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Abstract
In this paper, we consider the optimal control problem for the mean-field stochastic
differential equations with delay and state constraint. By virtue of the classical
Ekeland’s variational principle, the duality method and a new type of mean-field
anticipated backward stochastic differential equation, we obtain the maximum
principle of the optimal control for this problem. Our result can be applied to a
harvest model from a mean-field system with delay.
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1 Introduction
Mean-field stochastic differential equations (MFSDEs), also called McKean–Vlasov equa-
tions, were discussed by Kac [1]. And this study was initiated by McKean [2]. Here, we
write a class of commonly used McKean–Vlasov equations as follows:

⎧
⎨

⎩

dX = b(t, ·, Xt , PXt ) dt + σ (t, ·, Xt , PXt ) dB(t), t ∈ [0, T],

X0 = x0,
(1)

where {B(t)}t≥0 is an 1-dimensional standard Brownian motion, defined on a complete
probability space (Ω ,F ,P), denoting PX = P ◦ X–1 as the law of the random variables X.
And the coefficients (b,σ ) : [0, T]×Ω ×R

d ×P2(Rd) �→R are measurable functions. Here,
P2(Rd) is the space of all probability measures on R

d , equipped with 2-Wassertein metric.
For more details refer to [3].

Equation (1) has been adapted by many researchers, Buckdanhn, Li and Ma [4] studied
the general stochastic control problem of Eq. (1). For other, related work, we refer to [5,
6]. Buckdahn, Li and Peng [7, 8] proposed a new kind of backward stochastic differen-
tial equations, called mean-field backward stochastic differential equations (MFBSDEs),
coupled with MFSDEs. Carmona [9] studied the forward–backward mean-field stochastic
differential equations (MFFBSDEs). The pioneering work of mean-field games was done
by Lion and Lasry [3, 10]. They apply Eq. (1) to study the mean-field potential games in
the large players and symmetric equilibrium. More about the mean-field games is in [3,
11].
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In fact, Eq. (1) is too general to be used in the real world. Therefore, many researchers
gave many different mean-field definitions. As pointed out by Buckdahn, Li and Ma [4],
the main difference of these definitions is in the position of the expectation taken in the
current literature. And they classified this conclusion in the following two types:

ϕ
(
t,ω, X(t), PX(t)

)
=

⎧
⎨

⎩

E[ϕ̃(t,ω, x, X(t))], (i)

ϕ̃(t,ω, x, E[X(t)]), (ii)
(2)

where ϕ is the coefficients function in Eq. (1), i.e. ϕ = b,σ . ϕ̃ is a different function corre-
sponding to b and σ . Li [12] studied the type (i) mean-field control problem. For type (ii)
MFSDEs, Buckdahn, Djehiche and Li [7] proved the general stochastic maximum princi-
ple. Yong [13] solved a linear–quadratic (LQ) optimal problem for type (ii) MFSDEs by
using a decoupling technique. Li et al. [14, 15] further studied the closed-loop optimal LQ
control problem and the LQ problem in infinite horizon. Andersson and Djehiche [16]
generalized this kind of mean-field definition and we give details for Eq. (3):

ϕ(t,ω, x, PX(t)) = ϕ̃
(
t,ω, x, Eψ

(
X(t)

))
, (3)

where ψ is some general nonlinear function. If we let ψ(x) = x, then (3) degenerates to (ii).
They obtained Pontryagin’s maximum principle for the optimal control problem. Hu and
Øksandal [17] investigated this type singular optimal control, and they apply these results
to prove the Nash equilibrium and zero-sum equilibrium. This kind of models can be used
to describe the large population interacting system.

The study of the optimal control problem with delay also captured lots of attention.
Many results were obtained, such as by Øksendal, Suem [18], Chen and Wu [19, 20]. The
main reason is that real world systems not just depend on their current state, but also
their previous history. Optimal control problems of the delayed systems are very difficult
because of the infinite-dimensional state space structure. Therefore current research is
divided into two kinds of methods to develop the stochastic maximum principle for de-
layed systems. One involves adjoint equation; it is given by the anticipated BSDE which
was introduced by Peng and Yang [21]; see Chen and Wu [19, 20], Yu [22] and Zhang [23].
Another method is to derive a system of three-coupled adjoint equations, which consists
of two BSDEs and one backwards ordinary stochastic equation; see Øksendal and Sulem
[18].

Many studies of the real problems show that there are state constraints in stochastic op-
timal control problems. And then we need Ekeland’s variational principle to deal with the
problem with state constraint; see [24, 25] and [23]. To the best of the authors’ knowledge,
there are few results about the delayed stochastic optimal control problem. Reference [23]
discussed this kind of problems, but only for the linear–quadratic (LQ) case. The aim of
this article is to study the stochastic optimal control problem of mean-field system with
delay and state constraints. We try to solve such problems in the light of finding the op-
timal controls. Both the delays and the state constraints will bring about trouble. Under
some suitable conditions, we first prove the uniqueness and existence of solutions for the
mean-field SDDE and mean-field anticipated BSDE. To develop our maximum principles,
we follow the aforementioned first method to construct the adjoint equation. We adopt
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the non-convex control domain rather than the convex control domain. By Ekeland’s vari-
ational principle, we derive a necessary condition of the optimal control. The maximum
principle differs from the classical one for the adjoint equation will be a new kind of mean-
field anticipated BSDEs.

The rest of this paper is structured as follows: In Sect. 2,we give the preliminary results
as regards mean-field SDDEs and mean-field anticipated BSDEs. The stochastic optimal
control problem is formulated in Sect. 3. We derive the stochastic maximum principle for
a stochastic control system in Sect. 4. We apply our result to real world model in Sect. 5
to finalize this paper.

2 Preliminary results
Let (Ω ,F ,F, P) be a complete filtered probability space. {B(t)}t≥0 is a standard 1-
dimensional Brownian motion. F = {Ft}t≥0 is the natural filtration augmented by all P-
null elements of F . T > 0 and δ ≥ 0 are given constants. For simplicity of notation, we
only consider the 1-dimensional case in this paper and all results can be extended to mul-
tidimensional cases without difficulty. The norm in R is denoted by | · |. We will also use
the following notation for some positive integer n:

Ln(FT ,R) := {ξ : ξ is R-valued FT -measurable random variable s.t. E|ξ |n < +∞};
Ln
F

(s, r;R) := {ψ(t) : {ψ(t), s ≤ t ≤ r} is R-valued adapted stochastic process s.t.
E

∫ r
s |ψ(t)|n dt < +∞};

Sn
F

(s, r;R) := {ψ(t) : {ψ(t), s ≤ t ≤ r} is R-valued adapted stochastic process s.t.
with right-continuous path and left limit s.t. E[sups≤t≤r |ψ(t)|n] < +∞}.

2.1 Mean-field stochastic differential equation with delay
In this subsection, we will show some preliminary results on mean-field stochastic dif-
ferential equations with delay (MFSDDEs) and mean-field anticipated backward stochas-
tic differential equations (MABSDEs). These theoretical results include the existence and
uniqueness of the solutions, some estimations of the solutions and the duality relationship
between the MFSDDEs and MFABSDEs.

Firstly, we consider the following MFSDDE:

⎧
⎪⎪⎨

⎪⎪⎩

dx(t) = b(t, x(t), x(t – δ),Eψ(x(t)),Eψ(x(t – δ))) dt

+ σ (t, x(t), x(t – δ),Eϕ(x(t)),Eϕ(x(t – δ))) dB(t), t ∈ [0, T],

x(t) = x0(t), t ∈ [–δ, 0],

(4)

where

b : [0, T] ×R×R×R×R →R,

σ : [0, T] ×R×R×R×R→R,

ψ : R →R, ϕ : R→ R.

When there are no delays, the above MFSDDE will degenerate to the MFSDE in [16]. Let
us introduce Assumption (H1), where x denotes the state variables, μ the expected value:
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(H1.1) x, xδ ,μ1,μ1δ ,μ2,μ2δ , x̄, x̄δ , μ̄1, μ̄1δ , μ̄2, μ̄2δ ∈R, there exists a constant C, s.t.

∣
∣b(t, x, xδ ,μ1,μ1δ) – b(t, x̄, x̄δ , μ̄1, μ̄1δ)

∣
∣ +

∣
∣σ (t, x, xδ ,μ2,μ2δ) – σ (t, x̄, x̄δ , μ̄2, μ̄2δ)

∣
∣

≤ C
(|x – x̄| + |xδ – x̄δ| + |μ1 – μ̄1| + |μ1δ – μ̄1δ| + |μ2 – μ̄2| + |μ2δ – μ̄2δ|

)
;

(H1.2) for any x, xδ ,μ1,μ1δ ,μ2,μ2δ ∈R, the mappings b(·, x, xδ ,μ1,μ1δ) and σ (·, x, xδ ,μ2,
μ2δ) are F-adapted and b(·, 0, 0, 0, 0),σ (·, 0, 0, 0, 0) ∈ L2

F
(0, T ;R);

(H1.3) ψ and ϕ are continuously differentiable and their derivatives are bounded.

