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Abstract
Multistability, i.e., coexisting attractors, is one of the most exciting phenomena in
dynamical systems. This paper presents a new category of coexisting hidden
attractor: five-dimensional (5D) systems with a curve of equilibria. Based on the
segmented disc dynamo, a new 5D hyperchaotic system is proposed. The paper
studies not only coexisting self-excited attractors but also coexisting hidden
attractors in the new system with four types of equilibria: a curve of equilibria, a line
equilibrium, a stable equilibrium, and no equilibria. Furthermore, the paper proves
that the degenerate Hopf and pitchfork bifurcations occur in the system. Numerical
simulations demonstrate the emergence of the two bifurcations.
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1 Introduction
Multistability or coexisting different attractors for a given set of parameters is one of the
most exciting phenomena in dynamical systems [1]. Complex dynamical systems, ranging
from human brain, climate, ecosystems to financial markets and engineering applications,
typically have many coexisting attractors [2, 3]. High dimensional hyperchaotic systems
describe natural phenomena more explicitly than low dimensional systems [4]. Nowadays
the research of high dimensional multistability systems has captured attention of scientists
from around the world.

Recently, it has been shown that multistability is connected with the occurrence of un-
predictable attractors which have been called hidden attractors. Hidden attractors may
cause disastrous events, such as sudden climate changes, serious diseases, financial crises,
etc. [2, 5–7]. They are often related to dynamical systems with stable equilibria [8, 9], no
equilibria [10, 11], a line equilibrium [12, 13], or a curve of equilibria [14–17]. A self-
excited attractor has a basin of attraction associated with an unstable equilibrium. The
classical attractors of Lorenz, Rössler, Chua, Chen, Sprott systems (cases B to S) are those
excited from unstable equilibria [16]. This paper presents a new category of hidden attrac-
tor: five-dimensional (5D) systems with a curve of equilibria.

For the past few years, many dynamical systems have been reported to study curve-
shaped equilibria [14–17]. Table 1 in Ref. [15] classifies the chaotic systems with an infinite
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number of equilibria. However, it is noted that no 5D hyperchaotic systems with a curve
of equilibria are reported in the literature.

Motivated by the above findings, the paper proposes a new 5D hyperchaotic system
based on the segmented disc dynamo. We study not only coexisting self-excited attractors
but also coexisting hidden attractors in the new system with four types of equilibria: a
curve of equilibria, a line equilibrium, a stable equilibrium, and no equilibria. Further, we
study the degenerate Hopf bifurcation and pitchfork bifurcation of the system by bifurca-
tion theory [18, 19]. Numerical investigations are performed to verify the corresponding
theoretical results for the two bifurcations.

The paper is organized as follows. Section 2 introduces a new 5D segmented disc dy-
namo with a curve of equilibria. Section 3 investigates different types of coexisting at-
tractors. Section 4 investigates the degenerate Hopf bifurcation, and Sect. 5 analyzes the
pitchfork bifurcation. Section 6 concludes the paper.

2 5D segmented disc dynamo with a curve of equilibria
2.1 Presentation of a 5D segmented disc dynamo with a curve of equilibria
Moffatt proposed the segmented disc dynamo which included the current associated with
the radial diffusion of the magnetic field and satisfied the Alfven theorem of flux conser-
vation [20]:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = r(y – x),

ẏ(t) = mx – (1 + m)y + xz,

ż(t) = g(mx2 + 1 – (1 + m)xy).

(2.1)

Based on (2.1), we translate z to z – m and introduce new parameters, which result in the
following 5D segmented disc dynamo:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = r(y – x),

ẏ(t) = xz – (1 + m)y + v,

ż(t) = g(mx2 + 1 – (1 + m)xy) – k1u + k6z,

u̇(t) = k2y2 – k3z,

v̇(t) = k4x – xz+k5v,

(2.2)

where r and m are positive parameters, and the others are real parameters.
The divergence of the system is ∇ · V = –r – 1 – m + k5 + k6, and the system is dissipative

if k5 + k6 < r + m + 1. System (2.2) is invariant under the transformation (x, y, z, u, v) →
(–x, –y, z, u, –v).

