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Abstract
This paper is to investigate the finite-time synchronization of stochastic Markovian
jumping genetic oscillator networks with time-varying delay and Lévy noise. At first,
we generalize the finite-time stability theorem from the systems driven by Brownian
motion to the Markovian jumping systems with Lévy noise. And then, we utilize the
stochastic Lyapunov functional method and appropriate control to obtain sufficient
conditions for finite-time synchronization. Finally, two numerical examples are
presented to verify the effectiveness of the proposed criteria.
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1 Introduction
Over the past few years, genetic oscillator networks (GONs) have received considerable
attention in biological and biomedical sciences since they provide a powerful tool to elu-
cidate the interactions between genes and proteins in gene expression and other gene
regulation processes. As is known, GONs are inherently coupled complex biochemical
systems, where proteins are synthesized from genes as transcriptional factors binding to
the regulatory sites of their corresponding genes or other genes. Some important progress
has been made in the development of GONs by means of various mathematical modeling,
such as Boolean network model [1] and differential equation model [2]. Particularly, the
differential equation model has obtained an increasing interest in qualitative and quanti-
tative analysis [3–5].

Synchronization analysis of GONs is a hot topic in theory and numerical calculation.
Usually, it is known that synchronization is essential for understanding biological rhyth-
mic phenomena and molecular communication of living organisms [6, 7]. Very recently,
some experimental results have implied that synchronization also plays a vital role in
biomedical engineering. For instance, in Ref. [8] it has been found that synchronization
can significantly increase the rate of homologous recombination during transformation
in gene targeting, and in Ref. [9] it is showed that synchronization can enhance the an-
ticancer activity of 2-deoxyglucose in breast cancer cells due to an increase in cellular
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glucose metabolism. Therefore, it is not surprising that many theoretical analyses on syn-
chronization with or without control have been established for GONs in these years [6, 7,
10–16]. As we know, in Ref. [10] the global exponential synchronization of delay-coupled
GONs was considered in absence of control, while in Ref. [11] the cluster synchronization
problem of GONs was investigated based on aperiodically adaptive intermittent control,
and in Ref. [12] the conditions for multisynchronization of GONs were given via partial
impulsive control strategy. Among the various synchronization protocols including expo-
nential synchronization and asymptotic synchronization, finite-time synchronization is
faster in synchronization realization. Moreover, the finite-time control techniques have
demonstrated better robustness and disturbance rejection properties [17, 18]. As a result,
the finite-time synchronization has obtained much attention in complex networks except
for GONs [19–23]. Note that the real cellular life is finite, so it should be more meaningful
for considering finite-time synchronization in GONs.

Although deterministic differential equations can capture some mean-field characteris-
tics of practical dynamic systems, stochastic differential equations are more important in
modeling uncertainties inherent in real world [24–28]. Gene expression is an intrinsically
stochastic process [29, 30]. It should be pointed out that all of the existing literature about
stochastic GONs mainly focuses on a system driven by Brownian motion [7, 13, 16]. How-
ever, researchers observed that the products of mRNAs and proteins occur in a bursty,
unpredictable, and intermittent manner from a large number of biology experiments [31].
These burst-like events lead to a pulsatile fashion of high transcriptional activity followed
by long periods of inactivity [32] and obey heavy tailed distributions [33]. The characteris-
tics of burst-like events appear to be properly modeled by the non-Gaussian Lévy process
[34]. In fact, jump-diffusion Lévy process, which involves Brownian motion as a specific
case, allows not only the number of individuals to change continuously most of the time
but also random jump discontinuities to occur occasionally [35, 36]. Meanwhile, we also
note that a large number of studies have considered the effects of two kinds of necessary
factors, i.e., time delay [37, 38] and Markovian jumping [39–41], in GONs. On the one
hand, time delay is a ubiquitous phenomenon in slow biochemical reactions of genetic
oscillator regulatory process. On the other hand, the dynamical systems with Markovian
jumping are appropriate to describe the situation where gene switches between an inac-
tive state, in which no protein will be produced, and an active state [42]. This evidence
demonstrates that it is more meaningful and challenging to explore synchronization for
delayed GONs with Lévy noise and Markovian jumping despite increased mathematical
complexity. Nevertheless, to the best of our knowledge, the problem of synchronization
for GONs in the case of Lévy noise has not been studied.

Motivated by the above discussions, the purpose of this paper is to deal with the finite-
time synchronization problem of stochastic Markovian jumping GONs with time-varying
delay and Lévy noise. We will introduce vector form Lévy noise into GONs to make a sys-
tem more realistic in the true biological environment of networks because each node is
always influenced by different multidimensional noises. By contrast of the existing liter-
ature, the main contributions of this paper can be highlighted into three points. Firstly,
a more general model is proposed in this paper via introducing vector form Lévy noise
into GONs. Secondly, we extend the finite-time stability theorem previously developed
for the systems driven by Brownian motion to the Markovian jumping systems with Lévy
noise. Thirdly, the sufficient finite-time synchronization conditions for stochastic Marko-
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vian jumping GONs with time-varying delay and Lévy noise are derived with the help of
appropriate control and stochastic Lyapunov functional method.

The paper is organized as follows. In Sect. 2, some preliminary model notations and a
lemma of finite-time stability for the Markovian jumping systems driven by Lévy noise
are given. In Sect. 3, by applying Itô’s formula and the finite-time stability theorem, we
obtain sufficient conditions of finite-time synchronization for GONs. Additionally, some
corollaries are reduced to extend our main results. In Sect. 4, two numerical examples
are presented to verify the effectiveness of the proposed criteria. Finally, conclusions are
drawn in Sect. 5.

Notations Throughout this paper, unless otherwise specified, we let (Ω ,F , {Ft}t≥0, P) be
a complete probability space with a filtration {Ft}t≥0 satisfying usual conditions (i.e., it is
right-continuous and increasing while F0 contains all P-null sets). Rn is the n-dimensional
Euclidean space. R+ denotes the set of positive real numbers. If x is a vector or matrix,
its transpose is denoted by xT . For vector x ∈ Rn, its norm is defined as ‖x‖ =

√
(xT x). In

denotes the n-dimensional identity matrix. A > 0 implies that A is a symmetric and positive
definite matrix. diag(·) stands for a diagonal matrix. E(·) denotes the expectation operator
with respect to some probability measure.

2 Preliminaries
Let r(t), t ≥ 0 be a right-continuous Markovian chain on the probability space taking val-
ues in a finite state set S = {1, 2, . . . , M} with generator Π = (πij)M×M given by

P
{

r(t + δ) = j | r(t) = i
}

=

⎧
⎨

⎩
πijδ + o(δ); if i �= j,

1 + πiiδ + o(δ); if i = j,

where δ > 0 and πij ≥ 0 is the transition rate from i to j if i �= j, while

πii = –
∑

i�=j

πij.

