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Abstract
This paper presents the problem of mixed H∞/passive exponential function
projective synchronization of delayed neural networks with constant discrete and
distributed delay couplings under pinning sampled-data control scheme. The aim of
this work is to focus on designing of pinning sampled-data controller with an explicit
expression by which the stable synchronization error system is achieved and a mixed
H∞/passive performance level is also reached. Particularly, the control method is
designed to determine a set of pinned nodes with fixed coupling matrices and
strength values, and to select randomly pinning nodes. To handle the Lyapunov
functional, we apply some new techniques and then derive some sufficient
conditions for the desired controller existence. Furthermore, numerical examples are
given to illustrate the effectiveness of the proposed theoretical results.
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1 Introduction
In the recent decades, neural networks (NNs) have been extensively investigated and
widely applied in various research fields, for instance, optimization problem, pattern
recognition, static image processing, associative memory, and signal processing [1–4]. In
many engineering applications, time delay is one of the typical characteristics in the pro-
cessing of neurons and plays an important role in causing the poor performance and in-
stability or leading to some dynamic behaviors such as chaos, instability, divergence, and
others [5–9]. Therefore, time-delay NNs have received considerable attention in many
fields of application.

In the research on stability of neural networks, exponential stability is a more desired
property than asymptotic stability because it provides faster convergence rate to the equi-
librium point and gives information about the decay rates of the networks. Hence, it is
especially important, when the exponential stability property guarantees that, whatever
transformation happens, the network stability to store rapidly the activity pattern is left
invariant by self-organization [10, 11].
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Amongst all kinds of NN behaviors, synchronization is a significant and attractive phe-
nomenon, and it has been studied in various fields of science and engineering [12–14].
The synchronization in the network is categorized into two types namely inner and outer
synchronization. For inner synchronization, it is a collective behavior within the network
and most of the researchers have focused on this type [15, 16]. For outer synchronization,
it is a collective behavior between two or more networks [17–19].

Furthermore, function projective synchronization (FPS), a generalization of projective
synchronization (PS), is one of the synchronization techniques, where two identical (or
different) chaotic systems can synchronize up to a scaling function matrix with different
initial values. The technique has been widely studied to get a faster chemical rate with
its proportional property. Apparently, the unpredictability of the scaling function in FPS
can additionally improve the rate of chemical reaction. Recently, many researchers have
focused on the exponential stability on function projective synchronization of neural net-
works [20–22].

Passivity theory is an excellent way to determine the stability of a dynamical system. It
uses only the general characteristics of the input–output dynamics to present solutions for
the proof of absolute stability. Passivity theory formed a fundamental aspect of control sys-
tems and electrical networks, in fact its roots can be traced in circuit theory. Recently, a lot
of research has been conducted in relation to designing a passive filter for different kinds
of systems, for example time-varying uncertain systems, nonlinear systems and switched
systems [10, 11, 23]. On the other hand, the problem of H∞ control has been many dis-
cussed for neural networks with time delay because the H∞ controller design looks to
reduce of the effects of external inputs and minimizes the frequency response peak of the
system. Recently, [24] was published. For these reasons, lately the passive control prob-
lem and H∞ control problem came to be solved in a unified framework. Then the mixed
H∞ and passive filtering problem for the continuous-time singular system has been inves-
tigated [25–27]. The deterministic input is presented with bounded energy through the
H∞ setting together with the passivity theory [27, 28]. As stated above, a lot of research
has been conducted in this area. However, relatively little research has been conducted
into the problem of mixed H∞ and passive filtering design in discrete-time domain. Con-
sequently, this paper attempts to highlight the benefits of the mixed H∞ and passive filters
for discrete-time impulse NCS with the plant being a Markovian jump system.