Now in order to obtain the hyperchaos with three positive Lyapunov exponents (LEs),
we need to exclude some parameter sets that cannot make system (2.2) show bounded
chaotic solutions.

Theorem 2.1 If the following conditions are satisfied:

g = k2 = 0, k1 = k3 – k6 = r – k4 = –1 – k5 = m + 1 – r < 0, (2.3)

then system (2.2) has no bounded chaotic or hyperchaotic solutions.
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Figure 1 Parameters (g, k1, k2, k3, k4, k5, k6) = (0, 0.05,
1, –0.6, 10, –1, 0), initial condition
(–2, 7.9221, –1, 0, 15), regions of various dynamical
behaviors for the parametersm and r. Chaos with
one positive LE in purple; Hyperchaotic regions with
two positive LEs in green; Hyperchaotic regions with
three positive LEs in black; Point regions with five
negative LEs in red

Proof From system (2.2), we can get

ẋ + ẏ + ż + u̇ + v̇ = (k4 – r)x – (m + 1 – r)y – (k3 – k6)z – k1u + (k5 + 1)v. (2.4)

By condition (2.3), Eq. (2.4) becomes

ẋ + ẏ + ż + u̇ + v̇ = (k4 – r)(x + y + z + u + v).

Hence

x(t) + y(t) + z(t) + u(t) + v(t) = ce(k4–r)t ,

where c is an arbitrary constant. For k4 – r > 0, system (2.1) is not chaotic because at least
one of x(t), y(t), z(t), u(t), and v(t) is not bounded.

Figure 1 shows the regions of various dynamical behaviors in the space of the param-
eters (m, r) ∈ [1, 10] × [50, 60] with the other fixed parameters (g, k1, k2, k3, k4, k5, k6) =
(0, 0.05, 1, –0.6, 10, –1, 0) and the initial condition (–2, 7.9221, –1, 0, 15). Chaotic and hy-
perchaotic regions also include hidden chaos and hyperchaos. �

2.2 Equilibria and stability
For k4 = 1 + m, k5 = –1, and k1k3 �= 0, system (2.2) has a curve of equilibria

E1

(

x, x,
k2

k3
x2,

gk3(1 – x2) + k2k6x2

k1k3
, (1 + m)x –

k2

k3
x3

)

.

We first discuss the case: k4 �= 1 + m and k5 = –1. For k1k3 �= 0, there is an equilibrium
E2(0, 0, 0, g

k1
, 0). For k1 = 0 and g �= 0, there is no equilibria. For k1 = g = 0 or k3 = 0, the sys-

tem always has a line equilibrium. The other case, k4 = 1 + m and k5 �= –1, can be similarly
discussed.

Let

S1 =

{

(m, g, k1, k2, k3, k4, k5, k6)

∣
∣
∣
∣
∣

g = k2 = 0, k1k3 �= 0, k4 = 1 + m,
k5 = –1, k6 < 0

}

,

S2 = {(m, k1, k3, k4, k5, k6)|k1k3 �= 0, k4 = 1 + m, k5 < –1, k6 < 0} ,

and the following theorem is easily proved.
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Theorem 2.2
(1) Suppose (m, g, k1, k2, k3, k4, k5, k6) ∈ S1. If k1k3 > 0, then the equilibrium E1 of system

(2.2) has at least three-dimensional stable manifold and one-dimensional unstable
manifold. Otherwise, E1 has at least four-dimensional stable manifold.

(2) Suppose (m, k1, k3, k4, k5, k6) ∈ S2. If k1k3 > 0, then the equilibrium E2 is unstable and
has four-dimensional stable manifold and one-dimensional unstable manifold.
Otherwise, E2 is stable and has five-dimensional stable manifold.