It is well known that almost every sample path of r(t) is a right-continuous step function.
Consider the Markovian jumping GONs with time-varying delay of the form

dxk(t) =

[

A
(
r(t)

)
xk(t) + B1

(
r(t)

)
f̃
(
r(t), xk(t)

)
– B2

(
r(t)

)
g̃
(
r(t), xk

(
t – τ (t)

))

+ B2
(
r(t)

)
ēn +

N∑

l=1

Gkl
(
r(t)

)
Γ

(
r(t)

)
xl(t)

]

dt, (2.1)

where xk(t) ∈ Rn, k = 1, . . . , N , is the state vector of the kth genetic oscillator which rep-
resents the concentrations of proteins, RNAs, and chemical complexes at time t. r(t) is a
Markov chain in a finite state space S. In the networks, A(r(t)), B1(r(t)), and B2(r(t)) are
matrices in Rn×n. ēn = (1, . . . , 1)T

n×1. Γ (r(t)) ∈ Rn×n is a constant inner coupling matrix of
the genetic oscillators to be determined, it should be noted that Γ (r(t)) is not necessary
to be diagonal in this paper. G(r(t)) = (G(r(t))kl)N×N is the irreducible coupling matrix,
which is defined as follows: if there is a link from node l to node k, then G(r(t))kl is equal
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to a positive constant denoting the coupling strength of this link; otherwise, G(r(t))kl = 0;
G(r(t))kk = –

∑N
l=1,l �=k Gkl(r(t)). f̃ (r(t), xk(t)) = [f̃1(r(t), xk1(t)), . . . , f̃n(r(t), xkn(t))]T ∈ Rn and

g̃(r(t), xk(t – τ (t))) = [g̃1(r(t), xk1(t – τ (t))), . . . , g̃n(r(t), xkn(t – τ (t)))]T ∈ Rn are the regula-
tory functions, which are monotonic increasing regulatory functions and usually are of
the Michaelis–Menten or Hill form.

In this paper, we use the drive-response approach to derive the finite-time synchroniza-
tion criteria, where system (2.1) can be regarded as the drive system with the state variate
denoted by xk(t), and the response system with the state variate denoted by yk(t) can be
described in the following stochastic Markovian jumping GONs with time-varying delay
and Lévy noise according to Lévy–Itô decomposition theorem and the interlacing tech-
nique [35]:

dyk(t) =

[

A
(
r(t)

)
yk(t) + B1

(
r(t)

)
f̃
(
r(t), yk(t)

)
– B2

(
r(t)

)
g̃
(
r(t), yk

(
t – τ (t)

))

+ B2
(
r(t)

)
ēn +

N∑

l=1

Gkl
(
r(t)

)
Γ

(
r(t)

)
yl(t) + Uk

(
r(t)

)
]

dt

+ σk
(
r(t), yk(t) – xk(t), yk

(
t – τ (t)

)
– xk

(
t – τ (t)

))
dWk(t)

+
∫

Z

hk
(
r(t), yk(t) – xk(t), yk

(
t – τ (t)

)
– xk

(
t – τ (t)

)
, zk

)
Ñk(dt, dzk). (2.2)

It should be noticed that the initial values in the response system are different from those
in the drive system, where Uk(r(t)) = (uk1(r(t)), uk2(r(t)), . . . , ukn(r(t)))T ∈ Rn is a control
input vector. σk : S × Rn × Rn → Rn×n and hk : S × Rn × Rn × Z → Rn are Lévy noise
intensity functions. W (t) = (W1(t), . . . , WN (t))T is a vector Brownian motion defined on
the probability space (Ω ,F , {Ft}t≥0, P) with {Ft}t≥0 satisfying the usual conditions. N(t, z)
is an N-dimensional Poisson process and Nk(dt, dzk) is Poisson counting measure with
characteristic measure {λk , k = 1, . . . , N} on a measurable subset Z of [0,∞). Ñk(dt, dzk) =
Nk(dt, dzk) – λk(dzk) dt. Throughout the paper, it is assumed that Wk and Wl , Nk , and Nl

are independent for all k �= l, and r(t), W and N are also independent.
Define the synchronization error vector ek(t) = yk(t) – xk(t), based on systems (2.1) and

(2.2), we have the following error dynamic system:

dek(t) =

[

A
(
r(t)

)
ek(t) + B1

(
r(t)

)
f
(
r(t), ek(t)

)
– B2

(
r(t)

)
g
(
r(t), ek

(
t – τ (t)

))

+
N∑

l=1

Gkl
(
r(t)

)
Γ

(
r(t)

)
el(t) + Uk

(
r(t)

)
]

dt

+ σk
(
r(t), ek(t), ek

(
t – τ (t)

))
dWk(t)

+
∫

Z

hk
(
r(t), ek(t), ek

(
t – τ (t)

)
, zk

)
Ñk(dt, dzk), (2.3)

where f (r(t), ek(t)) = f̃ (r(t), yk(t)) – f̃ (r(t), xk(t)), g(r(t), ek(t – τ (t))) = g̃(r(t), yk(t – τ (t))) –
g̃(r(t), xk(t – τ (t))). The initial value is given by {e(θ̄ ) : –τ̃ ≤ θ̄ ≤ 0} = ξ0 ∈ Rn. Throughout
the paper, we assume that f (r(t), 0) = g(r(t), 0) = σ (r(t), 0, 0) = h(r(t), 0, 0, 0) = 0. Usually,
with an appropriate control in the response system, the error state will approach zero.
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And in this case, it is said that the response system is synchronized with the drive system.
In order to achieve finite-time synchronization, we take the control of the form

Uk
(
r(t)

)
= –η1

(
r(t)

)
ek(t) – ϑ

(
r(t)

)
sign

(
ek(t)

)∣∣ek(t)
∣∣θ

– ϑ
(
r(t)

)(∫ t

t–τ (t)
η2

(
r(s)

)
gT(

r(s), ek(s)
)
g
(
r(s), ek(s)

)
ds

) 1+θ
2 ek(t)

‖ek(t)‖2

– ϑ
(
r(t)

)(∫ t

t–τ (t)
η3

(
r(s)

)
eT

k (s)ek(s) ds
) 1+θ

2 ek(t)
‖ek(t)‖2 , (2.4)

where sign(ek(t)) = diag(sign(ek1(t)), . . . , sign(ekn(t))), |ek(t)|θ = (|ek1(t)|θ , . . . , |ekn(t)|θ )T .
η1(r(t)), η2(r(t)), η3(r(t)) are control strengths satisfying η2(r(t)) > 0, η3(r(t)) > 0. ϑ(r(t)) > 0
is a tunable constant and the real number θ satisfies 0 < θ < 1. For convenience, r(t) and
r(t0) are written as i and i0, respectively.

In order to derive the main results of this paper, we require the functions f̃ (·, ·), g̃(·, ·),
σ (·, ·, ·), and h(·, ·, ·, ·) to satisfy the following assumptions.

