 – q1
≈ h4. (62)

From (62) it follows that

n = max

{[
ln h4(1 – q1)

ln q1

]
, 1

}
,

where [a] is the integer part of a.

5 Numerical experiments
Let

R =
{

(x, y) : 0 < x < 1, 0 < y < 2
}

.

Problem 1

�u = 0 on R, u(0, y) = u(1, y) = 0, 0 ≤ y ≤ 2,

u(x, 2) = 100e–π sinπx, 0 ≤ x ≤ 1,

u(x, 0) =
1

400

∫ 2

1
8

u(x, y) dy, 0 < x < 1.

Problem 2

�u = 0 on R, u(0, y) = u(1, y) = 0, 0 ≤ y ≤ 2,

u(x, 2) = x
121
30

(
tan–1 x –

π

4

)
, 0 ≤ x ≤ 1,

u(x, 0) =
1

250

∫ 2

1
4

u(x, y) dy, 0 < x < 1.
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Table 1 Solutions on the line y = 0 of Problem 1

h = 1/16 h = 1/32 h = 1/64 h = 1/128

1.06874E–003 1.06873E–003 1.06874E–003 1.06877E–003
2.09641E–003 2.09639E–003 2.09641E–003 2.09647E–003
3.04351E–003 3.04350E–003 3.04352E–003 3.04361E–003
3.87366E–003 3.87364E–003 3.87366E–003 3.87378E–003
4.55494E–003 4.55491E–003 4.55495E–003 4.55508E–003
5.06118E–003 5.06115E–003 5.06119E–003 5.06134E–003
5.37292E–003 5.37289E–003 5.37293E–003 5.37309E–003
5.47818E–003 5.47815E–003 5.47819E–003 5.47835E–003
5.37292E–003 5.37289E–003 5.37293E–003 5.37309E–003
5.06118E–003 5.06115E–003 5.06119E–003 5.06134E–003
4.55494E–003 4.55491E–003 4.55495E–003 4.55508E–003
3.87366E–003 3.87364E–003 3.87366E–003 3.87378E–003
3.04351E–003 3.04350E–003 3.04352E–003 3.04361E–003
2.09641E–003 2.09639E–003 2.09641E–003 2.09647E–003
1.06874E–003 1.06873E–003 1.06874E–003 1.06877E–003

Table 2 Solutions on the line y = 0 of Problem 2

h = 1/16 h = 1/32 h = 1/64 h = 1/128

–2.69158E–006 –2.68953E–006 –2.68153E–006 –2.64961E–006
–5.51443E–006 –5.51067E–006 –5.49500E–006 –5.43245E–006
–8.61713E–006 –8.61191E–006 –8.58921E–006 –8.49847E–006
–1.21399E–005 –1.21335E–005 –1.21047E–005 –1.19893E–005
–1.61725E–005 –1.61651E–005 –1.61313E–005 –1.59957E–005
–2.07100E–005 –2.07019E–005 –2.06644E–005 –2.05138E–005
–2.56153E–005 –2.56069E–005 –2.55671E–005 –2.54074E–005
–3.05943E–005 –3.05858E–005 –3.05454E–005 –3.03827E–005
–3.51857E–005 –3.51775E–005 –3.51378E–005 –3.49784E–005
–3.87703E–005 –3.87626E–005 –3.87253E–005 –3.85752E–005
–4.06024E–005 –4.05955E–005 –4.05620E–005 –4.04271E–005
–3.98689E–005 –3.98629E–005 –3.98345E–005 –3.97198E–005
–3.57837E–005 –3.57787E–005 –3.57564E–005 –3.56664E–005
–2.77381E–005 –2.77337E–005 –2.77183E–005 –2.76563E–005
–1.55532E–005 –1.55474E–005 –1.55393E–005 –1.55078E–005

The exact solutions of Problems 1 and 2 are unknown. The approximate values of Prob-
lems 1 and 2 on the line y = 0 obtained by the proposed method are given in Tables 1 and 2,
respectively. According to repeated digits, for the decreasing mesh steps h = 1

16 , 1
32 , 1

64 , 1
128 ,

it follows that the maximum error on this line decreases as O(h4). To obtain these results,
14 iterations are run for the construction of f̃ n

h with the successive error which is less than
10–16.