3 Multistability
The complex dynamics of a hyperchaotic system are usually produced by the bifurcations
at equilibria. However, curve-shaped equilibria are non-isolated and non-hyperbolic, so it
is difficult to obtain the complex dynamics due to the bifurcation at equilibria. The meth-
ods of numerical analysis are vital for these systems with a curve of equilibria [14]. In
addition, lots of other complex dynamics of system (2.2) are also discovered by means of
the detailed numerical analysis.

3.1 Coexisting chaos and hyperchaos for system (2.2) with a curve of equilibria
When (m, r, g, k1, k2, k3, k4, k5, k6) = (99, 9, 5, –10, 10, 10, 100, –1, 0), system (2.2) has a curve
of equilibria (x, x, x2, 1

2 (x2 – 1), 100x(1 – x2)). For the initial condition (–2, 7.9221, –1, 0,
15.8407), system (2.2) has the LEs (0.0095, 0.0017, 0, –10.5037, –22.3829), and the Kaplan–
Yorke dimension is 3.0011. For the initial condition (0.7513, 0.2551, 0.5060, 0.6991, 0.8909),
the LEs are (0.0038, 0, –0.0151, –10.1246, –17.2288), and the Kaplan–Yorke dimension is
2.2517. The hyperchaotic and chaotic attractors are shown in Fig. 2. Figure 2(c) shows the
LEs spectrum with 200 varied initial conditions, and Fig. 2(d) shows the LEs spectrum for
r ∈ [7, 50] and the initial condition (–2, 7.9221, –1, 0, 15.8407).

3.2 Coexisting chaos and hyperchaos for system (2.2) with no equilibria
When (m, r, g, k1, k2, k3, k4, k5, k6) = (0.11, 8, 1.2, 0, 10, 0, –100, –1, 0), system (2.2) has no
equilibria. For the initial condition (–7.4047, –10.8076, 8.9184, –0.4523, 0.0641), the sys-
tem has the LEs (0.0062, 0, –0.0090, –0.0133, –10.0797), and the Kaplan–Yorke dimension
is 2.6889. The chaos is shown in Fig. 3(a), and Fig. 3(b) shows the Poincaré map. For
the initial condition (–2, 0, 0.1, 0.1, 0), system (2.2) has the LEs (0.0032, 0.0018, 0, –0.0123,
–10.0995), and the Kaplan–Yorke dimension is 3.4065. A hyperchaotic attractor is shown
in Fig. 3(c), and Fig. 3(d) shows the Poincaré map. Figure 3(e) shows the LEs spectrum with
200 varied initial conditions, and the corresponding Kaplan–Yorke dimensions are shown
in Fig. 3(f ).

3.3 Coexisting chaotic, quasiperiodic and periodic attractors for system (2.2) with
a line equilibrium

When (m, r, g, k1, k2, k3, k4, k5, k6) = (1.1, 6.1, 12, 0.1, 0, 0, –100, –1, 0), system (2.2) has a line
equilibrium (0, 0, z, 120, 0). For the initial condition (100, –98, 100, 100, 100), the system
has the LEs (0.0058, 0, –0.0364, –2.3601, –6.8103). Figure 4(a) shows the chaotic attractor.
For the initial condition (–0.0506, –5.9116, 3.2069, –20.3950, 1.1477), the system has the
LEs (0, 0, –0.4492, –0.4526, –8.2991) and displays quasiperiodicity. For the initial condi-
tion (2, 0.1, 0, 0, 0), a periodic attractor is shown in Fig. 4(b). Figure 4(c) shows the LEs
spectrum with 200 varied initial conditions, and the corresponding Kaplan–Yorke dimen-
sions are shown in Fig. 4(d).
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Figure 2 Parameters (m, r,g, k1, k2, k3, k4, k5, k6) = (99, 9, 5, –10, 10, 10, 100, –1, 0); (a) chaotic attractor;
(b) hyperchaotic attractor; (c) Lyapunov exponents spectrum with 200 varied initial conditions; (d) Lyapunov
exponents spectrum for r ∈ [7, 50] and initial condition (–2, 7.9221, –1, 0, 15.8407)