A1 For ∀x, y ∈ Rn, the nonlinear functions f̃ and g̃ satisfy the following sector-like condi-
tions:

0 ≤ f̃s(i, x) – f̃s(i, y)
x – y

≤ μi
s, 0 ≤ g̃s(i, x) – g̃s(i, y)

x – y
≤ νi

s, s = 1, . . . , n,

or equivalently,

(
f̃ (i, x) – f̃ (i, y)

)T(
f̃ (i, x) – f̃ (i, y)

) ≤ (x – y)Tμiμi(x – y),
(
g̃(i, x) – g̃(i, y)

)T(
g̃(i, x) – g̃(i, y)

) ≤ (x – y)Tνiνi(x – y),

where μi = diag{μi
1, . . . ,μi

n} and νi = diag{νi
1, . . . ,νi

n}.
A2 Assume that the noise intensity functions σk(·, ·, ·) and hk(·, ·, ·, ·) satisfy the following

conditions:

trace
(
σ T

k
(
i, ek(t), ek

(
t – τ (t)

))
σk

(
i, ek(t), ek

(
t – τ (t)

)))

≤ eT
k (t)λi

1ek(t) + eT
k
(
t – τ (t)

)
λi

2ek
(
t – τ (t)

)

and

∫

Z

hT
k
(
i, ek(t), ek

(
t – τ (t)

)
, zk

)
hk

(
i, ek(t), ek

(
t – τ (t)

)
, zk

)
λk(dzk)

≤ eT
k (t)Hi

1ek(t) + eT
k
(
t – τ (t)

)
Hi

2ek
(
t – τ (t)

)
,

where λi
1, λi

2, Hi
1, and Hi

2 are positive constant matrices of appropriate dimensions.
A3 There exist positive constants τ̃ and τ̄ such that

0 < τ (t) ≤ τ̃ , τ̇ (t) ≤ τ̄ .
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For the system

dx(t) = f̄
(
r(t), t, x(t), x

(
t – τ (t)

))
dt + ḡ

(
r(t), t, x(t), x

(
t – τ (t)

))
dW (t)

+
∫

Z

h̄
(
r(t), t, x(t), x

(
t – τ (t)

)
, z

)
Ñ(dt, dz), (2.5)

where x(t) ∈ Rn, f̄ : S × R+ × Rn × Rn → Rn, ḡ : S × R+ × Rn × Rn → Rn×n, and h̄ : S × R+ ×
Rn × Rn × Z → Rn are Borel-measurable functions. Given V ∈ C2,1(S × R+ × Rn; R+), we
define the operator LV by

LV (i, t, x) = Vt(i, t, x) + Vx(i, t, x)f̄
(
i, t, x(t), x

(
t – τ (t)

))

+
1
2

trace
[
ḡ
(
i, t, x(t), x

(
t – τ (t)

))
Vxx(i, t, x)ḡ

(
i, t, x(t), x

(
t – τ (t)

))]

+
∫

Z

N∑

k=1

{
V

(
i, t, x + h̄k

(
i, t, x(t), x

(
t – τ (t)

)
, zk

))
– V (i, t, x)

– Vx(i, t, x)h̄k
(
i, t, x(t), x

(
t – τ (t)

)
, zk

)}
λk(dzk) +

M∑

j=1

qijV (j, t, x),

where

Vx(i, t, x) =
(

∂V (i, t, x)
∂x1

, . . . ,
∂V (i, t, x)

∂xn

)
, Vxx(i, t, x) =

(
∂2V (i, t, x)

∂xk∂xl

)

n×n
.

For later use, we list Itô’s formula (see [38] and [39]) as follows:

V
(
r(t), t, x(t)

)

= V
(
r(0), 0, x(0)

)
+

∫ t

0
LV (r(s), s, x(s), x

(
s – τ (s)

)
ds

+
∫ t

0
Vx

(
r(s), s, x(s)

)
ḡ
(
r(s), s, x(s), x

(
s – τ (s)

))
dW (s) +

N∑

k=1

∫ t

0

∫

Z

{
V

(
r(s), s, x(s)

+ h̄k
(
r(s), s, x(s), x

(
s – τ (s)

)
, zk

))
– V

(
r(s), s, x(s)

)}
Ñ(ds, dzk)

+
∫ t

0

∫

R

{
V

(
i0 + c̄

(
r(s), m

)
, s, x(s)

)
– V

(
r(s), s, x(s)

)}
μ̄(ds, dm),

for the details on the function c̄ and the measure μ̄(ds, dm), see [43, 44].
Specially, given V (i, t, ek) ∈ C2,1(S × R+ × Rn; R+), and then the operator LV associated

with stochastic model (2.3) is

LV (i, t, ek) = Vt(i, t, ek) + Ve(i, t, ek)

[

Aiek(t) + Bi
1f

(
i, ek(t)

)

– Bi
2g

(
i, ek

(
t – τ (t)

))
+

N∑

l=1

Gi
klΓ

iel(t) + Ui
k

]

+
1
2

trace
[
σk

(
i, ek(t), ek

(
t – τ (t)

))
Vee(i, t, ek)σk

(
i, ek(t), ek

(
t – τ (t)

))]
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+
∫

Z

{
V

(
i, t, ek + hk

(
i, ek(t), ek

(
t – τ (t)

)
, zk

))
– V (i, t, ek)

– Ve(i, t, ek)hk
(
i, ek(t), ek

(
t – τ (t)

)
, zk

)}
λk(dzk) +

M∑

j=1

πijV (j, t, ek).

Definition 2.1 ([45]) A function C : R+ → R+ is said to be a class K function if it is con-
tinuous, strictly increasing, and C(0) = 0. A class K function C is said to belong to class
K∞ if C(x) → ∞ as x → ∞.

Definition 2.2 ([45]) The trivial solution of system (2.5) is finite-time stable in probabil-
ity if the equation admits a unique solution for any initial value x0 ∈ Rn and each i ∈ S;
moreover, the following properties hold:

(a) Finite-time attractiveness in probability: For any initial value x0 ∈ Rn\{0}, the first
hitting time τh(x0) = inf{t; x(i, t, x0) = 0}, called the stochastic settling time, is finite
almost surely, that is, P{τh(x0) < ∞} = 1;

(b) Stability in probability: For each pair of ε ∈ (0, 1) and b > 0, there exists
δ = δ(ε, b) > 0 such that

P
(∥∥x(i, t; x0)

∥∥ < b for all t ≥ 0
) ≥ 1 – ε,

whenever ‖x0‖ < δ.

To end of this section, we introduce the following lemma which is useful in deriving
sufficient conditions of finite-time synchronization.

Lemma 2.1 Suppose system (2.5) has a unique solution denoted by x(i0, t, x0), for any ini-
tial value {x(θ̄ ) : –τ̃ ≤ θ̄ ≤ 0} = x0 ∈ Rn\{0} and r(t0) = i0 ∈ S. Additionally, if there exists
a function V (i, t, x) ∈ C2,1(S × R+ × Rn; R+), K∞ class functions C1(·) and C2(·), and real
numbers ci > 0, 1 > a > 0, such that

C1
(‖x‖) ≤ V (i, t, x) ≤ C2

(‖x‖), (2.6)

LV (i, t, x) ≤ –ci
(
V (i, t, x)

)a, (2.7)

then the trivial solution of system (2.5) is finite-time stable in probability.