Theorem 2.1 Suppose that Assumption (H1) holds, and x0(·) ∈ L2
F

(–δ, 0;R). Then MFS-
DDE (4) has a unique t-continuous solution x(t) and E sup0≤t≤T |x(t)|2 < +∞.

Proof Let us introduce a norm in Banach space L2
F

(–δ, T ;R)

∥
∥x(·)∥∥

β
=

(

E

[∫ T

–δ

e–βs∣∣x(s)
∣
∣2 ds

]) 1
2

, β > 0.

Clearly it is equivalent to the original norm of L2
F

(–δ, T ;R). We define a mapping h :
L2
F

(–δ, T ;R) → L2
F

(–δ, T ;R) by the following equation s.t. h[X(·)] = x(·):
⎧
⎪⎪⎨

⎪⎪⎩

x(t) = x0(t) +
∫ t

0 b(s, X(s), X(s – δ),Eψ(X(s)),Eψ(X(s – δ))) ds

+
∫ t

0 σ (s, X(s), X(s – δ),Eϕ(X(s)),Eϕ(X(s – δ))) dB(s), t ∈ [0, T],

x(t) = x0(t), t ∈ [–δ, 0].

(5)

We desire to prove that h is a contraction mapping under the norm ‖ · ‖β . For arbitrary
X(·), X̄(·) ∈ L2

F
(–δ, T ;R), set h[X(·)] = x(·), h[X̄(·)] = x̄(·), and X̂(·) = X(·) – X̄(·), x̂(·) = x(·) –

x̄(·). Then x̂(·) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂(t) =
∫ t

0 [b(s, X(s), X(s – δ),Eψ(X(s)),Eψ(X(s – δ)))

– b(s, X̄(s), X̄(s – δ),Eψ(X̄(s)),Eψ(X̄(s – δ)))] ds

+
∫ t

0 [σ (s, X(s), X(s – δ),Eϕ(X(s)),Eϕ(X(s – δ)))

– σ (s, X̄(s), X̄(s – δ),Eϕ(X̄(s)),Eϕ(X̄(s – δ)))] dB(s), t ∈ [0, T],

x̂(t) = 0, t ∈ [–δ, 0].

(6)

Denoting

A = b
(
s, X(s), X(s – δ),Eψ

(
X(s)

)
,Eψ

(
X(s – δ)

))

– b
(
s, X̄(s), X̄(s – δ),Eψ

(
X̄(s)

)
,Eψ

(
X̄(s – δ)

))
,

B = σ
(
s, X(s), X(s – δ),Eϕ

(
X(s)

)
,Eϕ

(
X(s – δ)

))

– σ
(
s, X̄(s), X̄(s – δ),Eϕ

(
X̄(s)

)
,Eϕ

(
X̄(s – δ)

))
,

applying the Itô formula to e–βt|x̂(t)|2 on [0,T], we have

βE

∫ T

0

∣
∣x̂(t)

∣
∣2e–βt dt ≤ 2E

∫ T

0
e–βt∣∣x̂(t)A

∣
∣dt + E

∫ T

0
e–βt|B|2 dt.
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By (H1.1) and the Cauchy–Schwarz inequality we obtain

(β – 1)E
∫ T

0
e–βt∣∣x̂(t)

∣
∣2 dt

≤ 32C2
E

∫ T

0
e–βt∣∣X̂(t)

∣
∣2 dt + 32C2

E

∫ T

0
e–βt∣∣X̂(t – δ)

∣
∣2 dt

+ 16C2
E

∫ T

0
e–βt∣∣Eψ

(
X(t)

)
– Eψ

(
X̄(t)

)∣
∣2 dt

+ 16C2
E

∫ T

0
e–βt∣∣Eψ

(
X(t – δ)

)
– Eψ

(
X̄(t – δ)

)∣
∣2 dt

+ 16C2
E

∫ T

0
e–βt∣∣Eϕ

(
X(t)

)
– Eϕ

(
X̄(t)

)∣
∣2 dt

+ 16C2
E

∫ T

0
e–βt∣∣Eϕ

(
X(t – δ)

)
– Eϕ

(
X̄(t – δ)

)∣
∣2 dt

= 
1 + 
2 + 
3.

Here 
1 ≤ 64C2
E

∫ T
–δ

e–βt|X̂t|2 dt, and by (H1.3) and the mean value theorem we also have


2 ≤ 16C2
E

∫ T

0
e–βt

E
∣
∣ψx

(
Xη(t)

)
X̂(t)

∣
∣2 dt

+ 16C2
E

∫ T

0
e–βt

E
∣
∣ψxδ

(
Xη(t – δ)

)
X̂(t – δ)

∣
∣2 dt

≤ 16C2
E

∫ T

0
e–βt∣∣X̂(t)

∣
∣2 dt + 16C2

E

∫ T

0
e–βt∣∣X̂(t – δ)

∣
∣2 dt

≤ 32C2
E

∫ T

–δ

e–βt∣∣X̂(t)
∣
∣2 dt,

where Xη(t) is the value among X(t) and X̄(t) and the constant C changes line by line.
Similarly, 
3 ≤ 32C2

E
∫ T

–δ
e–βt|X̂(t)|2 dt.

We select β = 256C2 + 1; then

E

∫ T

–δ

e–βt|x̂t|2 dt ≤ 1
2
E

∫ T

–δ

e–βt|X̂t|2 dt,

or

∥
∥x̂(·)∥∥

β
≤ 1√

2

∥
∥X̂(·)∥∥

β
,

which shows that h is a strict contraction mapping. Then it follows from the fixed point
theorem that the MFSDDE (4) has a unique solution in L2

F
(–δ, T ;R). Since b and σ satisfy

(H1), we can easily derive that E[sup0≤t≤T |x(t)|2] < +∞. �
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2.2 Mean-field anticipated backward stochastic differential equation
In this subsection, we consider the following MABSDE:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–dy(t) = f (t, y(t), y(t + δ),Eψ(y(t)),Eψ(y(t + δ)), z(t), z(t + δ),Eϕ(z(t)),

Eϕ(z(t + δ))) dt – z(t) dB(t), t ∈ [0, T],

y(T) = ξ ,

y(t) = ξ0(t), z(t) = η0(t), t ∈ (T , T + δ],

(7)

where the coefficients (f , ξ , ξ0,η0) satisfy Assumption (H2):
(H2.1) ξ0(·),η0(·) ∈ L2

F
(T , T + δ;R) and ξ ∈ L2(FT ,R);

(H2.2) for any t ∈ [0, T], y, z ∈ R, yδ , zδ ∈ L2(Ω ,Ft+δ ;R), f (t, y, yδ ,Eψ(y),Eψ(yδ), z, zδ ,
Eϕ(z),Eϕ(zδ)) is Ft-measurable;

(H2.3) f (·, 0, 0, 0, 0, 0, 0, 0, 0) ∈ L2
F

(0, T ;R);
(H2.4) for any t ∈ [0, T], y, ȳ,μ3,μ3δ , z, z̄,μ4,μ4δ ∈ R, μ3δ , μ̄3δ , zδ , z̄δ , μ̄4, μ̄4δ ∈ L2(Ω ,

Ft+δ ;R), there exists a constant M, s.t.

∣
∣f (t, y, yδ ,μ3,μ3δ , z, zδ ,μ4,μ4δ

– f (t, ȳ, ȳδ , μ̄3, μ̄3δ , z̄, z̄δ , μ̄4, μ̄4δ)
∣
∣

≤ M
{|y – ȳ| + |z – z̄| + |μ3 – μ̄3| +

∣
∣Eϕ(z) – Eϕ(z̄)

∣
∣

+ E
Ft

[|yδ – ȳδ| + |zδ – z̄δ| + |μ3δ – μ̄3δ| + |μ4δ – μ̄4δ|
]}

;

(H2.5) ψ and ϕ are continuously differentiable and their derivatives are bounded.