Nowadays, continuous-time control, for instance, feedback control, adaptive control,
has been mainly used for synchronization analysis. The main point in implementing such
continuous-time controllers is that the control input must be continuous, which we can-
not always ensure in real-time situations. Moreover, due to advanced digital technology in
measurement, the continuous-time controllers could be represented discrete-time con-
trollers to achieve more stability, performance, and precision. So, plentiful research in
sampled-data control theory has been conducted. By using a sampled-data controller, the
sum of transferred information is dramatically decreased and bandwidth usage is con-
sistent. It renders the control more reliable and handy in real world problems. In [29],
one studied dissipative sampled-data control of uncertain nonlinear systems with time-
varying delays, and so on [30–34]. Meanwhile, pinning control has been introduced to
deal with the problem of large number of controllers added to large size of neural net-
work structure [35–39]. In [40], pinning stochastic sampled-data control for exponential
synchronization of directed complex dynamical networks with sampled-data communi-
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cations has been addressed. The problem of exponential H∞ synchronization of Lur’e
complex dynamical networks using pinning sampled-data control has been investigated in
[41]. However, a pinning sampled-data control technique has not yet been implemented
for NNs with inertia and reaction–diffusion terms. These motivate us to further study this
in the present work.

As discussed above, this is the first time that mixed H∞/passive exponential function
projective synchronization (EFPS) of delayed NNs with hybrid coupling based on pinning
sampled-data control has been studied. Therefore, as a first attempt, this paper is meant
to address this problem and the main contributions are summarized now:

- To solve the synchronization control problem for NNs, we introduce a simple actual
mixed H∞/passive performance index and we make a comparison with a single H∞
design.

- We deal with the EFPS problem for NNs, which is both discrete and distributed
time-varying delays consider in hybrid asymmetric coupling, is different from the
time-delay case in [25, 28].

- For our control method, the EFPS is carefully studied via mixed nonlinear and pinning
sample-data controls, which is different from previous work [34, 40, 41].

Based on constructing the Lyapunov–Karsovskii functional, the parameter update law
and the method of handling Jensen’s and Cauchy inequalities, some novel sufficient con-
ditions for the existence of the EFPS of NNs with mixed time-varying delays are achieved.
Finally, numerical examples are given to present the benefit of using pinning sample-data
controls.

The rest of the paper is organized as follows. Section 2 provides some mathematical
preliminaries and a network model. Section 3 presents the EFPS of NNs with hybrid cou-
pling based on pinning sampled-data control. Some numerical examples with theoretical
results and conclusions are given in Sects. 4 and 5, respectively.

2 Problem formulation and preliminaries
Notations: The notations used throughout this work are as follows: Rn denotes the n-
dimensional space; A matrix A is symmetric if A = AT where the superscript T stands for
transpose matrix; λmax(A) and λmin(A) stand for the maximum and the minimum eigen-
values of matrix A, respectively. zi denotes the unit column vector having one element
on its ith row and zeros elsewhere; C([a, b],Rn) denotes the set of continuous functions
mapping the interval [a, b] to Rn; L2[0,∞) denotes the space of functions φ : R+ → Rn

with the norm ‖φ‖L2 = [
∫∞

0 |φ(θ )|2 dθ ] 1
2 ; For z ∈ Rn, the norm of z is defined by ‖z‖ =

[
∑n

i=1 |zi|2]1/2; ‖z(t + ε)‖cl = max{sup– max{τ1,τ2,h}≤ε≤0 ‖z(t + ε)‖2, sup– max{τ1,τ2,h}≤ε≤0 ‖ż(t +
ε)‖2}; IN denotes an N-dimensional identity matrix; the symbol ∗ denotes the symmet-
ric block in a symmetric matrix. The symbol ⊗ denotes the Kronecker product.

Delayed NNs containing N identical nodes with hybrid couplings are given as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋi(t) = –Dxi(t) + Af (xi(t)) + Bf (xi(t – τ1(t))) + C
∫ t

t–τ2(t) f (xi(θ )) dθ

+ c1
∑N

j=1 g(1)
ij L1xj(t) + c2

∑N
j=1 g(2)

ij L2xj(t – τ1(t))

+ c3
∑N

j=1 g(3)
ij L3

∫ t
t–τ2(t) xj(θ ) dθ + ui(t) + ωi(t),

yi(t) = Jxi(t), i = 1, 2, . . . , N ,

(1)
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where xi(t) ∈ Rn and ui(t) ∈ Rn are the state variable and the control input of the node i,
respectively. yi(t) ∈ Rl are the outputs, D = diag(d1, d2, . . . , dn) > 0 denotes the rate with
which the cell i resets its potential to the resting state when being isolated from other cells
and inputs. A, B and C are connection weight matrices. τ1(t) and τ2(t) are the time-varying
delays. f (xi(·)) = (f1(xi1(·)), f2(xi2(·)), . . . , fn(xin(·))]T denotes the neuron activation function
vector, the positive constants c1, c2 and c3 are the strengths for the constant coupling and
delayed couplings, respectively, ωi(t) is the system’s external disturbance, which belongs
to L[0,∞), J is a known matrix with appropriate dimension, L1, L2, L3 ∈ Rn×n are inner-
coupling matrices with constant elements and L1, L2, L3 are assumed as positive diagonal
matrices, G(q) = (g(q)

ij )N×N (q = 1, 2, 3) are the outer-coupling matrices and satisfy the fol-
lowing conditions:

⎧
⎨

⎩

g(q)
ij ≥ 0, i 
= j, q = 1, 2, 3,

g(q)
ii = –

∑N
j=1,j 
=ig

(q)
ij , i, j = 1, 2, . . . , N , q = 1, 2, 3.

(2)

The following assumptions are made throughout this paper.

Assumption 1 The discrete delay τ1(t) and distributed delay τ2(t) satisfy the conditions
0 ≤ τ1(t) ≤ τ1, τ̇1(t) < τ̄1, and 0 ≤ τ2(t) ≤ τ2.

Assumption 2 The activation functions fi(·), i = 1, 2, . . . , n, satisfy the Lipschitzian condi-
tion with the Lipschitz constants λi > 0:

∥
∥fi
(
x(θ )

)
– fi
(
α(t)y(θ )

)∥∥ ≤ λi
∥
∥x(θ ) – α(t)y(θ )

∥
∥,

where Λ is positive constant matrix and Λ = diag{λi, i = 1, 2, . . . , n}.

The isolated node of network (1) is given by the following delayed neural network:

⎧
⎨

⎩

ṡ(t) = –Ds(t) + Af (s(t)) + Bf (s(t – τ1(t))) + C
∫ t

t–τ2(t) f (s(θ )) dθ ,

ys(t) = Js(t),
(3)

where s(t) = (s1(t), s2(t), . . . , sn(t))T ∈ Rn and the parameters D, A, B and C and the non-
linear functions f (·) have the same definitions as in (1).

The network (1) is said to achieve FPS if there exists a continuously differentiable posi-
tive function α(t) > 0 such that

lim
t→∞

∥
∥zi(t)

∥
∥ = lim

t→∞
∥
∥xi(t) – α(t)s(t)

∥
∥, i = 1, 2, . . . , N ,

where ‖·‖ stands for the Euclidean vector norm and s(t) ∈Rn can be an equilibrium point.
Let zi(t) = xi(t) – α(t)s(t), be the synchronization error. Then, by substituting it into (1), it
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is easy to get the following:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

żi(t) = ẋi(t) – α̇(t)s(t) – α(t)ṡ(t)

= –Dzi(t) + A[f (xi(t)) – α(t)f (s(t))] + B[f (xi(t – τ1(t)))

– α(t)f (s(t – τ1(t)))] + C
∫ t

t–τ2(t)[f (xi(θ )) – α(t)f (s(θ ))] dθ

+ c1
∑N

j=1 g(1)
ij L1zj(t) + c2

∑N
j=1 g(2)

ij L2zj(t – τ1(t))

+ c3
∑N

j=1 g(3)
ij L3

∫ t
t–τ2(t) zj(θ ) dθ – α̇(t)s(t) + ui(t) + ωi(t),

ŷi(t) = Jzi(t),

(4)

where ŷi(t) = yi(t) – ys(t).

Remark 1 If the scaling function α(t) is a function of the time t, then the NNs will realize
FPS. The FPS includes many kinds of synchronization. If α(t) = α or α(t) = 1, then the
synchronization will be reduced to the projective synchronization [17, 18, 26] or common
synchronization, [36, 37], respectively. Therefore, the FPS is more general.