Problem 3

�u = 0 on R, u(0, y) = u(1, y) = 0, 0 ≤ y ≤ 2,

u(x, 2) = e2π sinπx, 0 ≤ x ≤ 1,

u(x, 0) =
1

100

∫ 2

1
16

u(x, y) dy + μ(x), 0 < x < 1,

where u = eπy sinπx is the exact solution, μ(x) = [1 + α
π

(1 – e2π )] sinπx.
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Table 3 Maximum errors for the solution of Problem 3

h Max error Order of reduction

1/16 1.40629393× 10–9

1/32 8.77042882× 10–11 16.03449
1/64 5.47739631× 10–12 16.01203
1/128 3.42279360× 10–13 16.00270

Table 4 CPU times (in seconds) for Problem 1

h Discrete Fourier Gauss–Seidel
with reducing

Gauss–Seidel
without reducing

1/16 0.10125 0.13325 0.65250
1/32 1.58375 2.27125 6.70625
1/64 19.87500 25.15375 81.11175
1/128 284.72625 467.22025 1325.14725

Table 5 CPU times (in seconds) for Problem 2

h Discrete Fourier Gauss–Seidel
with reducing

Gauss–Seidel
without reducing

1/16 0.19115 0.23565 0.71300
1/32 2.00135 3.97115 8.12375
1/64 26.6875 37.35625 90.72425
1/128 355.62775 580.22315 1798.54315

Table 6 CPU times (in seconds) for Problem 3

h Discrete Fourier Gauss–Seidel
with reducing

Gauss–Seidel
without reducing

1/16 0.11375 0.12125 0.62500
1/32 1.28437 2.18375 5.78125
1/64 17.96875 24.35625 79.23375
1/128 278.82815 443.0125 1243.84875

In Table 3 for Problem 3, the maximum error for each step h = 1
2k , k = 4, 5, 6, 7 and the

reduction orders are given. From the third column it follows that the convergence order
is O(h4).

In Tables 4, 5, and 6, the results of the CPU times (in seconds), when solving Problems 1,
2, and 3, respectively, are given. In columns 2 and 3, the CPU times for the realization of the
proposed approaches by the discrete Fourier method and by the Gauss–Seidel method are
given. For the construction of the local function f̃ n

h for Problems 1 and 2, just 14 iterations
are used. Problem 3 needs 11 iterations. In column 4, the Gauss–Seidel method is used to
solve the given problems without reducing to the Dirichlet problem. From these results it
follows that the discrete Fourier method, which cannot be used on the problem without
reducing to the Dirichlet problem, is faster than others. The third and fourth columns
show that for the method which is applicable for both approaches (as Gauss–Seidel), the
CPU times with reducing are less than the CPU times without reducing to the Dirichlet
problem.

As it follows from Tables 4–6, the CPU times for Problems 1 and 3 in Tables 4 and 6 are
less than those for Problem 2 in Table 5. This takes place because of low smoothness of
the boundary function in Problem 2.
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6 Conclusion
A new constructive method for the approximate solution of the nonlocal boundary value
for Laplace’s equation with integral boundary condition is given. In the proposed method,
the system of finite-difference equations is defined as the 9-point solution of the Dirich-
let problem by constructing the function on the side of the rectangle where the nonlocal
boundary condition was given. This function is defined by using the nth term of the con-
vergent simplest fixed point iteration (18) for the solution of the nonlinear system of (21).
A uniform estimate for the error of the approximate solution of the nonlocal problem by
using the nth term for n = max{[(ln h4(1 – q1))/ ln q1], 1} is of order O(h4), where h is the
step size.

The proposed method gives an opportunity to solve nonlocal problems by using differ-
ent fast algorithms constructed for the local Dirichlet problem by many authors (see [6]
and the references therein).
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