Theorem 2.2 Suppose that Assumption (H2) holds, then the MABSDE (7) admits a unique
solution (y(·), z(·)) ∈ S2

F
(0, T ;R) × L2

F
(0, T ;R). Moreover, if there exist another set of coeffi-

cients (f̄ , ξ̄ , ξ̄0, η̄0) satisfying (H2), and we denote by (ȳ(·), z̄(·)) the unique solution of MAB-
SDE with coefficients (f̄ , ξ̄ , ξ̄0, η̄0), then we have the following estimate:

E

[

sup
0≤t≤T

∣
∣y(t) – ȳ(t)

∣
∣2 +

∫ T

0

∣
∣z(t) – z̄(t)

∣
∣2 dt

]

≤ CE

{

|ξ – ξ̄ |2 +
∫ T+δ

T

[∣
∣ξ0(t) – ξ̄0(t)

∣
∣2 +

∣
∣η0(t) – η̄0(t)

∣
∣2]dt

+
∫ T

0

∣
∣f

(
t, ȳ(t), ȳ(t + δ),Eψ

(
ȳ(t)

)
,Eψ

(
ȳ(t + δ)

)
,

z̄(t), z̄(t + δ),Eϕ
(
z̄(t)

)
,Eϕ

(
z̄(t + δ)

))

– f̄
(
t, ȳ(t), ȳ(t + δ),Eψ

(
ȳ(t)

)
,Eψ

(
ȳ(t + δ)

)
,

z̄(t), z̄(t + δ),Eϕ
(
z̄(t)

)
,Eϕ

(
z̄(t + δ)

))∣
∣2 dt

}

, (8)

where C is a constant depending on the Lipschitz constant M and T.
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Proof On the interval [T – δ, T], Eq. (7) becomes

y(t) = ξ +
∫ T

t
f
(
s, y(s), ξ0(s + δ),Eψ

(
y(s)

)
,Eψ

(
ξ0(s + δ)

)
, z(s),η0(s + δ),

Eϕ
(
z(s)

)
,Eϕ

(
η0(s + δ)

))
ds –

∫ T

t
z(s) dB(s),

where ξ0(·), η0(·) are given, i.e. (7) is a mean-field BSDE without anticipation. According
to Theorem 3.1 and Lemma 3.1 in [7], (7) admits a unique solution under Assumption
(H2) and the estimate (8) also holds for (y(·), z(·)) on [T – δ, T]. We can proceed with
this argument on [T – 2δ, T – δ], [T – 3δ, T – 2δ] step by step. Hence the conclusions in
Theorem 2.2 can be proved. �

3 Formulation of the optimal control problem
The purpose of this section is to discuss the optimal control for a mean field with delay
system. We consider the system involving delay terms both in the state and the control
variables.

Consider the following MFSDDE with control:

⎧
⎪⎪⎨

⎪⎪⎩

dx(t) = b(t, x(t), x(t – δ),Eψ(x(t)),Eψ(x(t – δ)), v(t), v(t – δ)) dt

+ σ (t, x(t), x(t – δ),Eϕ(x(t)),Eϕ(x(t – δ))) dB(t), t ∈ [0, T],

x(t) = x0(t), v(t) = v0(t), t ∈ [–δ, 0],

(9)

with

b : [0, T] ×R×R×R×R× U × U →R,

σ : [0, T] ×R×R×R×R→R.

The control domain U is a nonempty bounded subset of R. We denote by U = {v(·) ∈
L2
F

(–δ, T ;R)|v(t) ∈ U , for any t ∈ [–δ, T]}. U is called a feasible control set. The cost func-
tional is

J
(
v(·)) = E

[∫ T

0
L
(
t, x(t), x(t – δ),Eφ

(
x(t)

)
,Eφ

(
x(t – δ)

)
, v(t), v(t – δ)

)
dt

]

+ EΦ
(
x(T),Eχ

(
x(T)

))
, (10)

Problem 3.1 The optimal control problem is to minimize J(v(·)) over v(·) ∈ U subject to
the following final state constraint:

EG
(
x(T)

)
= 0. (11)

Assumption (H3) will be in force throughout the rest of this paper:
(H3.1) x0(·) ∈ L2

F
(–δ, 0;R), v0 ∈ L2

F
(–δ, 0;R), and for any x, xδ , μ1, μ1δ , μ2, μ2δ , μ3,μ3δ ,μ4,

v, vδ ∈ R, the mappings b(·, x, xδ ,μ1,μ1δ , v, vδ), σ (·, x, xδ ,μ2,μ2δ) and L(·, x, xδ ,μ3,
μ3δ , v, vδ) are F-adapted. Φ(x,μ4) is FT -measurable.
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(H3.2) b(·, 0, 0, 0, 0, 0, 0),σ (·, 0, 0, 0, 0) ∈ L2
F

(0, T ;R), L(·, 0, 0, 0, 0, 0, 0) ∈ L1
F

(0, T ;R) and
Φ(0, 0) ∈ L1(FT ;R).

(H3.3) b, σ and Φ are continuously differentiable with respect to their own variables and
their derivatives are both continuous and uniformly bound. And there exists some
constant C, s.t.

∣
∣b(t, x, xδ ,μ1,μ1δ , v, vδ)

∣
∣2 +

∣
∣L(t, x, xδ ,μ3,μ3δ , v, vδ)

∣
∣2

≤ C
(
1 + |x|2 + |xδ|2 + |μ1|2 + |μ1δ|2 + |μ3|2 + |μ3δ|2 + |v|2 + |vδ|2

)
,

∣
∣σ (t, x, xδ ,μ2,μ2δ)

∣
∣2 ≤ C

(
1 + |x|2 + |xδ|2 + |μ2|2 + |μ2δ|2

)
,

∣
∣Φ(x,μ4)

∣
∣2 ≤ C

(
1 + |x|2 + |μ4|2

)
.

(H3.4) ψ , ϕ, φ and χ are continuously differentiable and their derivatives are uniformly
bounded. And moreover,

∣
∣ψ(x)

∣
∣2 +

∣
∣ϕ(x)

∣
∣2 +

∣
∣φ(x)

∣
∣2 +

∣
∣χ (x)

∣
∣2 ≤ C

(
1 + |x|2),

for some constant C.
(H3.5) G(x) is FT -measurable for all x ∈R, E|G(0)| ≤ +∞, and G is continuously differ-

entiable with bounded derivatives.
If v(·) is a feasible control and Assumption (H2) holds, by Theorem 2.1, Eq. (9) admits

a unique solution denoted by xv(·) ∈ S2
F

(0, T ;R) and it is easy to check that the cost func-
tional is well defined. If v(·) ∈ U also satisfies final state constraint (11), we will call it the
admissible control. We denote the set of the admissible controls by Uad.

Remark 3.1 We shall postpone obtaining the maximum principle until the following
bounded and continuous dependence for the solution of state function (9). These results
will play an important role in exploring the maximum principle of Problem 3.1. One should
note that our control domain U is bounded, while the case U is unbounded can be treated
via the bounded case with a convergence technique as mentioned in Zhang [23].

Lemma 3.2 There exists a constant C > 0, such that, for any v(·), u(·) ∈ U , we have

E

[
sup

0≤t≤T

∣
∣xv(t)

∣
∣2

]
≤ C, (12)

E

[
sup

0≤t≤T

∣
∣xv(t) – xu(t)

∣
∣2

]

≤ CE

∫ T

0

∣
∣b

(
Γ u(t), v(t), v(t – δ)

)
– b

(
Γ u(t), u(t), u(t – δ)

)∣
∣2 dt, (13)

where we have used the abbreviated notations for w = v, u,

(
Γ w(t)

)
=

(
t, xw(t), xw(t – δ),Eψ

(
xw(t)

)
,Eψ

(
xw(t – δ)

))
,

(
Θw(t)

)
=

(
t, xw(t), xw(t – δ),Eϕ

(
xw(t)

)
,Eϕ

(
xw(t – δ)

))
.

(14)
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Proof Firstly, applying basic inequality and B-D-G inequality to Eq. (9), we deduce that

E

[
sup

0≤t≤T

∣
∣xv(t)

∣
∣2

]
≤ C

∣
∣x0(0)

∣
∣2 + CE

∫ T

0

[∣
∣b

(
Γ v(t), v(t), v(t – δ)

)∣
∣2 +

∣
∣σ

(
Θv(t)

)∣
∣2]dt.

Since b, σ satisfy Assumption (H3.3) and ψ , ϕ satisfy Assumption (H3.4), we have

E

[
sup

0≤t≤T

∣
∣xv(t)

∣
∣2

]

≤ C
∣
∣x0(0)

∣
∣2 + CE

{∫ T

0

[
1 +

∣
∣xv(t)

∣
∣2 +

∣
∣xv(t – δ)

∣
∣2 +

∣
∣Eψ

(
xv(t)

)∣
∣2 +

∣
∣Eψ

(
xv(t – δ)

)∣
∣2

+
∣
∣Eϕ

(
xv(t)

)∣
∣2 +

∣
∣Eϕ

(
xv(t – δ)

)∣
∣2 +

∣
∣v(t)

∣
∣2 +

∣
∣v(t – δ)

∣
∣2]dt

}

≤ C
∣
∣x0(0)

∣
∣2 + CE

∫ T

0
sup

0≤s≤t

∣
∣xv(s)

∣
∣2 dt

+ CE

∫ 0

–δ

∣
∣x0(t)

∣
∣2 dt + CE

∫ T

0

(∣
∣v(t)

∣
∣2 +

∣
∣v(t – δ)

∣
∣2)dt.

The second inequality is obtained by a change of variable. Thus, the required result (12)
follows by applying Gronwall’s inequality and the boundedness of the control variables.