Regarding to the pinning sampled-data control scheme, without loss of generality, the
first l nodes are chosen and pinned with sampled-data control ui(t), expressed in the fol-
lowing form:

ui(t) = ui1(t) + ui2(t), i = 1, 2, . . . , N , (5)

where

ui1(t) = α̇(t)s(t) – A
[
f
(
α(t)s(t)

)
– α(t)f

(
s(t)
)]

– B
[
f
(
α(t)s

(
t – τ1(t)

))
– α(t)f

(
s
(
t – τ1(t)

))]

– C
∫ t

t–τ2(t)

[
f
(
α(t)s(θ )

)
– α(t)f

(
s(θ )

)]
dθ ,

i = 1, 2, . . . , N ,

ui2(t) =

⎧
⎨

⎩

Kizi(tk), tk ≤ t ≤ tk+1, i = 1, 2, . . . , l,

0, i = l + 1, l + 2, . . . , N ,

where Ki is a set of the sampled-data feedback controller gain matrices to be designed,
for every i = 1, 2, . . . , N , zi(tk) is discrete measurement of zi(t) at the sampling interval tk .
Denote the updating instant time of the zero-order-hold (ZOH) by tk ; satisfying

0 = t0 < t1 < · · · < tk < lim
k→+∞

tk = +∞,

tk+1 – tk = hk ≤ h, ∀k ≥ 0,

where h > 0 represents the largest sampling interval.
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By substituting (5) into (4), it can be derived that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

żi(t) = –Dzi(t) + Ãf (zi(t)) + B̃f (zi(t – τ1(t))) + C
∫ t

t–τ2(t) f̃ (zi(θ )) dθ

+ c1
∑N

j=1 g(1)
ij L1zj(t) + c2

∑N
j=1 g(2)

ij L2zj(t – τ1(t)) + ωi(t)

+ c3
∑N

j=1 g(3)
ij L3

∫ t
t–τ2(t) zj(θ ) dθ + Kizi(t – h(t)), i = 1, 2, 3, . . . , l,

żi(t) = –Dzi(t) + Ãf (zi(t)) + B̃f (zi(t – τ1(t))) + C
∫ t

t–τ2(t) f̃ (zi(θ )) dθ

+ c1
∑N

j=1 g(1)
ij L1zj(t) + c2

∑N
j=1 g(2)

ij L2zj(t – τ1(t)) + ωi(t)

+ c3
∑N

j=1 g(3)
ij L3

∫ t
t–τ2(t) zj(θ ) dθ , i = l + 1, l + 2, l + 3, . . . , N ,

(6)

where h(t) = t – tk satisfies 0 ≤ h(t) ≤ h, and

f̃
(
zi(t)

)
= f
(
xi(t)

)
– f
(
α(t)s(t)

)
,

f̃
(
zi
(
t – τ1(t)

))
= f
(
xi
(
t – τ1(t)

))
– f
(
α(t)s

(
t – τ1(t)

))
,

f̃
(
zi(θ )

)
= f
(
xi(θ )

)
– f
(
α(t)s(θ )

)
.

The initial condition of (6) is defined by

zi(θ ) = φi(θ ), –θ̄ ≤ θ ≤ 0, (7)

where θ̄ = max{τ1, τ2, h} and φi(θ ) ∈ C([–θ̄ , 0],Rn), i = 1, 2, . . . , N .
Let us define

K = diag{K1, K2, . . . , Kl︸ ︷︷ ︸
l times

, 0n, . . . , 0n︸ ︷︷ ︸
N–l times

},

z(t) =

⎡

⎢
⎢
⎢
⎢
⎣

z1(t)
z2(t)

...
zN (t)

⎤

⎥
⎥
⎥
⎥
⎦

, f̄
(
z(·)) =

⎡

⎢
⎢
⎢
⎢
⎣

f̃ (z1(·))
f̃ (z2(·))

...
f̃ (zN (·))

⎤

⎥
⎥
⎥
⎥
⎦

, ω(t) =

⎡

⎢
⎢
⎢
⎢
⎣

ω1(t)
ω2(t)

...
ωN (t)

⎤

⎥
⎥
⎥
⎥
⎦

.

Then, with the Kronecker product, we can reformulate the system (6) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż(t) = –(IN ⊗ D)z(t) + (IN ⊗ A)f̄ (z(t)) + (IN ⊗ B)f̄ (z(t – τ1(t)))

+ (IN ⊗ C)
∫ t

t–τ2(t) f̄ (z(θ )) dθ + c1(G(1) ⊗ L1)z(t)

+ c2(G(2) ⊗ L2)z(t – τ1(t)) + c3(G(3) ⊗ L3)
∫ t

t–τ2(t) z(θ ) dθ

+ Kz(t – h(t)) + ω(t),

ỹ(t) = Jz(t).

(8)

The following definitions and lemmas are introduced to serve for the proof of the main
results.