Proof Applying Itô’s formula and integrating the both sides from t0 to t, then taking math-
ematical expectation for the both sides, it can be easily reduced that

EV (i, t, x) = EV
(
i0, t0, x(t0)

)
+ E

∫ t

t0

LV
(
i, s, x(s)

)
ds

≤ EV
(
i0, t0, x(t0)

)
– E

∫ t

t0

c
(
V (i, s, x)

)a ds

≤ EV
(
i0, t0, x(t0)

)
,
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where c = mini∈S ci. Define τb = inf{t;‖x(t, x0)‖ > b}. With the help of (2.6) and (2.7), it has

P(τb ≤ t)C1
(‖b‖) ≤ E

[
I{τb≤t}V

(
r(τb), τb, x(τb)

)]

≤ E
[
V

(
r(t ∧ τb), t ∧ τb, x(t ∧ τb)

)]

≤ V
(
i0, t0, x(t0)

)

≤ C2
(‖x0‖

)
.

Thus, by taking δ = (C2(εC1(‖b‖)))–1, we can obtain that

P(τb ≤ t) ≤ ε,

whenever ‖x0‖ ≤ δ. Letting t → ∞, we derive P(τb ≤ ∞) ≤ ε, which further leads to

P
(

sup
0≤t

∥∥x(i0, t; x0)
∥∥ ≤ b

)
≥ 1 – ε ∀t ∈ (t0,∞). (2.8)

Similar to Theorem 3.1 in [45], we can conclude that the trivial solution of system (2.5) is
finite-time stable in probability. Moreover, according to Lemma 3.1 in [45], we have

E
[
T0

(
i0, t0, x(t0)

)]
=

V (r(t0), t0, x(t0))(1–a)

c(1 – a)
+ t0,

which implies that T0(i0, t0, x(t0)) < ∞ a.s. �

Remark 2.1 Since the presence of the Lévy noise item can make the problem complicated,
Theorem 3.1 in [45] and Theorem 4.1 in [46] obtained the finite-time stability conditions
for stochastic differential equations driven by Brownian motion cannot be straightaway
used to discuss our main problems. In Lemma 2.1, we make a first attempt to give the
finite-time stability theorem for the Markovian jump systems driven by Lévy noise, which
improves and generalizes the related results in the previous literature.

3 Main results
In this section, the finite-time synchronization criteria for Markovian jumping GONs with
time-varying delay and Lévy noise will be got under the above assumptions A1–A3 by
means of the stochastic Lyapunov functional method and Lemma 2.1.

Definition 3.1 The genetic oscillator networks (2.1) and (2.2) are said to achieve finite-
time synchronization in probability if the trivial solution of error system (2.3) is finite-time
stable in probability.

Theorem 3.1 Suppose that error system (2.3) has a unique solution, and let assumptions
A1–A3 hold. If there exists a symmetric positive definite matrix Pi ∈ Rn×n and positive
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definite diagonal matrices Σ1i,Σ2i ∈ Rn×n, i ∈ S, such that

IN ⊗ (
–2ηi

1Pi + 2PiAi + PiBi
1Σ

–1
1i BiT

1 Pi + μiΣ1iμ
i + PiBi

2Σ
–1
2i BiT

2 Pi

+ ηi
2ν

iPiν
i + ρ(Pi)λi

1 + ρ(Pi)Hi
1 + ηi

3Pi
)

+ Gi ⊗ PiΓ
i < 0,

IN ⊗ (
νiΣ2iν

i + τ̄ ηi
2ν

iPiν
i + ρ(Pi)λi

2 + ρ(Pi)Hi
2 – (1 – τ̄ )ηi

3Pi
)

< 0,

IN ⊗ (Pj – �i) ≤ 0, i �= j, IN ⊗ (Pj – �i) > 0, i = j,

(3.1)

then systems (2.1) and (2.2) are finite-time synchronization in probability in a finite time

T∗ =
V (r(0), 0, ξ0)(1–θ )

ϑ(1 – θ )
,

where ϑ = mini∈S ϑi and ‘⊗’ represents the Kronecker product.

Proof According to Lemma 2.1, it can be assumed that system (2.3) has a unique solution
denoted by ek(i0, t, ξ0) on t ≥ 0 for any initial value ξ0 ∈ Rn\{0}. For simplicity, ek(i0, t, ξ0)
is written as ek(t). For system (2.3), define V (i, t, ek(t)) = V1(i, t, ek(t)) + V2(i, t, ek(t)) +
V3(i, t, ek(t)), where

V1
(
i, t, ek(t)

)
=

N∑

k=1

eT
k (t)Piek(t) = eT (t)(IN ⊗ Pi)e(t),

V2
(
i, t, ek(t)

)
=

N∑

k=1

∫ t

t–τ (t)
ηi

2gT(
i, ek(s)

)
Pig

(
i, ek(s)

)
ds

= ηi
2

∫ t

t–τ (t)
gT(

i, e(s)
)
(IN ⊗ Pi)g

(
i, e(s)

)
ds,

V3
(
i, t, ek(t)

)
=

N∑

k=1

∫ t

t–τ (t)
ηi

3eT
k (s)Piek(s) ds

= ηi
3

∫ t

t–τ (t)
eT (s)(IN ⊗ Pi)e(s) ds.

Then applying Itô’s formula, we can derive

LV = LV1 + LV2 + LV3, (3.2)

where

LV1 =
M∑

j=1

πijV1
(
j, t, ek(t)

)
+ 2

N∑

k=1

eT
k (t)Pi

[

Aiek(t) + Bi
1f

(
i, ek(t)

)

– Bi
2g

(
i, ek

(
t – τ (t)

))
+

N∑

l=1

Gi
klΓ

iel(t) + Ui
k

]

+
N∑

k=1

trace
(
σ T

k
(
i, ek(t), ek

(
t – τ (t)

))
Piσk

(
i, ek(t), ek

(
t – τ (t)

)))
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+
∫

Z

[ N∑

k=1

(
ek(t) + hk

(
i, ek(t), ek

(
t – τ (t)

)
, zk

))T Pi

× (
ek(t) + hk

(
i, ek(t), ek

(
t – τ (t)

)
, zk

))

–
N∑

k=1

eT
k (t)Piek(t) – 2

N∑

k=1

eT
k (t)Pihk

(
i, ek(t), ek

(
t – τ (t)

)
, zk

)
]

λk(dzk),

LV2 =
N∑

k=1

ηi
2gT(

i, ek(t)
)
Pig

(
i, ek(t)

)

–
(
1 – τ̇ (t)

) N∑

k=1

ηi
2gT(

i, ek
(
t – τ (t)

))
Pig

(
i, ek

(
t – τ (t)

))
+

M∑

j=1

πijV2
(
j, t, ek(t)

)
,

and

LV3 =
N∑

k=1

ηi
3eT

k (t)Piek(t) –
(
1 – τ̇ (t)

) N∑

k=1

ηi
3eT

k
(
t – τ (t)

)
Piek

(
t – τ (t)

)

+
M∑

j=1

πijV3
(
j, t, ek(t)

)
.