Next, let us turn to the continuous dependence result inequality (13). It is easy to obtain

E

[
sup

0≤t≤T

∣
∣xv(t) – xu(t)

∣
∣2

]

≤ CE

{∫ T

0

[∣
∣b

(
Γ v(t), v(t), v(t – δ)

)
– b

(
Γ u(t), u(t), u(t – δ)

)∣
∣2

+
∣
∣σ

(
Θv(t)

)
– σ

(
Θu(t)

)∣
∣2]dt

}

. (15)

For the first term of the right side of (15), we can get

E

∫ T

0

∣
∣b

(
Γ v(t), v(t), v(t – δ)

)
– b

(
Γ u(t), u(t), u(t – δ)

)∣
∣2 dt

≤ CE

∫ T

0

[∣
∣b

(
Γ v(t), v(t), v(t – δ)

)
– b

(
Γ u(t), v(t), v(t – δ)

)∣
∣2

+
∣
∣b

(
Γ u(t), v(t), v(t – δ)

)
– b

(
Γ u(t), u(t), u(t – δ)

)∣
∣2]dt

≤ CE

∫ T

0

[∣
∣xv(t) – xu(t)

∣
∣2

+
∣
∣b

(
Γ u(t), v(t), v(t – δ)

)
– b

(
Γ u(t), u(t), u(t – δ)

)∣
∣2]dt. (16)

Because the coefficient σ does not depend on the control variable, it follows that

E

∫ T

0

∣
∣σ

(
Θv(t)

)
– σ

(
Θu(t)

)∣
∣2 dt ≤ CE

∫ T

0

∣
∣xv(t) – xu(t)

∣
∣2 dt.

Thus, we can group terms and apply Gronwall’s inequality to deduce that (13) holds. �
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4 Maximum principle of the mean-field optimal control problem with delay
4.1 Variation of the trajectory
Now we let (u(·), xu(·)) be an optimal solution of Problem 3.1. For the simplicity of notation,
we denote xu(·) by x(·) in the rest of this paper. Given any τ ∈ [0, T) and v(·) ∈ U , let us
define the following spike variational control:

uε(t) =

⎧
⎨

⎩

v(t), τ ≤ t ≤ τ + ε,

u(t), otherwise,

where 0 < ε < δ is sufficiently small and τ + ε ≤ T . It is obvious that uε(t) ∈ U . Let xε(·) be
the trajectory of system (9) corresponding to uε(·). Similarly as above in (14) we will use
the short-hand notation Γ u(t) and Θu(t). We introduce the following linear variational
equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dq(t) = {bx(Γ u(t), u(t), u(t – δ))q(t) + bxδ
(Γ u(t), u(t), u(t – δ))q(t – δ)

+ bμ(Γ u(t), u(t), u(t – δ))E[ψx(x(t))q(t)]

+ bμδ
(Γ u(t), u(t), u(t – δ))E[ψx(x(t – δ))q(t – δ)]

+ b(Γ u(t), uε(t), uε(t – δ)) – b(Γ u(t), u(t), u(t – δ))}dt

+ {σx(Θu(t))q(t) + σxδ
(Θu(t))q(t – δ)

+ σμ(Θu(t))E[ϕx(x(t))q(t)]

+ σμδ
(Θu(t))E[ϕx(x(t – δ))q(t – δ)]}dB(t), t ∈ [0, T],

q(t) = 0, t ∈ [–δ, 0].

(17)

It is easy to check that the variational equation is a linear MFSDDE and it admits a unique
solution q(·) ∈ S2(0, T ;R). We have the following convergence result.

Lemma 4.1 Suppose (H3) holds. Then there exists C > 0, which is independent of ε such
that

E

[
sup

0≤t≤T

∣
∣q(t)

∣
∣2

]
≤ Cε2. (18)

Proof By the Cauchy–Schwartz inequality and B-D-G inequality we have

E

[
sup

0≤t≤T

∣
∣q(t)

∣
∣2

]

≤ CE

{∫ T

0

(
bx

(
Γ u(t), u(t), u(t – δ)

)
q(t)

)2 dt

+
∫ T

0

(
bxδ

(
Γ u(t), u(t), u(t – δ)

)
q(t – δ)

)2 dt

+
∫ T

0

(
bμ

(
Γ u(t), u(t), u(t – δ)

)
E

[
ψx

(
x(t)

)
q(t)

])2 dt

+
∫ T

0

(
bμδ

(
Γ u(t), u(t), u(t – δ)

)
E

[
ψx

(
x(t – δ)

)
q(t – δ)

])2 dt

+
(∫ T

0
b
(
Γ u(t), uε(t), uε(t – δ)

)
– b

(
Γ u(t), u(t), u(t – δ)

)
dt

)2
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+
∫ T

0

(
σx

(
Θu(t)

)
q(t)

)2 dt +
∫ T

0

(
σxδ

(
Θu(t)

)
q(t – δ)

)2 dt

+
∫ T

0

(
σμ

(
Θu(t)

)
E

[
ϕx

(
x(t)

)
q(t)

])2 dt

+
∫ T

0

(
σμδ

(
Θu(t)

)
E

[
ϕx

(
x(t – δ)

)
q(t – δ)

])2 dt
}

.

Since all the derivatives are bounded and the following results:

E

∫ t

0
q2(s – δ) ds = E

∫ t–δ

–δ

q2(r) dr ≤ E

∫ t

0
q2(r) dr, (19)

E

∫ T

0

(
bμ

(
Γ u(t), u(t), u(t – δ)

)
E

[
ψx

(
x(t)

)
q(t)

])2 dt

≤ CE

∫ T

0

(
E

[
ψx

(
x(t)

)
q(t)

])2 dt

≤ CE

∫ T

0
E

[
ψ2

x
(
x(t)

)
q2(t)

]
dt

≤ CE

∫ T

0
q2(t) dt, (20)

we can get

E

[
sup

0≤t≤T

∣
∣q(t)

∣
∣2

]

≤ CE

∫ T

0
q2(t) dt

+ CE

(∫ T

0
b
(
Γ u(t), uε(t), uε(t – δ)

)
– b

(
Γ u(t), u(t), u(t – δ)

)
dt

)2

≤ CE

∫ T

0
sup

0≤r≤t
q2(r) dt

+ CE

(∫ τ+ε

τ

b
(
Γ u(t), uε(t), uε(t – δ)

)
– b

(
Γ u(t), u(t), u(t – δ)

)
dt

)2

.

Applying Gronwall’s inequality, the desired conclusion is obtained. �

Lemma 4.2 Suppose (H3) holds, then we have

E

[
sup

0≤t≤T

∣
∣xε(t) – x(t) – q(t)

∣
∣2

]
≤ Cεε

2, (21)

where Cε is nonnegative constant and Cε → 0 when ε → 0.

Proof Setting x̃(·) = xε(·) – x(·) – q(·), and then xε(·) = x̃(·) + x(·) + q(·).

x̃(t) =
∫ t

0

[
b
(
Γ ε(s), uε(s), uε(s – δ)

)
– b

(
s, x(s) + q(s), x(s – δ) + q(s – δ),

Eψ
(
x(s) + q(s)

)
,Eψ

(
x(s – δ) + q(s – δ)

)
, uε(s), uε(s – δ)

)]
ds
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+
∫ t

0

[
σ
(
Θε(s)

)
– σ (s, x(s) + q(s), x(s – δ) + q(s – δ),

Eϕ
(
x(s) + q(s)

)
,Eϕ

(
x(s – δ) + q(s – δ)

)]
dB(s)

+
∫ t

0
b
(
s, x(s) + q(s), x(s – δ) + q(s – δ),Eψ

(
x(s) + q(s)

)
,Eψ

(
x(s – δ) + q(s – δ)

)
,

uε(s), uε(s – δ)
)

ds –
∫ t

0
b
(
Γ u(s), uε(s), uε(s – δ)

)
ds +

∫ t

0
σ (s, x(s) + q(s),

x(s – δ) + q(s – δ),Eϕ
(
x(s) + q(s)

)
,Eϕ

(
x(s – δ) + q(s – δ)

)
dB(s)

–
∫ t

0
σ
(
Θu(s)

)
dB(s) –

∫ t

0

{
bx

(
Γ u(s), u(s), u(s – δ)

)
q(s) + bxδ

(
Γ u(s), u(s),

u(s – δ)
)
q(s – δ) + bμ

(
Γ u(s), u(s), u(s – δ)

)
E

[
ψx

(
xu(s)

)
q(s)

]

+ bμδ

(
Γ u(s), u(s), u(s – δ)

)
E

[
ψx

(
xu(s – δ)

)
q(s – δ)

]}
ds

–
∫ t

0

{
σx

(
Θu(s)

)
q(s) + σxδ

(
Θu(s)

)
q(s – δ) + σμ

(
Θu(s)

)
E

[
ϕx

(
x(s)

)
q(s)

]

+ σμδ

(
Θu(s)

)
E

[
ϕxδ

(
x(s – δ)

)
q(s – δ)

]}
dB(s). (22)

We will use the following abbreviated notations:

(
Λ(t)

)
=

(
t, x(t) + q(t) + λx̃(t), x(t – δ) + q(t – δ) + λx̃(t – δ),

Eψ
(
x(t) + q(t) + λx̃(t)

)
,Eψ

(
x(t – δ) + q(t – δ) + λx̃(t – δ)

))
,

(
Ξ (t)

)
=

(
t, x(t) + q(t) + λx̃(t), x(t – δ) + q(t – δ) + λx̃(t – δ),

Eϕ
(
x(t) + q(t) + λx̃(t)

)
,Eϕ

(
x(t – δ) + q(t – δ) + λx̃(t – δ)

))
,

(
Π (t)

)
=

(
t, x(t) + λq(t), x(t – δ) + λq(t – δ),

Eψ
(
x(t) + λq(t)

)
,Eψ

(
x(t – δ) + λq(t – δ)

))
,

(
�(t)

)
=

(
t, x(t) + λq(t), x(t – δ) + λq(t – δ),

Eϕ
(
x(t) + λq(t)

)
,Eϕ

(
x(t – δ) + λq(t – δ)

))
.