3.4 Coexisting chaos and hyperchaos for system (2.2) with a stable equilibrium
When (m, r, g, k1, k2, k3, k4, k5, k6) = (1.3, 1, 0.12, 0.01, 0, –0.001, –1, 0, –0.001), system (2.2)
has a stable equilibrium (0, 0, 0, 12, 0). For the initial condition (0.0326, 0.5612, 0.8819,
0.6692, 0.1904), the LEs are (0.0031, 0, –0.0172, –0.0143, –3.2647). The chaotic attractor
is shown in Fig. 5(a), and Fig. 5(b) shows the Poincaré map. For the initial condition
(0, 0, 0, 0, 0), the LEs are (1.8956, 1.4008, 0, –0.0015, –6.5956), and the system displays hy-
perchaos.

3.5 Coexisting self-excited attractors
When (m, r, g, k1, k2, k3, k4, k5, k6) = (1.3, 1, 12, 0.01, –0.1, –0.001, –2.3, –1, 0.1), system (2.2)
has an unstable equilibrium (0, 0, 0, 1200, 0). For the initial condition (–0.3394, –64.0648,
91.0435, –75.5546, 10.5920), system (2.2) has the LEs (0.0082, 0.0056, 0, –0.5393, –3.5561).
A hyperchaotic attractor is obtained (see Fig. 6(a)), and the Poincaré map is shown
in Fig. 6(b). For the initial condition (0.1576, 0.9706, 0.9572, 0.4854, 0.8003), the system
has the LEs (0.0047, 0, –0.1228, –0.5298, –3.5469). The chaotic attractor is obtained in
Fig. 6(c). The Poincaré map is shown in Fig. 6(d). When r ∈ [1, 10], Fig. 7(a) shows the
LEs spectrum, and the corresponding bifurcation diagram is shown in Fig. 7(b).

4 Degenerate Hopf bifurcation in system (2.2)
We utilize the projection method [18] to calculate the Lyapunov coefficients associated
with Hopf bifurcation.
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Figure 3 Parameters (m, r,g, k1, k2, k3, k4, k5, k6) = (0.11, 8, 1.2, 0, 10, 0, –100, –1, 0); (a) chaotic attractor;
(b) Poincaré map of the chaotic attractor; (c) hyperchaotic attractor; (d) Poincaré map of the hyperchaotic
attractor; (e) Lyapunov exponents spectrum with 200 varied initial conditions; (e) Kaplan–Yorke dimension

Let

ω =
√

–k1k3,

S =

{

(m, r, g, k1, k2, k3, k4, k5)

∣
∣
∣
∣
∣

m > 0, r > 0, k2 = k5 = 0, k1k3 < 0,
g �= 0, –(m + 1)(r + m + 1) < k4 < 0

}

.

For (m, r, g, k1, k2, k3, k4, k5) ∈ S, system (2.2) has only one equilibrium E2(0, 0, 0, g
k1

, 0).

E2 has the eigenvalues λ(k6) = k6±
√

4k1k3+k62

2 , and the other eigenvalues of E2 satisfy

λ3 + (1 + m + r)λ2 + r(m + 1)λ – k4r = 0.
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Figure 4 Parameters (m, r,g, k1, k2, k3, k4, k5, k6) = (1.1, 6.1, 12, 0.1, 0, 0, –100, –1, 0); (a) chaos; (b) period;
(c) Lyapunov exponents spectrum with 200 varied initial conditions; (d) Kaplan–Yorke dimension

Figure 5 Parameters (m, r,g, k1, k2, k3, k4, k5, k6) = (1.3, 1, 0.12, 0.01, 0, –0.001, –1, 0, –0.001); (a) Chaotic attractor;
(b) Poincaré map of the chaotic attractor

According to the Routh–Hurwitz criterion, the real parts of the roots λ are negative if and
only if

�1 = m + r + 1 > 0,

�2 = r
(
(m + 1)(r + m + 1) + k4

)
> 0,

�3 = –rk4�2 > 0.