For LV2 and LV3, according to assumption A3, we have

LV2 ≤
N∑

k=1

ηi
2gT(

i, ek(t)
)
Pig

(
i, ek(t)

)

– (1 – τ̄ )ηi
2

N∑

k=1

gT(
i, ek

(
t – τ (t)

))
Pig

(
i, ek

(
t – τ (t)

))

+
M∑

j=1

πijV2
(
j, t, ek(t)

)
(3.3)

and

LV3 ≤
N∑

k=1

ηi
3eT

k (t)Piek(t) – (1 – τ̄ )ηi
3

N∑

k=1

eT
k
(
t – τ (t)

)
Piek

(
t – τ (t)

)

+
M∑

j=1

πijV3
(
j, t, ek(t)

)
. (3.4)

By using assumption A1, it yields

2
N∑

k=1

eT
k (t)PiBi

1f
(
i, ek(t)

)
– 2

N∑

k=1

eT
k (t)PiBi

2g
(
i, ek

(
t – τ (t)

))

≤
N∑

k=1

[eT
k (t)PiBi

1Σ
–1
1i BiT

1 Piek(t) + f T(
i, ek(t)

)
Σ1if

(
i, ek(t)

)

+ eT
k (t)PiBi

2Σ
–1
2i BiT

2 Piek(t) + gT (i, ek
(
t – τ (t)

)
Σ2ig

(
i, ek

(
t – τ (t)

))
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≤
N∑

k=1

eT
k (t)

[
PiBi

1Σ
–1
1i BiT

1 Pi + μiΣ1iμ
i + PiBi

2Σ
–1
2i BiT

2 Pi
]
ek(t)

+
N∑

k=1

eT
k
(
t – τ (t)

)[
νiΣ2iν

i]ek
(
t – τ (t)

)
(3.5)

and

N∑

k=1

ηi
2gT(

i, ek(t)
)
Pig

(
i, ek(t)

)
+ (τ̄ – 1)ηi

2

N∑

k=1

gT(
i, ek

(
t – τ (t)

))
Pig

(
i, ek

(
t – τ (t)

))

≤
N∑

k=1

eT
k (t)

[
ηi

2ν
iPiν

i]ek(t) +
N∑

k=1

eT
k
(
t – τ (t)

)[
τ̄ ηi

2ν
iPiν

i]ek
(
t – τ (t)

)
. (3.6)

Moreover, it can be easily reduced that

2
N∑

k=1

eT
k (t)Pi

N∑

l=1

Gi
klΓ

iel(t) = 2eT (t)
(
Gi ⊗ PiΓ

i)e(t) (3.7)

and

–2ϑi

N∑

k=1

eT
k (t)Pi sign

(
ek(t)

)∣∣ek(t)
∣∣θ ≤ –2ϑi

( N∑

k=1

eT
k (t)Piek(t)

) 1+θ
2

. (3.8)

With assumption A2 in mind, it is held that

N∑

k=1

trace
(
σ T

k
(
i, ek(t), ek

(
t – τ (t)

))
Piσk

(
i, ek(t), ek

(
t – τ (t)

)))

≤ ρ(Pi)
N∑

k=1

[
eT

k (t)λi
1ek(t) + eT

k
(
t – τ (t)

)
λi

2ek
(
t – τ (t)

)]
(3.9)

and

∫

Z

[ N∑

k=1

(
ek(t) + hk

(
i, ek(t), ek

(
t – τ (t)

)
, zk

))T Pi
(
ek(t) + hk

(
i, ek(t), ek

(
t – τ (t)

)
, zk

))

–
N∑

k=1

eT
k (t)Piek(t) – 2

N∑

k=1

eT
k (t)Pihk

(
i, ek(t), ek

(
t – τ (t)

)
, zk

)
]

λk(dzk)

=
∫

Z

N∑

k=1

hT
k
(
i, ek(t), ek

(
t – τ (t)

)
, zk

)
Pihk

(
i, ek(t), ek

(
t – τ (t)

)
, zk

)
λk(dzk)

≤ ρ(Pi)
N∑

k=1

[
eT

k (t)Hi
1ek(t) + eT

k
(
t – τ (t)

)
Hi

2ek
(
t – τ (t)

)]
, (3.10)
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where ρ(·) denotes the spectral radius. Due to
∑

i,j∈S πij = 0, for an arbitrary symmetric
positive definite matrix �i, we obtain

(∑

i,j∈S

πij

)
�i = 0, i ∈ S. (3.11)

Then submitting (3.3)–(3.11) into (3.2), it follows

LV ≤ eT (t)
[
IN ⊗ (

–2ηi
1Pi + 2PiAi + PiBi

1Σ
–1
1i BiT

1 Pi + μiΣ1iμ
i + PiBi

2Σ
–1
2i BiT

2 Pi

+ ηi
2ν

iPiν
i + ρ(Pi)λi

1 + ρ(Pi)Hi
1 + ηi

3Pi
)

+ Gi ⊗ PiΓ
i]e(t)

+ eT(
t – τ (t)

)[
IN ⊗ (

νiΣ2iν
i + τ̄ ηi

2ν
iPiν

i + ρ(Pi)λi
2 + ρ(Pi)Hi

2

– (1 – τ̄ )ηi
3Pi

)]
e
(
t – τ (t)

)
+

M∑

j=1

πij

[
eT (t)

(
IN ⊗ (Pj – �i)

)
e(t)

+
∫ t

t–τ (t)
η

j
2gT(

j, e(s)
)(

IN ⊗ (Pj – �i)
)
g
(
j, e(s)

)
ds

+
∫ t

t–τ (t)
η

j
3eT (s)

(
IN ⊗ (Pj – �i)

)
e(s) ds

]
– 2ϑi

(
eT (t)(IN ⊗ Pi)e(t)

) 1+θ
2

– 2ϑi

(∫ t

t–τ (t)
ηi

2gT(
i, e(s)

)
(IN ⊗ Pi)g

(
i, e(s)

)
ds

) 1+θ
2

– 2ϑi

(∫ t

t–τ (t)
ηi

3eT (s)(IN ⊗ Pi)e(s) ds
) 1+θ

2
.

According to condition (3.1) and the inequality in [47] as follows:

‖x1‖m + ‖x2‖m + · · · + ‖xn‖m

≥ (‖x1‖2 + ‖x2‖2 + · · · + ‖xn‖2) m
2 , x1, . . . , xn ∈ Rn, 0 < m < 2,

we can get

LV ≤ –2ϑi
(
eT (t)(IN ⊗ Pi)e(t)

) 1+θ
2

– 2ϑi

(∫ t

t–τ (t)
ηi

2gT(
i, e(s)

)
(IN ⊗ Pi)g

(
i, e(s)

)
ds

) 1+θ
2

– 2ϑi

(∫ t

t–τ (t)
ηi

3eT (s)(IN ⊗ Pi)e(s) ds
) 1+θ

2

≤ –2ϑi

[ N∑

k=1

eT
k (t)Piek(t) +

N∑

k=1

∫ t

t–τ (t)
ηi

2gT(
i, ek(s)

)
Pig

(
i, ek(s)

)
ds

+
N∑

k=1

∫ t

t–τ (t)
ηi

3eT
k (s)Piek(s) ds

] 1+θ
2

= –2ϑiV
(
i, t, ek(t)

) 1+θ
2 .
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Based on Lemma 2.1, V (i, t, ek(t)) converges to zero in a finite time, and the finite time is
estimated by

T∗ =
V (r(0), 0, ξ0)(1–θ )

ϑ(1 – θ )
.

Consequently, systems (2.1) and (2.2) with control (2.4) are finite-time synchronized in
probability in the finite time T∗. This completes the proof. �

Remark 3.1 As far as we know, all the existing stochastic models concerning GONs [7, 13,
16, 41] have considered the situation of Brownian motion. In this paper, the model dis-
cussed is universal, which replaces pure-diffusion Brownian motion with jump-diffusion
Lévy process.