Definition 2.1 ([33]) The network (1) with ω(t) = 0 is an exponential function projective
synchronization (EFPS), if there exist two constants μ > 0 and 
 > 0 such that

∥
∥z(t)

∥
∥2 ≤ μe–
 t∥∥z(ε)

∥
∥

cl.
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Definition 2.2 ([34]) For given scalar σ ∈ [0, 1], the error system (8) is EFPS and meets
a predefined H∞/passive performance index γ , if the following two conditions can be
guaranteed simultaneously:

(i) the error system (8) is EFPS in view of Definition 2.1;
(ii) under the zero original condition, there exists a scalar γ > 0 such that the following

inequality is satisfied:

∫ Tp

0

[
–σ ỹT (t)̃y(t) + 2(1 – σ )γ ỹT (t)ω(t)

]
dt ≥ –γ 2

∫ Tp

0

[
ωT (t)ω(t)

]
dt, (9)

for any Tp ≥ 0 and any non-zero ω(t) ∈L2[0,∞).

Lemma 2.3 ([6], Cauchy inequality) For any symmetric positive definite matrix N ∈ Mn×n

and x, y ∈Rn we have

±2xT y ≤ xT Nx + yT N–1y.

Lemma 2.4 ([6]). For any constant symmetric matrix M ∈Rm×m, M = MT > 0, b > 0, vec-
tor function z : [0, b] →Rm such that the integrations concerned are well defined, one has

(∫ b

0
zT (s) ds

)T

M
(∫ b

0
z(s) ds

)

≤ b
∫ b

0
zT (s)Mz(s) ds.

Lemma 2.5 ([9]) For a positive definite matrix S > 0 and any continuously differentiable
function x : [a, b] →Rn the following inequalities hold:

∫ b

a
żT (s)Sż(s) ds ≥ 1

b – a
ΞT

1 SΞ1 +
3

b – a
ΞT

2 SΞ2 +
5

b – a
ΞT

3 SΞ3,

∫ b

a

∫ b

θ

żT (s)Sż(s) ds dθ ≥ 2ΞT
4 SΞ4 + 4ΞT

5 SΞ5 + 6ΞT
6 SΞ6,

where

Ξ1 = z(b) – z(a),

Ξ2 = z(b) + z(a) –
2

b – a

∫ b

a
z(s) ds,

Ξ3 = z(b) – z(a) +
6

b – a

∫ b

a
z(s) ds –

12
(b – a)2

∫ b

a

∫ b

θ

z(s) ds dθ ,

Ξ4 = z(b) –
1

b – a

∫ b

a
z(s) ds,

Ξ5 = z(b) +
2

b – a

∫ b

a
z(s) ds –

6
(b – a)2

∫ b

a

∫ b

θ

z(s) ds dθ ,

Ξ6 = z(b) –
3

b – a

∫ b

a
z(s) ds +

24
(b – a)2

∫ b

a

∫ b

θ

z(s) ds dθ

–
60

(b – a)3

∫ b

a

∫ b

θ

∫ b

s
z(λ) dλds dθ .
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Lemma 2.6 ([6], Schur complement lemma) Given constant symmetric matrices X, Y , Z
with appropriate dimensions satisfying X = XT , Y = Y T > 0, one has X + ZT Y –1Z < 0 if and
only if

(
X ZT

Z –Y

)

< 0 or

(
–Y Z
ZT X

)

< 0.

Remark 2 The condition in Definition 2.2 includes H∞ performance index γ and passivity
performance index γ . If σ = 1, then the condition will reduce to the H∞ performance index
γ and if σ = 0, then the condition will reduce to the passivity performance index γ . The
condition corresponds to mixed H∞ and passivity performance index γ for σ in (0, 1).

3 Main results
In this section, we present a control scheme to synchronize the NNs (1) to the homo-
geneous trajectory (3). Then we will give some sufficient conditions in the EFPS of NNs
with mixed time-varying delays and hybrid coupling. To simplify the representation, we
introduce some notations as follows:

χ (t) =
[

zT (t),
∫ t

t–τ1

zT (s) ds,
∫ t

t–τ1

∫ t

θ

zT (s) ds dθ ,
∫ t

t–τ1

∫ t

θ

∫ t

s
zT (λ) dλds dθ

]T

,

η(t) =
[

zT (t), zT(t – τ1(t)
)
, zT (t – τ1), zT(t – h(t)