When k6 = 0 and (m, r, g, k1, k2, k3, k4, k5) ∈ S, E2 has a pair of purely imaginary eigenval-
ues ±ωi, and the other three eigenvalues with negative real part.
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Figure 6 Parameters (m, r,g, k1, k2, k3, k4, k5, k6) = (1.3, 1, 12, 0.01, –0.1, –0.001, –2.3, –1, 0.1); (a) hyperchaotic
attractor; (b) Poincaré map of the hyperchaotic attractor; (c) chaotic attractor; (d) Poincaré map of the chaotic
attractor

Figure 7 Initial condition (0.1576, 0.9706, 0.9572, 0.4854, 0.8003), parameters
(m,g, k1, k2, k3, k4, k5, k6) = (1.3, 12, 0.01, –0.1, –0.001, –2.3, –1, 0.1) and r ∈ [1, 10]; (a) Lyapunov exponents
spectrum; (b) bifurcation diagram

The transversality condition

Re

(
dλ(k6)

dk6

)∣
∣
∣
∣
k6=0

=
1
2

> 0 (4.1)

is also satisfied, and a Hopf bifurcation at E2 occurs. We have the following theorem.
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Theorem 4.1 Considering system (2.2), for parameter (m, r, g, k1, k2, k3, k4, k5) ∈ S and
k6 = 0, the first and second Lyapunov coefficients l1 = l2 = 0 at E2, and the third Lyapunov
coefficient is given by l3 = – 4g((m+2)(m+1)+r(m–3))ω4+g(4r2(m+2)+r(m+1)(k4–m+3))ω2+gk4r2

4(64ω6+16((m+1)2+r2)ω4+4((m+1)2r2+2k4r(m+1+r))ω2+k42r2)
.

(1) If l3 > 0, system (2.2) has a transversal Hopf point of codimension three at E2 which is
unstable.

(2) If l3 < 0, system (2.2) has a transversal Hopf point of codimension three at E2 which is
stable.

Proof By the changes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x,

y = y,

z = z,

u1 = u – g
k1

,

v = v,

(4.2)

system (2.2) becomes the following system (still denoted by x, y, z, u, v):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = r(y – x),

ẏ(t) = xz – (1 + m)y + v,

ż(t) = g(mx2 – (1 + m)xy) – k1u + k6z,

u̇(t) = k2y2 – k3z,

v̇(t) = k4x – xz + k5v,

(4.3)

and the equilibrium E2(0, 0, 0, g
k1

, 0) is moved to O(0, 0, 0, 0, 0).
From (4.1), the transversality condition holds. Now we calculate the Lyapunov coeffi-

cients, which show the stability of the equilibrium and the periodic orbit which appears.
According to Ref. [18], for the parameters (m, r, g, k1, k2, k3, k4, k5) ∈ S and k6 = 0, we have

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–r r 0 0 0
0 –1 – m 0 0 1
0 0 0 –k1 0
0 0 –k3 0 0
k4 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

p =
(

0, 0, –
i

2ω
,

1
2k3

, 0
)

,

q = (0, 0, –iω, k3, 0),

B(X, Y ) =
(
0, x1y3 + x3y1, 2gmx1y1 – g(1 + m)(x1y2 + x2y1), 0, –x1y3 – x3y1

)
,

C = D = E = K = L = (0, 0, 0, 0, 0),

h11 = h20 = h22 = h30 = (0, 0, 0, 0, 0),

G21 = 0,

h21 =
(

1,
iω + r

r
, –

iω
k3

, 1,
(iω + 1 + m)(iω + r)

r

)

,
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h31 =
(

3(2ω + i)ωr
f (2)

,
3i(2ω – ir)(2ω + i)ω

f (2)
, 0, 0,

3iω(–4ω2 + 2i(m + r + 1)ω + r(m + 1 – k4))
f (2)

)

,

H32 =
6ω2rb

f (2)(2iω + 1 + m)(2iω + r)
(0, 1, 0, 0, –1),

G32 = 0,

where

X = (x1, x2, x3, x4, x5), Y = (y1, y2, y3, y4, y5),

f (n) = –n3ω3i – n2(m + r + 1)ω2 + nr(m + 1)ωi – k4r.