Remark 3.2 It should be noted that previous studies on synchronization problem of GONs
[7, 10–13, 41] have just considered many types of synchronization including exponen-
tial synchronization and cluster synchronization but not finite-time synchronization. In
this paper, we investigate finite-time synchronization problem of GONs for the first time.
Moreover, compared with the studies on finite-time synchronization problem of com-
plex networks [20–23], the problem of finite-time synchronization for the model driven
by Lévy noise is also to be considered for the first time in this paper. Different from the
classical Lyapunov stability, finite-time synchronization concerns the stability of the er-
ror system over a finite interval of time and plays an important role in the study of the
transient behavior of systems.

When we do not consider time-varying delay, i.e., τ (t) = 0, error system (2.3) will be
reduced to the following stochastic Markovian jumping GONs driven by Lévy noise:

dek(t) =

[

A
(
r(t)

)
ek(t) + B1

(
r(t)

)
f
(
r(t), ek(t)

)
– B2

(
r(t)

)
g
(
r(t), ek(t)

)

+
N∑

l=1

Gkl
(
r(t)

)
Γ

(
r(t)

)
el(t) + Uk

(
r(t)

)
]

dt

+ σk
(
r(t), ek(t)

)
dWk(t)

+
∫

Z

hk
(
r(t), ek(t), zk

)
Ñk(dt, dzk), k = 1, . . . , N , (3.12)

with the control of the form

Uk
(
r(t)

)
= –η1

(
r(t)

)
ek(t) – ϑ

(
r(t)

)
sign

(
ek(t)

)∣∣ek(t)
∣∣θ . (3.13)

Then we can easily get the following corollary.

Corollary 3.1 Suppose that error system (3.12) has a unique solution, and let assumptions
A1–A2 hold. If there exists a symmetric positive definite matrix Pi ∈ Rn×n and positive
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definite diagonal matrices Σ1i,Σ2i ∈ Rn×n, i ∈ S, such that

IN ⊗ (
–2ηi

1Pi + 2PiAi + PiBi
1Σ

–1
1i BiT

1 Pi + μiΣ1iμ
i + PiBi

2Σ
–1
2i BiT

2 Pi

+ ηi
2ν

iPiν
i + ρ(Pi)λi

1 + ρ(Pi)Hi
1 + ηi

3Pi
)

+ Gi ⊗ PiΓ
i < 0,

IN ⊗ (Pj – �i) ≤ 0, i �= j, IN ⊗ (Pj – �i) > 0, i = j,

then error system (3.12) is finite-time stable in probability in a finite time

T∗ =
V (r(0), 0, ξ0)(1–θ )

ϑ(1 – θ )
.

Proof Define V (i, t, ek(t)) =
∑N

k=1 eT
k (t)Piek(t). The proof method is similar to that of The-

orem 3.1, so we omit it. �

When we do not consider Markovian switching, i.e., Markovian chain r(t) takes value
in the state space S = {1}, error system (2.3) will be reduced to the following stochastic
GONs with time-varying delay and Lévy noise:

dek(t) =

[

Aek(t) + B1f
(
ek(t)

)
– B2g

(
ek

(
t – τ (t)

))
+

N∑

l=1

GklΓ el(t) + Uk

]

dt

+ σk
(
ek(t), ek

(
t – τ (t)

))
dWk(t)

+
∫

Z

hk
(
ek(t), ek

(
t – τ (t)

)
, zk

)
Ñk(dt, dzk), k = 1, . . . , N , (3.14)

with the control of the form

Uk = –η1ek(t) – ϑ sign
(
ek(t)

)∣∣ek(t)
∣∣θ

– ϑ

(∫ t

t–τ (t)
η2gT(

ek(s)
)
g
(
ek(s)

)
ds

) 1+θ
2 ek(t)

‖ek(t)‖2

– ϑ

(∫ t

t–τ (t)
η3eT

k (s)ek(s) ds
) 1+θ

2 ek(t)
‖ek(t)‖2 . (3.15)

Then we can easily get the following corollary.

Corollary 3.2 Suppose that error system (3.14) has a unique solution, and let assump-
tions A1–A3 hold. If there exists a symmetric positive definite matrix P ∈ Rn×n and positive
definite diagonal matrices Σ1,Σ2 ∈ Rn×n such that

IN ⊗ (
–2η1P + 2PA + PB1Σ

–1
1 BT

1 P + μΣ1μ + PB2Σ
–1
2 BT

2 P

+ η2νPν + ρ(P)λ1 + ρ(P)H1 + η3P
)

+ G ⊗ PΓ < 0,

IN ⊗ (
νΣ2ν + τ̄ η2νPν + ρ(P)λ2 + ρ(P)H2 – (1 – τ̄ )η3P

)
< 0,

then error system (3.14) is finite-time stable in probability in a finite time

T∗ =
V (0, ξ0) 1–θ

2

ϑ(1 – θ )
.
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Proof Define V (t, ek(t)) = V1(t, ek(t)) + V2(t, ek(t)) + V3(t, ek(t)), where

V1
(
t, ek(t)

)
=

N∑

k=1

eT
k (t)Pek(t),

V2
(
t, ek(t)

)
=

N∑

k=1

∫ t

t–τ (t)
η2gT(

ek(s)
)
Pg

(
ek(s)

)
ds,

V3
(
t, ek(t)

)
=

N∑

k=1

∫ t

t–τ (t)
η3eT

k (s)Pek(s) ds.

Similarly, following the same steps as in Theorem 3.1, one can easily obtain Corol-
lary 3.2. �

When we do not consider Lévy jump, i.e., hk(i, ek(t), ek(t –τ (t)), zk) = 0, error system (2.3)
will be reduced to the following stochastic Markovian jumping GONs with time-varying
delay:

dek(t) =

[

A
(
r(t)

)
ek(t) + B1

(
r(t)

)
f
(
r(t), ek(t)

)
– B2

(
r(t)

)
g
(
r(t), ek

(
t – τ (t)

))

+
N∑

l=1

Gkl
(
r(t)

)
Γ

(
r(t)

)
el(t) + Uk

(
r(t)

)
]

dt

+ σk
(
r(t), ek(t), ek

(
t – τ (t)

))
dWk(t), k = 1, . . . , N , (3.16)

with the control of the form

Uk
(
r(t)

)
= –η1

(
r(t)

)
ek(t) – ϑ

(
r(t)

)
sign

(
ek(t)

)∣∣ek(t)
∣∣θ

– ϑ
(
r(t)

)(∫ t

t–τ (t)
η2

(
r(s)

)
gT(

r(s), ek(s)
)
g
(
r(s), ek(s)

)
ds

) 1+θ
2 ek(t)

‖ek(t)‖2

– ϑ
(
r(t)

)(∫ t

t–τ (t)
η3

(
r(s)

)
eT

k (s)ek(s) ds
) 1+θ

2 ek(t)
‖ek(t)‖2 . (3.17)

Then we can easily get the following corollary.