(23)

By a Taylor expansion, we can rewrite Eq. (22) and we should point out that the expansion
is more complex than the case without mean-field terms in Chen and Wu [20]. We have

x̃(t) = xε(t) – x(t) – q(t)

=
∫ t

0

∫ 1

0
bx

(
Λ(s), uε(s), uε(s – δ)

)
dλx̃(s) ds

+
∫ t

0

∫ 1

0
bxδ

(
Λ(s), uε(s), uε(s – δ)

)
dλx̃(s – δ) ds

+
∫ t

0

∫ 1

0
bμ

(
Λ(s), uε(s), uε(s – δ)

)
E

[
ψx

(
x(s) + q(s) + λx̃(s)

)
x̃(s)

]
dλds

+
∫ t

0

∫ 1

0
bμδ

(
Λ(s), uε(s), uε(s – δ)

)
E

[
ψx

(
x(s – δ)

+ q(s – δ) + λx̃(s – δ)
)
x̃(s – δ)

]
dλds
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+
∫ t

0

∫ 1

0
σx

(
Ξ (s)

)
dλx̃(s) dB(s) +

∫ t

0

∫ 1

0
σxδ

(
Ξ (s)

)
dλx̃(s – δ) dB(s)

+
∫ t

0

∫ 1

0
σμ

(
Ξ (s)

)
E

[
ϕx

(
x(s) + q(s) + λx̃(s)

)
x̃(s)

]
dλds

+
∫ t

0

∫ 1

0
σμδ

(
Ξ (s)

)
E

[
ϕx

(
x(s – δ) + q(s – δ) + λx̃(s – δ)

)
x̃(s – δ)

]
dλds

+
∫ t

0
Mε(s) ds +

∫ t

0
Nε(s) dB(s), (24)

where

Mε(s) =
∫ 1

0

[
bx

(
Π (s), uε(s), uε(s – δ)

)
– bx

(
Γ u(s), u(s), u(s – δ)

)]
dλq(s)

+
∫ 1

0

[
bxδ

(
Π (s), uε(s), uε(s – δ)

)
– bxδ

(
Γ u(s), u(s), u(s – δ)

)]
dλq(s – δ)

+
∫ 1

0
bμ

(
Π (s), uε(s), uε(s – δ)

)
E

[
ψx

(
x(s) + λq(s)

)
q(s)

]
dλ

– bμ

(
Γ u(s), u(s), u(s – δ)

)
E

[
ψx

(
x(s)

)
q(s)

]

+
∫ 1

0
bμδ

(
Π (s), uε(s), uε(s – δ)

)
E

[
ψx

(
x(s – δ) + λq(s – δ)

)
q(s – δ)

]
dλ

– bμδ

(
Γ u(s), u(s), u(s – δ)

)
E

[
ψx

(
x(s – δ)

)
q(s – δ)

]
,

Nε(s) =
∫ 1

0

[
σx

(
�(s)

)
– σx

(
Θu(s)

)]
dλq(s) +

∫ 1

0

[
σxδ

(
�(s)

)
– σxδ

(
Θu(s)

)]
dλq(s – δ)

+
∫ 1

0
σμ

(
�(s)

)
E

[
ϕx

(
x(s) + λq(s)

)
q(s)

]
dλ – σμ

(
Θu(s)

)
E

[
ϕx

(
x(s)

)
q(s)

]

+
∫ 1

0
σμδ

(
�(s)

)
E

[
ϕx

(
x(s – δ) + λq(s – δ)

)
q(s – δ)

]
dλ

– σμδ

(
Θu(s)

)
E

[
ϕx

(
x(s – δ)

)
q(s – δ)

]
.

Applying the conditions of b, σ , ψ , ϕ and the definition of uε(·), we can easily prove that

sup
0≤t≤T

E

{(∫ t

0
Mε(s) ds

)2

+
(∫ t

0
Nε(s) dB(s)

)2}

= o
(
ε2). (25)

Here o(ε2) denotes the element such that limε→0
o(ε2)
ε2 = 0. Also, since all the derivatives

are bounded, we can group all above terms to deduce that

sup
0≤t≤T

∣
∣x̃(t)

∣
∣2 ≤ C

∫ T

0
sup

0≤r≤s

∣
∣x̃(r)

∣
∣2 ds

+ C sup
0≤t≤T

{(∫ t

0
Mε(s) ds

)2

+
(∫ t

0
Nε(s) dB(s)

)2}

. (26)

Then, by the Grownwall inequality, we can prove Lemma 4.2. �
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4.2 Necessary maximum principle
We will try to derive the necessary conditions of our optimal control problem in this sub-
section.

Since we have the final state constraint, we first introduce the following Ekeland varia-
tional principle in [26].

Lemma 4.3 (Ekeland’s variational principle) Let (S, d(·, ·)) be a completed metric space,
and let F : S → R be lower-semicontinuous and bounded from below. If there exists u ∈ S
such that F(u) ≤ infv∈S F(v) + ρ for some ρ > 0, then there exists uρ ∈ S, such that F(uρ) ≤
F(u), d(uρ , u) ≤ √

ρ , and F(v) + √
ρd(uρ , v) > F(uρ) for any v �= uρ .

Also we let (u(·), x(·)) be the optimal control and corresponding trajectory of (9)–(10)
under the final state constraint (11). We define a metric d on U by

d
(
v(·), u(·)) = E

∫ T

–δ

Iv(t) �=u(t) dt, (27)

where I is indicator function and then (U , d) is a completed metric space.

Proposition 4.4 Let us define

Jρ
(
v(·)) =

√
[
J
(
v(·)) – J

(
u(·)) + ρ

]2 +
∣
∣EG

(
xv(T)

)∣
∣2, (28)

with v(·) ∈ U . xv(·) is the corresponding trajectory of v(·). Then Jρ(·) is bounded and contin-
uous on U .

Proof By the definition of J(v(·)) and (H3), the bounded of Jρ(·) is obvious. And moreover,
for any v(·),ω(·) ∈ U ,

∣
∣Jρ

(
v(·)) – Jρ

(
ω(·))∣∣2

≤ ∣
∣J2

ρ

(
v(·)) – J2

ρ

(
ω(·))∣∣

=
∣
∣
(
J
(
v(·)) – J

(
u(·)) + ρ

)2 –
∣
∣EG

(
xv(T)

)∣
∣2 –

(
J
(
ω(·))

– J
(
u(·)) + ρ

)2 +
∣
∣EG

(
xω(T)

)∣
∣2∣∣

≤ ∣
∣
(
J
(
v(·)) – J

(
u(·)) + ρ

)2 –
(
J
(
ω(·)) – J

(
u(·)) + ρ

)2∣∣

+
∣
∣
[
EG

(
xv(·))]2 –

[
EG

(
xω(·))]2∣∣

:= Ĵ1 + Ĵ2. (29)

Here

Ĵ1 =
∣
∣J

(
v(·)) + J

(
ω(·)) – 2J

(
u(·)) + 2ρ

∣
∣ × ∣

∣J
(
v(·)) – J

(
ω(·))∣∣. (30)

We see that terms within the first part on the right side of (30) are bounded by some
constant C. By the continuity of L, Φ and their derivatives are bounded we have

∣
∣J

(
v(·)) – J

(
ω(·))∣∣2

≤ CE

∫ T

0

∣
∣xv(t) – xω(t)

∣
∣2 dt
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+ CE

∫ T

0

∣
∣L

(
t, xω(t), xω(t – δ),Eφ

(
xω(t)

)
,Eφ

(
xω(t – δ)

)
, v(t), v(t – δ)

)

– L
(
t, xω(t), xω(t – δ),Eφ

(
xω(t)

)
,Eφ

(
xω(t – δ)

)
,ω(t),ω(t – δ)

)∣
∣2 dt. (31)

Then, by Lemma 3.2, we can deduce

lim
v(·)→ω(·)

∣
∣J

(
v(·)) – J

(
ω(·))∣∣ = 0. (32)

While Ĵ2 can be expanded as

Ĵ2 =
∣
∣
[
EG

(
xv(T)

)]2 –
[
EG

(
xω(T)

)]2∣∣

=
∣
∣E

[
G

(
xv(T)

)
+ G

(
xω(T)

)]∣
∣ × ∣

∣E
[
G

(
xv(T)

)
– G

(
xω(T)

)]∣
∣

≤ CE
∣
∣xv(T) – xω(T)

∣
∣. (33)

Combining (29)–(33), we can derive the continuous property of Jρ(v(·)). �

Remark 4.5 One can notice that Jρ(·) is defined on the feasible control set U rather than
the admissible control set Uad. It means that we can get rid of the state constraint by the
new cost functional.