Therefore

l1 =
1
2

Re(G21) = 0, l2 =
1

12
Re(G32) = 0.

Since l1 = l2 = 0, we continue to calculate l3. Some vector expressions are too complex,
and for the convenience of expression, we write the results after calculation as follows:

B(h11, h32) = B(h20, h̄32) = B(h̄20, h41) = B(h21, h22) = B(h30, h̄31)

= B(h̄30, h40) = B(q, h33) = (0, 0, 0, 0, 0),

B(h21, h31) =
–3b

f (2)(2iω + 1 + m)(2iω + r)

(

0, k1r, gω
(
(m + 1)ω – 2ri

)
, 0,

ω2r
k3

)

,

B(q̄, h42) =
4(2ω + i)rω2i
k3f (3)f (2)2 (0, –c, 0, 0, c),

where

b = –8iω3 – 4(m + r)ω2 + 2i(mr – m – 1)ω – r(m + 1),

c = 216(k3 + 3)ω6 – 180i(k3 + 3)(1 + m + r)ω5

– 6
((

6(m + 1) + 25r
)
(m + 1)(k3 + 3) + 18r2)ω4

+ 5ir
((

6(m + 2)(m + r) – 7k4 + 6
)
(k3 + 3) – 18r

)
ω3

+ r
((

6mr(m + 2) – 13k4(m + r + 1)
)
(k3 + 3) + 18r

)
ω2

+ 5k4(k3 + 3)(1 + m)r2ωi – k4
2r2(k3 + 3).

Hence one has l3 = – 4g((m+2)(m+1)+r(m–3))ω4+g(4r2(m+2)+r(m+1)(k4–m+3))ω2+gk4r2

4(64ω6+16((m+1)2+r2)ω4+4((m+1)2r2+2k4r(m+1+r))ω2+k42r2) . �

Numerical simulation For m = r = g = 1, k2 = k5 = 0, k1 = –0.001, k3 = 0.001, k4 = –5, and
k6 = 0.001, we have l3 = 0.05. An unstable limit cycle is obtained with the initial condition
(1, 0, 1, 0, 0) (see Fig. 8).
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Figure 8 Phase portraits of system (2.2) for initial condition (1, 0, 1, 0, 0) and parameters
(m, r,g, k1, k2, k3, k4, k5, k6) = (1, 1, 1, –0.001, 0, 0.001, –5, 0, 0.001)

5 Pitchfork bifurcation in system (2.2)
We utilize the center manifold theorem and the bifurcation theory [18, 19] to study pitch-
fork bifurcation of system (2.2).

Let

S = {(k1, k2, k3, k4, k5, k6)|k4 = k5 = k6 = 0, k1k3 > 0, k2k3 > 0} .

When (k1, k2, k3, k4, k5, k6) ∈ S, system (2.2) has only one equilibrium E2(0, 0, 0, g
k1

, 0).
By the changes (4.2), system (2.2) becomes the following system (still denoted by x, y, z,

u, v):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = r(y – x),

ẏ(t) = xz – (m + 1)y + v,

ż(t) = g(mx2 – (1 + m)xy) – k1u,

u̇(t) = k2y2 – k3z,

v̇(t) = k4x – xz,

(5.1)

and the equilibrium E2 is moved to O(0, 0, 0, 0, 0).
The Jacobian matrix at O is

J =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–r r 0 0 0
0 –m – 1 0 0 1
0 0 0 –k1 0
0 0 –k3 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and the corresponding characteristic equation is

(
λ3 + (m + r + 1)λ2 + (mr + r)λ

)(
λ2 – k1k3

)
= 0.