Corollary 3.3 Suppose that error system (3.16) has a unique solution, and let assumptions
A1–A3 hold. If there exists a symmetric positive definite matrix Pi ∈ Rn×n and positive
definite diagonal matrices Σ1i,Σ2i ∈ Rn×n, i ∈ S, such that

IN ⊗ (
–2ηi

1Pi + 2PiAi + PiBi
1Σ

–1
1i BiT

1 Pi + μiΣ1μ
i + PiBi

2Σ
–1
2i BiT

2 Pi

+ ηi
2ν

iPiν
i + ρ(Pi)λi

1 + ηi
3Pi

)
+ Gi ⊗ PiΓ

i < 0,

IN ⊗ (
νiΣ2ν

i + τ̄ ηi
2ν

iPiν
i + ρ(Pi)λi

2 – (1 – τ̄ )ηi
3Pi

)
< 0,

IN ⊗ (Pj – �i) ≤ 0, i �= j, IN ⊗ (Pj – �i) > 0, i = j,
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then error system (3.16) is finite-time stable in probability in a finite time

T∗ =
V (r(0), 0, ξ0)(1–θ )

ϑ(1 – θ )
.

Proof Define V (i, t, ek(t)) = V1(i, t, ek(t)) + V2(i, t, ek(t)) + V3(i, t, ek(t)), where

V1
(
i, t, ek(t)

)
=

N∑

k=1

eT
k (t)Piek(t),

V2
(
i, t, ek(t)

)
=

N∑

k=1

∫ t

t–τ (t)
ηi

2gT(
i, ek(s)

)
Pig

(
i, ek(s)

)
ds,

V3
(
i, t, ek(t)

)
=

N∑

k=1

∫ t

t–τ (t)
ηi

3eT
k (s)Piek(s) ds.

By means of Theorem 3.1, the results of Corollary 3.3 are obvious, hence we omit their
proofs here. �

Remark 3.3 As is known, GONs are inherently coupled networks. The finite-time syn-
chronization criteria of genetic regulatory networks without coupled interaction proposed
in [23] cannot be used to guarantee the case of the GONs. As a result, Corollary 3.3 is more
general than previous results.

4 Numerical examples
Here, we present two illustrative numerical examples to demonstrate the effectiveness of
the main results.

Example 4.1 Consider the following genetic oscillator networks [6]:

dxak

dt
= –d1

(
r(t)

)
xak +

α(r(t))
u(r(t)) + xm

Ck
,

dxbk

dt
= –d2

(
r(t)

)
xbk +

α(r(t))
u(r(t)) + xm

Ak
,

dxck

dt
= –d3

(
r(t)

)
xck +

α(r(t))
u(r(t)) + xm

Bk
+

k(r(t))xSk

us(r(t)) + xSk
,

dxAk

dt
= –d4

(
r(t)

)
xAk + β1

(
r(t)

)
xak ,

dxBk

dt
= –d5

(
r(t)

)
xBk + β2

(
r(t)

)
xbk ,

dxCk

dt
= –d6

(
r(t)

)
xCk + β3

(
r(t)

)
xck ,

dxSk

dt
= –

[
k1

(
r(t)

)
+ (1 – Q0)k2

(
r(t)

)]
xSk + k3

(
r(t)

)
xAk

+
k2(r(t))Q0

N

N∑

l=1

(xSl – xSk), k = 1, . . . , N ,

(4.1)
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where xak , xbk , xck and xAk , xBk , xCk represent the dimensionless concentrations of genes
tetR, cI, lacI and their product proteins TetR, CI, LacI, respectively. The concentration of
AI inside the kth cell is denoted by xSk . More details are in Ref. [6]. In this example, N = 2.
Here, the Markov chain r(t) is on the state space S = {1, 2} with the generator Π =

[ –4 4
6 –6

]

and the following setting:
when r(t) = 1,

d1 = d3 = 0.35, d2 = 0.3, d4 = 0.25, d5 = 0.28, d6 = 0.26,

α = 5.4, β1 = 0.6, β2 = 8.0,

β3 = 0.015, m = 4, Q0 = 0.8, k = 8.0, k1 = 0.016,

k2 = 0.4, k3 = 0.018, u = 1.3, us = 5,

when r(t) = 2,

d1 = d3 = 0.33, d2 = 0.3, d4 = 0.23, d5 = 0.27, d6 = 0.27,

α = 4.9, β1 = 0.5, β2 = 9.0,

β3 = 0.016, m = 4, Q0 = 0.8, k = 8.0, k1 = 0.016,

k2 = 0.4, k3 = 0.018, u = 1.3, us = 5.

For system (4.1), its response system driven by Lévy noise can be described as system
(2.2), in which τ (t) = 0, f̃ = [0, 0, 0, 0, 0, 0, xSk

us(r(t))+xSk
]T , B1(r(t)) is a 7 × 7 matrix with all zero

entries except for B1(3, 7) = k(r(t)), g̃ = [0, 0, 0, 1
u(r(t))+xm

Ak
, 1

u(r(t))+xm
Bk

, 1
u(r(t))+xm

Ck
, 0]T , B2(r(t)) is

a 7 × 7 matrix with all zero entries except for B2(2, 4) = B2(3, 5) = α(r(t))
u(r(t)) . And when r(t) = 1,

σ1
(
e1(t)

)
= diag

{
0.5e11(t), . . . , 0.5e17(t)

}
,

σ2
(
e2(t)

)
= diag

{
0.5e21(t), . . . , 0.5e27(t)

}
,

h1
(
e1(t), z1

)
=

[
0.35e11(t)z1, . . . , 0.35e17(t)z1

]T ,

h2
(
e2(t), z2

)
=

[
0.35e21(t)z2, . . . , 0.35e27(t)z2

]T .

When r(t) = 2,

σ1
(
e1(t)

)
= diag

{
0.4e11(t), . . . , 0.4e17(t)

}
,

σ2
(
e2(t)

)
= diag

{
0.4e21(t), . . . , 0.4e27(t)

}
,

h1
(
e1(t), z1

)
=

[
0.25e11(t)z1, . . . , 0.25e17(t)z1

]T ,

h2
(
e2(t), z2

)
=

[
0.25e21(t)z2, . . . , 0.25e27(t)z2

]T .

The initial values x1(t) = [0.5, 0.3, 0.09, 0.6, 1.3, 5.03, 1.1]T , x2(t) = [10.5, 0.31, 0.08, 0.062,
1.31, 5.02, 1.2]T , y1(t) = [6.3, 0.33, 0.1, 0.061, 1.29, 5.04, 1.1]T , y2(t) = [3.2, 0.29, 0.02, 0.059,
1.32, 5.08, 0.99]T .