)
, zT (t – h), ż(t),

∫ t

t–τ1

zT (s) ds,
∫ t

t–τ1

∫ t

θ

zT (s) ds dθ ,
∫ t

t–τ1

∫ t

θ

∫ t

s
zT (λ) dλds dθ ,

∫ t

t–h
zT (s) ds,

∫ t

t–h

∫ t

θ

zT (s) ds dθ ,
∫ t

t–h

∫ t

θ

∫ t

s
zT (λ) dλds dθ ,

∫ t

t–τ2(t)
zT (s) ds,ωT (t)

]T

,

where zi ∈Rn×14n is defined as zi = [0n×(i–1)n, In, 0n×(14–i)n] for i = 1, 2, . . . , 14.

Theorem 3.1 Given constants τ1, τ2, τ̄1, h, γ and σ ∈ [0, 1], if real positive matrices P ∈
R4n×4n, Q0, Qi, S0 Si, Ri ∈ Rn×n (i = 1, 2, 3), positive constants εi (i = 1, 2, . . . , 6), and real
matrices T1, T2 with appropriate dimensions, such that

Υ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Υ11 Υ12 Υ13 Υ14 Υ15 Υ16 Υ17

∗ –ε1I 0 0 0 0 0
∗ ∗ –ε2I 0 0 0 0
∗ ∗ ∗ –ε3I 0 0 0
∗ ∗ ∗ ∗ –ε4I 0 0
∗ ∗ ∗ ∗ ∗ –ε5I 0
∗ ∗ ∗ ∗ ∗ ∗ –ε6I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (10)
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where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Υ11 =
∑8

i=1 Πi, Υ12 = IN ⊗ T1A, Υ13 = IN ⊗ T1B, Υ14 = IN ⊗ T1C,

Υ15 = IN ⊗ T2A, Υ16 = IN ⊗ T2B, Υ17 = IN ⊗ T2C,

Π1 = ΘT
1 PΘ2 + ΘT

2 PΘ1 – ΘT
3 S1Θ3 – ΘT

4 S1Θ4 + zT
1 S0z1 – zT

5 S0z5,

Π2 = zT
1 (Q0 + Q2)z1 + zT

1 ΛT (Q1 + Q3)Λz1 – zT
3 Q0z3 – (1 – τ̄1)zT

2 Q2z2

– zT
3 (ΛT Q1Λ)z3 – (1 – τ̄1)zT

2 (ΛT Q3Λ)z2,

Π3 = τ 2
2 zT

1 (ΛT R1Λ)z1 – zT
13(ΛT R1Λ)z13,

Π4 = h2zT
6 (S2 + 0.5R2)z6 – ΘT

5 S2Θ5 – 3ΘT
6 S2Θ6 – 5ΘT

7 S2Θ7

– 2ΘT
11R2Θ11 – 4ΘT

12R2Θ12 – 6ΘT
13R2Θ13,

Π5 = τ 2
1 zT

6 (S3 + 0.5R3)z6 – ΘT
8 S3Θ8 – 3ΘT

9 S3Θ9 – 5ΘT
10S3Θ10

– 2ΘT
14R3Θ14 – 4ΘT

15R3Θ15 – 6ΘT
16R3Θ16,

Π6 = zT
1 T1C0 + CT

0 TT
1 z1 + zT

6 T2C0 + CT
0 TT

2 z6 + zT
1 T1Kz4 + zT

4 KT TT
1 z1

+ zT
6 T2Kz4 + zT

4 KT TT
2 z6 + zT

1 T1z14 + zT
14TT

1 z1 – zT
1 T1z6 – zT

6 TT
1 z1

+ zT
6 T2z14 + zT

14TT
2 z6 – zT

6 T2z6 – zT
6 TT

2 z6,

Π7 = (ε1 + ε4)zT
1 (IN ⊗ ΛTΛ)z1 + (ε2 + ε5)zT

2 (IN ⊗ ΛTΛ)z2

+ (ε3 + ε6)zT
13(IN ⊗ ΛTΛ)z13,

Π8 = σ (Jz1)T (Jz1) – (1 – σ )γ (Jz1)T z14 – (1 – σ )γ zT
14(Jz1) – γ 2zT

14z14,

C0 = [c1(G(1) ⊗ L1) – (IN ⊗ D)]z1 + c2(G(2) ⊗ L2)z2 + c3(G(3) ⊗ L3)z13,

(11)