System (2.2) has a zero eigenvalue λ1 = 0 and the other four eigenvalues

λ2 = –r, λ3 = –(m + 1), λ4,5 = ±√
k1k3.

O(0, 0, 0, 0, 0) is nonhyperbolic, and then we can get the following theorem.
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Theorem 5.1 For (k1, k2, k3, k4, k5, k6) ∈ S, system (2.2) undergoes a pitchfork bifurcation
at E2(0, 0, 0, g

k1
, 0). Furthermore, when k4 < 0, there is only one equilibrium E2 which is sta-

ble near the left-hand side of k4 = 0; when k4 > 0, E2 becomes unstable and the other two
equilibria are stable near the right-hand side of k4 = 0.

Proof The corresponding eigenvectors are

η1 =
(

1
m + 1

,
1

m + 1
, 0, 0, 1

)T

,

η2 = (1, 0, 0, 0, 0)T ,

η3 =
(

r
r – m – 1

, 1, 0, 0, 0
)T

,

η4 =
(

0, 0, –
√

k1k3

k3
, 1, 0

)T

,

η5 =
(

0, 0,
√

k1k3

k3
, 1, 0

)T

.

Let

k4 = ε, T = (η1,η2,η3,η4,η5), (x, y, z, u, v)T = T(x1, y1, z1, u1, v1)T . (5.2)

By (5.2), system (5.1) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ẋ1

ẏ1

ż1

u̇1

v̇1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0

0 –r 0 0 0

0 0 –(m + 1) 0 0

0 0 0
√

k1k3 0

0 0 0 0 –
√

k1k3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1

y1

z1

u1

v1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g1

g2

g3

g4

g5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

ε̇ = 0,

(5.3)

where

a =
x1

1 + m
–

ry1

1 + m – r
+ z1,

b =
k1v1a√

k1k3
(v1 – u1),

g1 = εa – b,

g2 =
b(m + 2) – εa

m + 1
,

g3 =
(r + 1)b – εa

m + 1 – r
,

g4 =
1
2

k2

(
x1 + (1 + m)y1

1 + m

)2

–
ga

√
k1k3(ma – (x1 + (1 + m)y1))

2k1
,

g5 =
1
2

k2

(
x1 + (1 + m)y1

1 + m

)2

+
ga

√
k1k3(ma – (x1 + (1 + m)y1))

2k1
.
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From the center manifold theorem, there exists a center manifold for Eqs. (5.3), which
can be expressed locally as the following set through the variable x1 and ε:

Wc(0) =
{

(x1, y1, z1, u1, v1, ε)|y1 = h1.(x1, ε), z1 = h2(x1, ε), u1 = h3(x1, ε),

v1 = h4(x1, ε), |x1| < δ, |ε| < δ̄, hi(0, 0) = 0, Dhi(0, 0) = 0, i = 1, 2, 3, 4
}

,

where δ and δ̄ are sufficiently small.
Assume that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y1 = h1(x1, ε) = a1x1
2 + a2x1ε + a3ε

2 + o(3),

z1 = h2(x1, ε) = b1x1
2 + b2x1ε + b3ε

2 + o(3),

u1 = h3(x1, ε) = c1x1
2 + c2x1ε + c3ε

2 + o(3),

v1 = h4(x1, ε) = d1x1
2 + d2x1ε + d3ε

2 + o(3).

(5.4)

Considering ε̇ ≡ 0, the center manifold should satisfy

N
(
h(x1, ε)

) �= Dx1 h · g1 – Bh – g ≡ 0, (5.5)

where

h(x1, ε) =

⎛

⎜
⎜
⎜
⎝

h1

h2

h3

h4

⎞

⎟
⎟
⎟
⎠

, Dx1 h =

⎛

⎜
⎜
⎜
⎜
⎝

∂h1
∂x1
∂h2
∂x1
∂h3
∂x1
∂h4
∂x1

⎞

⎟
⎟
⎟
⎟
⎠

, g =

⎛

⎜
⎜
⎜
⎝

g2

g3

g4

g5

⎞

⎟
⎟
⎟
⎠

,

B =

⎛

⎜
⎜
⎜
⎝

–r 0 0 0
0 –(m + 1) 0 0
0 0

√
k1k3 0

0 0 0 –
√

k1k3

⎞

⎟
⎟
⎟
⎠

.