Now we consider the following free final state optimal control problem:

inf
v(·)∈U

Jρ
(
v(·)).

It is easy to verify that

Jρ
(
u(·)) = ρ, Jρ

(
v(·)) > 0, (34)

and

Jρ
(
u(·)) ≤ inf

v(·)∈U
Jρ

(
v(·)) + ρ. (35)

According to Ekeland’s variational principle, there exists uρ(·) ∈ U such that

(i) Jρ
(
uρ(·)) ≤ Jρ

(
u(·)) = ρ,

(ii) d
(
uρ(·), u(·)) ≤ √

ρ,

(iii) Jρ
(
v(·)) +

√
ρd

(
uρ(·), v(·)) ≥ Jρ

(
uρ(·)), ∀v(·) ∈ U .

(36)

We can get the necessary conditions of uρ(·) and then take ρ ↓ 0 to derive the proper
conditions of u(·).

Applying the “spike variation method”, we can construct a uερ(·) ∈ U for any ε > 0 as
follows:

uερ(t) =

⎧
⎨

⎩

v(t), τ ≤ t ≤ τ + ε,

uρ(t), otherwise,
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where 0 < ε < δ and τ + ε ≤ T . And then

d
(
uρ(·), uερ(·)) ≤ ε. (37)

Let xρ(·) and xερ(·) be the solution of state function (9) under the control uρ(·) and uερ(·).
Following the variational equation (17), we introduce the following expression for qερ(·):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dqερ(t) = {bx(Γ ρ(t), uρ(t), uρ(t – δ))qερ(t)

+ bxδ
(Γ ρ(t), uρ(t), uρ(t – δ))qερ(t – δ)

+ bμ(Γ ρ(t), uρ(t), uρ(t – δ))E[ψx(xρ(t))qερ(t)]

+ bμδ
(Γ ρ(t), uρ(t), uρ(t – δ))E[ψx(xρ(t – δ))qερ(t – δ)]

+ b(Γ ρ(t), uερ(t), uερ(t – δ)) – b(Γ ρ(t), uρ(t), uρ(t – δ))}dt

+ {σx(t)(Θρ(t))qερ(t) + σxδ
(Θρ(t))qερ(t – δ)

+ σμ(Θρ(t))E[ϕ(xρ(t))qερ(t)]

+ σμδ
(Θρ(t))E[ϕx(xρ(t – δ))qερ(t – δ)]}dB(t), t ∈ [0, T],

qερ(t) = 0, t ∈ [–δ, 0].

(38)

Here Γ ρ(t) and Θρ(t) are defined similarly to (14) with control variable uρ(·), i.e.

(
Γ ρ(t)

)
=

(
t, xρ(t), xρ(t – δ),Eψ

(
xρ(t)

)
,Eψ

(
xρ(t – δ)

))
,

(
Θρ(t)

)
=

(
t, xρ(t), xρ(t – δ),Eϕ

(
xρ(t)

)
,Eϕ

(
xρ(t – δ)

))
.

According to Lemma 4.1 and Lemma 4.2, we have

E

[
sup

0≤t≤T

∣
∣qερ(t)

∣
∣2

]
≤ Cε2, (39)

E

[
sup

0≤t≤T

∣
∣xερ(t) – xρ(t) – qερ(t)

∣
∣2

]
≤ Cεε

2. (40)

Using the Taylor expansion we can check

J
(
uερ(·)) – J

(
uρ(·))

= E

∫ T

0

[
L
(
t, xερ(t), xερ(t – δ),Eφ

(
xερ(t)

)
,Eφ

(
xερ(t – δ)

)
, uερ(t), uερ(t – δ)

)

– L
(
t, xρ(t), xρ(t – δ),Eφ

(
xρ(t)

)
,Eφ

(
xρ(t – δ)

)
, uρ(t), uρ(t – δ)

)]
dt

+ E
[
Φ

(
xερ(T),Eχ

(
xερ(T)

))]
– E

[
Φ

(
xρ(T),Eχ

(
xρ(T)

))]

:= ∂1 + ∂2. (41)

By arguments analogous to the previous one,

∂1 = E

∫ T

0

{
Lx

(
Υ ρ(t), uρ(t), uρ(t – δ)

)
qερ(t)

+ Lxδ

(
Υ ρ(t), uρ(t), uρ(t – δ)

)
qερ(t – δ)
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+ Lμ

(
Υ ρ(t), uρ(t), uρ(t – δ)

)
E

[
φx

(
xρ(t)

)
qερ(t)

]

+ Lμδ

(
Υ ρ(t), uρ(t), uρ(t – δ)

)
E

[
φx

(
xρ(t – δ)

)
qερ(t – δ)

]

+ L
(
Υ ρ(t), uερ(t), uερ(t – δ)

)
– L

(
Υ ρ(t), uρ(t), uρ(t – δ)

)}
dt + o(ε), (42)

with

(
Υ ρ(t)

)
=

(
t, xρ(t), xρ(t – δ),Eφ

(
xρ(t)

)
,Eφ

(
xρ(t – δ)

))
,

∂2 = E
{
Φx

(
xρ(T),Eχ

(
xρ(T)

))
qερ(T)

+ Φμ

(
xρ(T),Eχ

(
xρ(T)

))
E

[
χx

(
xρ(T)

)
qερ(T)

]}
+ o(ε),

(43)

and

EG
(
xερ(T)

)
– EG

(
xρ(T)

)
= E

[
Gx

(
xρ(T)

)
qερ

]
+ o(ε). (44)

Setting v(·) = uερ(·) in (iii) of (36), we have

Jρ
(
uερ(·)) +

√
ρd

(
uρ(·), uερ(·)) ≥ Jρ

(
uρ(·)),

i.e.

Jρ
(
uερ(·)) – Jρ

(
uρ(·)) ≥ –

√
ρd

(
uρ(·), uερ(·)),

Jρ
(
uερ(·)) – Jρ

(
uρ(·)) ≥ –

√
ρε.

By the formula of Jρ we have

Jρ
(
uερ(·)) – Jρ

(
uρ(·))

=
(Jρ(uερ(·)))2 – (Jρ(uρ(·)))2

Jρ(uερ(·)) + Jρ(uρ(·))

=
J(uερ(·)) + J(uρ(·)) – 2J(u(·)) + 2ρ

Jρ(uερ(·)) + Jρ(uρ(·)) × [
J
(
uερ(·)) – J

(
uρ(·))]

+
EG(xερ(T)) + EG(xρ(T))

Jρ(uερ(·)) + Jρ(uρ(·)) × [
EG

(
xερ(T)

)
– EG

(
xρ(T)

)]
. (45)

And

lim
ε→0

J
(
uερ(·)) = J

(
uρ(·)),

lim
ε→0

Jρ
(
uερ(·)) = Jρ

(
uρ(·)),

lim
ε→0

EG
(
xερ(T)

)
= EG

(
xρ(T)

)
.

(46)

Then we can obtain

E

∫ T

0
αρ

{
Lx

(
Υ ρ(t), uρ(t), uρ(t – δ)

)
qερ(t) + Lxδ

(
Υ ρ(t), uρ(t), uρ(t – δ)

)
qερ(t – δ)

+ Lμ

(
Υ ρ(t), uρ(t), uρ(t – δ)

)
E

[
φx

(
xρ(t)

)
qερ(t)

]
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+ Lμδ

(
Υ ρ(t), uρ(t), uρ(t – δ)

)
E

[
φx

(
xρ(t – δ)

)
qερ(t – δ)

]

+ L
(
Υ ρ(t), uερ(t), uερ(t – δ)

)
– L

(
Υ ρ(t), uρ(t), uρ(t – δ)

)}
dt

+ αρE
{
Φx

(
xρ(T),Eχ

(
xρ(T)

))
qερ(T)

+ Φμ

(
xρ(T),Eχ

(
xρ(T)

))
E

[
χx

(
xρ(T)

)
qερ(T)

]}

+ γρE
[
Gx

(
xρ(T)

)
qερ(T)

]
+

√
ρε + o(ε) ≥ 0, (47)

where

αρ =
J(uρ(·) – J(u(·)) + ρ

Jρ(uρ(·)) ,

γρ =
EG(xρ(T))

Jρ(uρ(·)) .
(48)

Obviously, |αρ |2 + |γρ |2 = 1. Therefore there exists a subsequence, still denoted by (αρ ,γρ)
such that limρ→0 αρ = α, limρ→0 γρ = γ in R and |α|2 + |γ |2 = 1. Next, we introduce the
following adjoint equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–dpρ(t) = {bx(Γ ρ(t), uρ(t), uρ(t – δ))pρ(t)

+ E
Ft [bxδ

(Γ ρ(t), uρ(t), uρ(t – δ))|t+δpρ(t + δ)]

+ E[bμ(Γ ρ(t), uρ(t), uρ(t – δ))pρ(t)]ψx(xρ(t))

+ E[bμδ
(Γ ρ(t), uρ(t), uρ(t – δ))|t+δpρ(t + δ)]EFt [ψxδ

(xρ(t – δ))|t+δ]

+ σx(Θρ(t))kρ(t) + E
Ft [σxδ

(Θρ(t))|t+δkρ(t + δ)]

+ E[σμ(Θρ(t))kρ(t)]ϕx(xρ(t))

+ E[σμδ
(Θρ(t))|t+δkρ(t + δ)]EFt [ϕxδ

(xρ(t – δ))|t+δ]

+ αρ{Lx(Υ ρ(t), uρ(t), uρ(t – δ)) + E
Ft [Lxδ

(Υ ρ(t), uρ(t), uρ(t – δ))|t+δ]

+ E[Lμ(Υ ρ(t), uρ(t), uρ(t – δ))]φx(xρ(t))

+ E[Lμδ
(Υ ρ(t), uρ(t), uρ(t – δ))|t+δ]EFt [φxδ

(xρ(t – δ))|t+δ]}}dt

– kρ(t) dB(t), t ∈ [0, T],

pρ(T) = αρ{Φx(xρ(T),Eχ (xρ(T))) + E[Φμ(xρ(T),Eχ (xρ(T)))]χx(xρ(T))}
+ γ ρGx(xρ(T)),

pρ(t) = 0, kρ(t) = 0, t ∈ (T , T + δ].