It is easy to verify that the given parameters satisfy the assumptions of Corollary 3.1, and
thus system (4.1) and (2.2) should be finite-time synchronization. The simulated results in
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Figure 1 (a) shows the path of switching signal. (b) and (c) exhibit the time evolutions of the concentrations
of tetR xak (k = 1, 2) for the drive system and the response system without control under Lévy noise

Figure 2 (a) and (b) exhibit the time evolutions of the concentrations of tetR xak (k = 1, 2) for the drive system
and the response systems with control under Lévy noise. In (c), the evolutions of the error systems tend to
zero as time increases, which illustrates the finite-time synchronization of the drive system and the response
system
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Figure 3 (a)–(c) show the time responses of the error variables of the concentrations of tetR xak (k = 1, 2)
under control with (a) η1

1 = 3, ϑ1 = 1, η2
1 = 4, ϑ2 = 1, θ = 0.2; (b) η1

1 = 8, ϑ1 = 1, η2
1 = 9, ϑ2 = 1, θ = 0.2; (c)

η1
1 = 8, ϑ1 = 5, η2

1 = 9, ϑ2 = 6, θ = 0.2

Figs. 1–3 clearly confirm our theoretical results. As seen from Fig. 1, due to the influence of
Lévy noise, the trajectory of the response system without control has an evident deviation
from the trajectory of the drive system. But in Fig. 2, under the same intensity of Lévy noise,
the response system with control is synchronized with the drive system after a short-time
transient evolution even though those states start at different initial values. To further
verify the effectiveness of the proposed control design, we take different values of ηi

1 and
ϑi (i = 1, 2) in Fig. 3.

Example 4.2 For systems (2.1) and (2.2), let N = n = 2 and the Markov chain r(t) be on the
state space S = {1, 2} with the generator Π =

[ –7 7
3 –3

]
and the following setting:

when r(t) = 1,

f̃
(
xk(t)

)
= g̃

(
xk(t)

)
=

xk(t)2

1 + xk(t)2 , τ (t) = 0.2 – 0.1 cos(2t),

σ1
(
e1(t), e1

(
t – τ (t)

))
= diag

{
0.5e11(t), 0.5e12(t)

}
,

σ2
(
e2(t), e2

(
t – τ (t)

))
= diag

{
0.5e21

(
t – τ (t)

)
, 0.5e22

(
t – τ (t)

)}
,

h1
(
e1(t), e1

(
t – τ (t)

)
, z1

)
=

[
0.25e11(t)z1, 0.25e12(t)z1

]T ,

h2
(
e2(t), e2

(
t – τ (t)

)
, z2

)
=

[
0.25e21

(
t – τ (t)

)
z2, 0.25e22

(
t – τ (t)

)
z2

]T ,

A =

[
–1.0 0.2
0.5 –0.1

]

, B1 =

[
1.8 0.3
0.2 3.5

]

, B2 =

[
–2.4 0.01
0.03 3.5

]

,

G =

[
–1.0 1.0
1.0 –1.0

]

, Γ =

[
1.5 0
0 1.5

]

, λ = 1,

when r(t) = 2,

f̃
(
xk(t)

)
= g̃

(
xk(t)

)
=

xk(t)2

1 + xk(t)2 , τ (t) = 0.2 – 0.1 cos(2t),

σ1
(
e1(t), e1

(
t – τ (t)

))
= diag

{
0.4e11(t), 0.4e12(t)

}
,

σ2
(
e2(t), e2

(
t – τ (t)

))
= diag

{
0.45e21

(
t – τ (t)

)
, 0.45e22

(
t – τ (t)

)}
,
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Figure 4 (a) shows the path of switching signal. The time evolutions of genetic oscillators for the drive
system (x1, x2) and the response system (y1, y2) without control under Lévy noise are illustrated in (b) and (c)

h1
(
e1(t), e1

(
t – τ (t)

)
, z1

)
=

[
0.3e11(t)z1, 0.3e12(t)z1

]T ,

h2
(
e2(t), e2

(
t – τ (t)

)
, z2

)
=

[
0.2e21

(
t – τ (t)

)
z2, 0.2e22

(
t – τ (t)

)
z2

]T ,

A =

[
–0.9 0.1
0.4 –0.5

]

, B1 =

[
–1.4 0.2
0.1 –2.1

]

, B2 =

[
2.5 0.05

0.01 4.9

]

,

G =

[
–1.0 1.0
1.0 –1.0

]

, Γ =

[
1.0 0
0 1.0

]

, λ = 1,

and the initial values x1(t) = [2.3, 0.3]T , x2(t) = [6.3, 1.3]T , y1(t) = [5.5, 4.0]T , y2(t) =
[2.5, 7.5]T .

We find that the parameters given by Example 4.2 satisfy the assumptions of Theo-
rem 3.1, which means that response system (2.2) should be finite-time synchronized with
drive system (2.1) in theoretical analysis. The simulated results in Figs. 4–6 clearly con-
firm our conclusions. As seen from Fig. 4, due to the effect of Lévy noise, the trajectory of
the response system without control is not synchronized with the trajectory of the drive
system. But for the case with control in Fig. 5, the trajectory of the response system rapidly
becomes the same as the trajectory of the drive system after a short-time transient evolu-
tion. Fig. 6 presents the synchronization time for different values of ηi

s, ϑi and θ (s = 1, 2, 3,
i = 1, 2).

Remark 4.1 It can be seen from Examples 4.1 and 4.2 that the effect of Lévy noise does
play an important role in achieving the finite-time synchronization of GONs. Obviously,
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Figure 5 (a) and (b) exhibit the time evolutions of genetic oscillators for the drive system (x1, x2) and the
response system (y1, y2) with control under Lévy noise. In (c), the evolutions of the error systems tend to zero
as time increases, which illustrates the finite-time synchronization of the drive system and the response
system

Figure 6 (a)–(c) show the time responses of the error variables under control with (a) η1
1 = 4, η1

2 = 1, η1
3 = 1,

ϑ1 = 3, η2
1 = 5, η2

2 = 1, η2
3 = 1, ϑ2 = 4, θ = 0.25; (b) η1

1 = 9, η1
2 = 1, η1

3 = 1, ϑ1 = 3, η2
1 = 10, η2

2 = 1, η2
3 = 1,

ϑ2 = 4, θ = 0.25; (c) η1
1 = 9, η1

2 = 1, η1
3 = 1, ϑ1 = 8, η2

1 = 10, η2
2 = 1, η2

3 = 1, ϑ2 = 9, θ = 0.2

all of the criteria about finite-time synchronization in [20–23] cannot be applied in Exam-
ples 4.1 and 4.2 since they all ignored the perturbation of jump process.

5 Conclusions
In this paper, the problem of finite-time synchronization for stochastic Markovian jump-
ing GONs with time-varying delay and Lévy noise has been investigated. It is worthy to
point out that vector form Lévy noise is introduced in GONs and the finite-time synchro-
nization problem for GONs is studied for the first time. Since the previous results con-
cerning finite-time stability theorem cannot be straightway used to deal with our prob-
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lem, we have generalized the finite-time stability theorem from the case of pure-diffusion
Brownian motion to jump-diffusion Lévy process. By means of the stochastic Lyapunov
functional method and the finite-time stability theorem, the sufficient criteria of finite-
time synchronization for GONs with appropriate control have been given in Theorem 3.1.
Moreover, we also have obtained sufficient conditions of finite-time synchronization for
GONs under three situations, i.e., GONs without time-varying delay, Markovian switch-
ing or Lévy jump, in Corollary 3.1, 3.2 and 3.3. Finally, two numerical examples have been
presented to confirm our theoretical results. These results not only have covered the gap
that finite-time synchronization problem of GONs was not considered, but also are helpful
for understanding the synchronization phenomena in living organisms and engineering
applications.
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