Substituting Eqs. (5.4) to (5.5) gives

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a1 = 0, a2 = – 1
(1+m)3 , a3 = 0,

b1 = 0, b2 = 1
(m+1)(r–m–1)r , b3 = 0,

c1 = – g
√

k1k3+k1k2
2k1

√
k1k3(1+m)2 , c2 = 0, c3 = 0,

d1 = k1k2–g
√

k1k3
2k1

√
k1k3(1+m)2 , d2 = 0, d3 = 0,

and we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

y1 = h1(x1, ε) = – x1ε

(1+m)3 + o(3),

z1 = h2(x1, ε) = x1ε

(r–m–1)(m+1)r + o(3),

u1 = h3(x1, ε) = – (k1k2+g
√

k1k3)x12

2k1(1+m)2√
k1k3

+ o(3),

v1 = h4(x1, ε) = (k1k2–g
√

k1k3)x12

2k1(1+m)2√
k1k3

+ o(3).

(5.6)
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Figure 9 Pitchfork bifurcation diagram in system
(2.2) near k4 = 0

Applying Eqs. (5.6) into ẋ1 = g1 of (5.3) and reducing the vector field to the center man-
ifold, we can get

⎧
⎨

⎩

ẋ1 = F(x1, ε) + o(4),

ε̇ = 0,
(5.7)

where

F(x1, ε) =
(r(m + 1)2 – (m + r + 1)ε)(k3(m + 1)2ε – k2x1

2)x1

k3r(1 + m)5 . (5.8)

F(x1, ε) satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F(0, 0) = 0, ∂F
∂x1

|(0,0) = 0, ∂F
∂ε

|(0,0) = 0,
∂2F
∂x12 |(0,0) = 0, ∂2F

∂x1∂ε
|(0,0) = 1

1+m �= 0,
∂3F
∂x13 |(0,0) = – 6k2

(1+m)3k3
�= 0,

which indicates that the equilibrium (x1, ε) = (0, 0) of Eqs. (5.7) undergoes a pitchfork bi-
furcation at ε = 0 (k4 = 0). Since – ∂3F

∂x13 / ∂2F
∂x1∂ε

> 0, the bifurcation direction is near the right-
hand side of ε = 0 (k4 = 0). So Theorem 5.1 is proved. �

Numerical simulation For r = m = k1 = k2 = k3 = 1 and g = k5 = k6 = 0, (5.8) becomes

F(x1, ε) =
1

32
(4 – 3ε)

(
4ε – x1

2)x1.

As shown in Fig. 9, system (2.2) undergoes a pitchfork bifurcation, which accords with
Theorem 5.1.

6 Conclusions
The 5D segmented disc dynamo is very interesting and novel in that there are coexisting
hidden attractors with four types of equilibria: a curve of equilibria, a line equilibrium, a
stable equilibrium, and no equilibria. The paper studies not only coexisting self-excited
attractors but also coexisting hidden attractors. Hidden hyperchaos with three positive
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LEs is also displayed. Besides, by choosing an appropriate bifurcation parameter, the paper
proves that the degenerate Hopf bifurcation and pitchfork bifurcation occur in the system.
The simulation results demonstrate the correctness of the two bifurcations analysis.

The research on the new system may enrich the hyperchaotic theories and engineering
applications. It is also hoped that the work is helpful to identify the geometrical charac-
teristics of lower dimensional chaotic attractors. More studies will be explored to reveal
the riddled property of the basin of attraction of the hyperchaotic attractors.
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