(49)

Remark 4.6 bxδ
(Γ ρ(t), uρ(t), uρ(t – δ))|t+δ means that the value of derivative bxδ

at time
t + δ and other similar symbols have the same meanings. We can find that the adjoint
equation is a MABSDE with a unique solution (pρ(·), kρ(·)) by Theorem 2.2. There is a
dual relationship between (38) and (49). We should note that the derivatives of ψ , φ are
in different positions in Eqs. (38) and (49).

Applying Ito’s formula to qερ(t)pρ(t), we have

E
{
αρqερ(T)Φx

(
xρ(T),Eχ

(
xρ(T)

))
+ αρqερ(T)E

[
Φμ

(
xρ(T),Eχ

(
xρ(T)

))]
χx

(
xρ(T)

)

+ γ ρqερ(T)Gx
(
xρ(T)

)}
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= E

∫ T

0

{
b
(
Γ ρ(t), uερ(t), uερ(t – δ)

)
– b

(
Γ ρ(t), uρ(t), uρ(t – δ)

)}
pρ(t) dt

+ E

∫ T

0
qερ(t)αρ{Lx

(
Υ ρ(t), uρ(t), uρ(t – δ)

)

+ E
Ft

[
Lxδ

(
Υ ρ(t), uρ(t), uρ(t – δ)

)|t+δ

]

+ E
[
Lμ

(
Υ ρ(t), uρ(t), uρ(t – δ)

)]
φx

(
xρ(t)

)

+ E

∫ T

0
qερ(t)αρ

{
Lx

(
Υ ρ(t), uρ(t), uρ(t – δ)

)

+ E
Ft

[
Lxδ

(
Υ ρ(t), uρ(t), uρ(t – δ)

)|t+δ

]

+ E
[
Lμ

(
Υ ρ(t), uρ(t), uρ(t – δ)

)]
φx

(
xρ(t)

)

+ E
[
Lμδ

(
Υ ρ(t), uρ(t), uρ(t – δ)

)|t+δ

]
E
Ft

[
φxδ

(
xρ(t – δ)

)|t+δ

]}
dt. (50)

Let us assume without loss of generality that Lxδ
(t) = Lμδ

(t) = 0 on [T , T +δ]. Then Eq. (47)
can be written as

E

∫ T

0

{
αρ

[
L
(
Υ ρ(t), uερ(t), uερ(t – δ)

)
– L

(
Υ ρ(t), uρ(t), uρ(t – δ)

)]

+
[
b
(
Γ ρ(t), uερ(t), uερ(t – δ)

)
– b

(
Γ ρ(t), uρ(t), uρ(t – δ)

)]
pρ(t)

}
dt

+
√

ρε + o(ε)

= E

∫ τ+ε

τ

{
αρ

[
L
(
Υ ρ(t), v(t), uρ(t – δ)

)
– L

(
Υ ρ(t), uρ(t), uρ(t – δ)

)]

+
[
b
(
Γ ρ(t), v(t), uρ(t – δ)

)
– b

(
Γ ρ(t), uρ(t), uρ(t – δ)

)]
pρ(t)

}
dt

+ E

∫ τ+ε+δ

τ+δ

{
αρ

[
L
(
Υ ρ(t), uρ(t), v(t – δ)

)
– L

(
Υ ρ(t), uρ(t), uρ(t – δ)

)]

+
[
b
(
Γ ρ(t), uρ(t), v(t – δ)

)
– b

(
Γ ρ(t), uρ(t), uρ(t – δ)

)]
pρ(t)

}
dt

+
√

ρε + o(ε)

≥ 0. (51)

By a change of variables, we can obtain

E

∫ τ+ε

τ

{
αρ

[
L
(
Υ ρ(t), v(t), uρ(t – δ)

)
– L

(
Υ ρ(t), uρ(t), uρ(t – δ)

)]

+
[
b
(
Γ ρ(t), v(t), uρ(t – δ)

)
– b

(
Γ ρ(t), uρ(t), uρ(t – δ)

)]
pρ(t)

}
dt

+ E

∫ τ+ε

τ

{
αρ

[
L
(
Υ ρ(t + δ), uρ(t + δ), v(t)

)
– L

(
Υ ρ(t + δ), uρ(t + δ), uρ(t)

)]

+
[
b
(
Γ ρ(t + δ), uρ(t + δ), v(t)

)
– b

(
Γ ρ(t + δ), uρ(t + δ), uρ(t)

)]
pρ(t + δ)

}
dt

+
√

ρε + o(ε) ≥ 0. (52)
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Considering the arbitrariness of τ ∈ [0, T), dividing (52) by ε and taking ε → 0+, it follows
that

E
{
αρ

[
L
(
Υ ρ(t), v(t), uρ(t – δ)

)
– L

(
Υ ρ(t), uρ(t), uρ(t – δ)

)]

+
[
b
(
Γ ρ(t), v(t), uρ(t – δ)

)
– b

(
Γ ρ(t), uρ(t), uρ(t – δ)

)]
pρ(t)

+ E
Ft

{
αρ

[
L
(
Υ ρ(t + δ), uρ(t + δ), v(t)

)
– L

(
Υ ρ(t + δ), uρ(t + δ), uρ(t)

)]

+
[
b
(
Γ ρ(t + δ), uρ(t + δ), v(t)

)
– b

(
Γ ρ(t + δ), uρ(t + δ), uρ(t)

)]
pρ(t + δ)

}}

≥ 0. (53)

Now let us take ρ → 0+. Then αρ → α, γ ρ → γ , and |α|2 + |γ |2 = 1. Simultaneously, from
(36)(ii), we have d(uρ(·), u(·)) → 0 when ρ → 0+. Combining the continuous dependence
of x on the control variables in Lemma 3.2, one can obtain

lim
ρ→0

E

[
sup

0≤t≤T

∣
∣xρ(t) – x(t)

∣
∣2

]
= 0. (54)

Let (p(·), k(·)) be the solution of the following equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–dp(t) = {bx(Γ (t), u(t), u(t – δ))p(t) + E
Ft [bxδ

(Γ (t), u(t), u(t – δ))|t+δp(t + δ)]

+ E[bμ(Γ (t), u(t), u(t – δ))p(t)]ψx(x(t))

+ E[bμδ
(Γ (t), u(t), u(t – δ))|t+δp(t + δ)]EFt [ψxδ

(x(t – δ))|t+δ]

+ σx(Θ(t))k(t) + E
Ft [σxδ

(Θ(t))|t+δk(t + δ)]

+ E[σμ(Θ(t))k(t)]ϕx(x(t))

+ E[σμδ
(Θ(t))|t+δk(t + δ)]EFt [ϕxδ

(x(t – δ))|t+δ]

+ α{Lx(Υ (t), uρ(t), u(t – δ)) + E
Ft [Lxδ

(Υ (t), u(t), u(t – δ))|t+δ]

+ E[Lμ(Υ (t), u(t), u(t – δ))]φx(x(t))

+ E[Lμδ
(Υ (t), u(t), u(t – δ))|t+δ]EFt [φxδ

(x(t – δ))|t+δ]}}dt

– k(t) dB(t), t ∈ [0, T],

p(T) = α{Φx(x(T),Eχ (x(T))) + E[Φμ(x(T),Eχ (x(T)))]χx(x(T))}
+ γ Gx(x(T)),

p(t) = 0, k(t) = 0, t ∈ (T , T + δ].

(55)

We can check the convergence of (pρ(·), kρ(·)) by Theorem 2.2, i.e.,

lim
ρ→0

E

[

sup
0≤t≤T

∣
∣pρ(t) – p(t)

∣
∣2 +

∫ T

0

∣
∣kρ(t) – k(t)

∣
∣2 dt

]

= 0, (56)

where (pρ(·), kρ(·)) is the solution of the adjoint equation (49).
Consequently, letting ρ → 0+ in (53), we have

E
{
α
[
L
(
Υ (t), v(t), u(t – δ)

)
– L

(
Υ (t), u(t), u(t – δ)

)]

+
[
b
(
Γ (t), v(t), u(t – δ)

)
– b

(
Γ (t), u(t), u(t – δ)

)]
p(t)
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+ E
Ft

{
α
[
L
(
Υ (t + δ), u(t + δ), v(t)

)
– L

(
Υ (t + δ), u(t + δ), u(t)

)]

+
[
b
(
Γ (t + δ), u(t + δ), v(t)

)
– b

(
Γ (t + δ), u(t + δ), u(t)

)]
p(t + δ)

}}

≥ 0. (57)

We also need to drop the expectation in (57). In fact, (57) holds for all v(·) ∈ U since v(·) is
arbitrary. For any v ∈ U and A ∈Ft , we define v(t) = vIA + u(t)IĀ. Then v(·) ∈ U and taking
this v(·) into (57), we have

E
{
α
[
L
(
Υ (t), v, u(t – δ)

)
– L

(
Υ (t), u(t), u(t – δ)

)]
IA

+
[
b
(
Γ (t), v, u(t – δ)

)
– b

(
Γ (t), u(t), u(t – δ)

)]
IAp(t)

+ E
Ft

{
α
[
L
(
Υ (t + δ), u(t + δ), v

)
– L

(
Υ (t + δ), u(t + δ), u(t)

)]
IA

+
[
b
(
Γ (t + δ), u(t + δ), v

)
– b

(
Γ (t + δ), u(t + δ), u(t)

)]
IAp(t + δ)

}}

≥ 0. (58)

Since A ∈Ft is chosen arbitrarily, it implies that

E
Ft

{
α
[
L
(
Υ (t), v, u(t – δ)

)
– L

(
Υ (t), u(t), u(t – δ)

)]

+
[
b
(
Γ (t), v, u(t – δ)

)
– b

(
Γ (t), u(t), u(t – δ)

)]
p(t)

+ E
Ft

{
α
[
L
(
Υ (t + δ), u(t + δ), v

)
– L

(
Υ (t + δ), u(t + δ), u(t)

)]

+
[
b
(
Γ (t + δ), u(t + δ), v

)
– b

(
Γ (t + δ), u(t + δ), u(t)

)]
p(t + δ)

}}

≥ 0.

This will lead to

α
[
L
(
Υ (t), v, u(t – δ)

)
– L

(
Υ (t), u(t), u(t – δ)

)]

+
[
b
(
Γ (t), v, u(t – δ)

)
– b

(
Γ (t), u(t), u(t – δ)

)]
p(t)

+ E
Ft

{
α
[
L
(
Υ (t + δ), u(t + δ), v

)
– L

(
Υ (t + δ), u(t + δ), u(t)

)]

+
[
b
(
Γ (t + δ), u(t + δ), v

)
– b

(
Γ (t + δ), u(t + δ), u(t)

)]
p(t + δ)

}

≥ 0.

Let us introduce the following Hamiltonian:

H(t, x, xδ ,μ1,μ1δ ,μ3,μ3δ , v, vδ , p,α)

= b(t, x, xδ ,μ1,μ1δ , v, vδ)p + αL(t, x, xδ ,μ3,μ3δ , v, vδ). (59)

Set

H(t, v)

= H
(
t, x(t), x(t – δ),Eψ

(
x(t)

)
,Eψ

(
x(t – δ)

)
,

Eφ
(
x(t)

)
,Eφ

(
x(t – δ)

)
, v, u(t – δ), p(t),α

)
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+ E
Ft [H

(
t + δ,Eψ

(
x(t + δ)

)
,Eψ

(
x(t)

)
,Eφ

(
x(t + δ)

)
,

Eφ
(
x(t)

)
, u(t + δ), v, p(t + δ),α

)
. (60)

We have H(t, v) ≥H(t, u(t)), ∀v ∈ U , a.e. t ∈ [0, T], P-a.s.
In summary of the above analysis, we can get the following maximum principle.

Theorem 4.7 Let (u(·), x(·)) be an optimal solution of the Problem 3.1 and Assumption
(H2) hold. Then there exist α,γ ∈R with |α|2 + |γ |2 = 1 such that

(i)
(
p(·), k(·)) is a unique solution of (55);

(ii) H(t, v) ≥H
(
t, u(t)

)
,

∀v ∈ U , a.e. t ∈ [0, T], P-a.s., where H is defined in (60).

(61)

Remark 4.8 When G(x) = 0, the state constraint will disappear and the results in our paper
will degenerate to the case without state constraint.

5 Application
To conclude this paper, we apply our maximum principle to study a kind of optimal har-
vesting problem for a mean-field system. The model of our problem comes from Hu, Øk-
sendal and Sulem [17]. We modify the model to be a delayed system with continuous
harvesting as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dx(t) = {b1(t)x(t) + b2(t)x(t – δ) + b3(t)E[x(t)] – λ1v(t) – λ2v(t – δ)}) dt

+ {σ1(t)x(t) + σ2(t)E[x(t)]}dB(t), t ∈ [0, T]

x(0) = x0(t) > 0, t ∈ [–δ, 0].

(62)

Here x(t) is the density of an unharvested population at time t and v(t) is the harvesting
effort and λ1,λ2 > 0 are the given harvesting efficiency coefficients.

The performance functional is assumed to be of the form

J
(
v(·)) = –E

∫ T

0

{
L1(t)x(t) + L2(t)E

[
x(t)

]
+ L3(t)v2(t)

}
dt – E

[
Kx(T)

]
, (63)

where K = K(ω) > 0 is FT -measurable, representing the salvage price. Our problem is to
minimize above J(v(·)) under the constraint (11). For simplicity, we assume all the coeffi-
cients bi(t) (i = 1, 2, 3), σi(t) (i = 1, 2) and Li(t) > 0 (i = 1, 2, 3) are deterministic functions
on [0, T].

Proposition 5.1 Assume α > 0, γ > 0 and the constraint function G(x) is convex. Then the
optimal control of the mean-field harvesting problem with delay is

u(t) = –
λ2p0(t) + λ2E

Ft [p0(t + δ)]
2αL3(t)

, (64)



Chen and Wang Advances in Difference Equations        (2019) 2019:348 Page 23 of 25

where p0(t) is solution of the following adjoint equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–dp0(t) = {b1(t)p0(t) + E
Ft [b2(t + δ)p0(t + δ)] + E[b3(t)p0(t)]

+ σ1(t)k0(t) + E[σ2(t)k0(t)] – α[L1(t) + L2(t)]}dt

– k0(t) dB(t), t ∈ [0, T],

p0(T) = –αK + γ Gx(x(T)),

p0(t) = 0, k0(t) = 0, t ∈ (T , T + δ].

(65)

Proof Applying the necessary condition (61) in Theorem 4.7, the control of the form (64) is
a candidate of the optimal controls. We also need to prove the optimality of u(t). Suppose
x(t) is the trajectory of u(t) and v(t) ∈ Uad with xv(t) being its corresponding trajectory.
Let us denote x̄(t) = xv(t) – x(t). Applying Itô’s formula to x̄(t)p0(t) we have

E
[
p0(T)x̄(T)

]

= E

∫ T

0

{
αx̄(t)

[
L1(t) + L2(t)

]

– λ1p0(t)
[
v(t) – u(t)

]
– λ2p0(t)

[
v(t – δ) – u(t – δ)

]}
dt. (66)

For the mean-field optimal harvesting problem, we have

E

∫ T

0

[
H

(
t, v(t)

)
– H

(
t, u(t)

)]
dt

= E

∫ T

0

{
–λ1p0(t)

[
v(t) – u(t)

]

– λ2E
Ft

[
p0(t + δ)

][
v(t) – u(t)

]
– αL3(t)

[
v2(t) – u2(t)

]}
dt. (67)

Using a change of time variables we conclude that

E

∫ T

0

{
λ2p0(t)

[
v(t – δ) – u(t – δ)

]
– λ2E

Ft
[
p0(t + δ)

][
v(t) – u(t)

]}
dt = 0.

Thus, Eqs. (66) and (67) lead to

E
[
γ x̄(T)Gx

(
x(T)

)]
– E

∫ T

0
α
{

x̄(t)
[
L1(t) + L2(t)

]
+ L3(t)

[
v2(t) – u2(t)

]}
dt

= E
[
γ x̄(T)Gx

(
x(T)

)]
+ α

[
J
(
v(·)) – J

(
u(·))]

= E

∫ T

0

[
H

(
t, v(t)

)
– H

(
t, u(t)

)]
dt

≥ 0. (68)

Furthermore, we can get

J
(
v(·)) – J

(
u(·))

≥ –
γ

α
E

[
Gx

(
x(T)

)
x̄(T)

]
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≥ –
γ

α
E

[
G

(
xv(T)

)
– G

(
x(T)

)]

= 0, (69)

since we have the constraint condition E[G(x(T))] = E[G(xv(T))] = 0 and G is convex. The
proof of the optimality is completed. �

Remark 5.2 An example of the constraint function is G(x) = ((N – x)+)2 with a fixed con-
stant N . And this state constraint condition implies that x(T) ≥ N a.s.
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