with

Θ1 =
[
zT

1 , zT
7 , zT

8 , zT
9
]T , Θ2 =

[
zT

6 , zT
1 – zT

3 , τ1zT
1 – zT

7 , 0.5τ 2
1 zT

1 – zT
8
]T ,

Θ3 = z1 – z4, Θ4 = z4 – z5, Θ5 = z1 – z5,

Θ6 = z1 + z5 –
2
h

z10, Θ7 = z1 – z5 +
6
h

z10 –
12
h2 z11, Θ8 = z1 – z3,

Θ9 = z1 + z3 –
2
τ1

z7, Θ10 = z1 – z3 +
6
τ1

z7 –
12
τ 2

1
z8, Θ11 = z1 –

1
h

z5,

Θ12 = z1 +
2
h

z5 –
6
h2 z10, Θ13 = z1 –

3
h

z5 +
24
h2 z10 –

60
h3 z11, Θ14 = z1 –

1
τ1

z7,

Θ15 = z1 +
2
τ1

z7 –
6
τ 2

1
z8, Θ16 = z1 –

3
τ1

z7 +
24
τ 2

1
z8 –

60
τ 3

1
z9,

then the error system (8) is EFPS and meets a predefined H∞/passive performance index γ .

Proof We consider a candidate Lyapunov–Krasovskii functional:

V (t) =
5∑

k=1

Vk(t), (12)

where

V1(t) = χT (t)Pχ (t) +
∫ t

t–h
zT (s)S0z(s) ds +

∫ t

t–h

∫ t

θ

żT (s)S1ż(s) ds dθ ,
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V2(t) =
∫ t

t–τ1

[
zT (s)Q0z(s) + f T(z(s)

)
Q1f

(
z(s)

)]
ds

+
∫ t

t–τ1(t)

[
zT (s)Q2z(s) + f T(z(s)

)
Q3f

(
z(s)

)]
ds,

V3(t) = τ2

∫ t

t–τ2

∫ t

θ

f T(z(s)
)
R1f

(
z(s)

)
ds dθ ,

V4(t) = h
∫ t

t–h

∫ t

θ

żT (s)S2ż(s) ds dθ +
∫ t

t–h

∫ t

θ

∫ t

s
żT (λ)R2ż(λ) dλds dθ ,

V5(t) = τ1

∫ t

t–τ1

∫ t

θ

żT (s)S3ż(s) ds dθ +
∫ t

t–τ1

∫ t

θ

∫ t

s
żT (λ)R3ż(λ) dλds dθ .

The time derivatives of V (t) along the trajectories of the error system (8) can be calculated
as

V̇1(t) = 2χ̇T (t)Pχ (t) + zT (t)S0z(t) – zT (t – h)S0z(t – h) + hżT (t)S1ż(t)

– h
∫ t

t–h
żT (s)S1ż(s) ds, (13)

V̇2(t) ≤ zT (t)(Q0 + Q2)z(t) + f T(z(t)
)
(Q1 + Q3)f

(
z(t)

)
– zT (t – τ1)Q0z(t – τ1)

– f T(z(t – τ1)
)
Q1f

(
z(t – τ1)

)
– (1 – τ̄1)zT(t – τ1(t)

)
Q2z

(
t – τ1(t)

)

– (1 – τ̄1)f T(z
(
t – τ1(t)

))
Q3f T(z

(
t – τ1(t)

))

≤ zT (t)(Q0 + Q2)z(t) + z(t)ΛT (Q1 + Q3)Λz(t) – zT (t – τ1)Q0z(t – τ1)

– z(t – τ1)
(
ΛT Q1Λ

)
z(t – τ1) – (1 – τ̄1)zT(t – τ1(t)

)
Q2z

(
t – τ1(t)

)

– (1 – τ̄1)z
(
t – τ1(t)

)(
ΛT Q3Λ

)
z
(
t – τ1(t)

)

= ηT (t)Π2η(t), (14)

V̇3(t) = τ 2
2 f T (z(t)R1f

(
z(t)

)
– τ2

∫ t

t–τ2

f T(z(s)
)
R1f

(
z(s)

)
ds

≤ τ 2
2 z(t)ΛT R1Λz(t) – τ2

∫ t

t–τ2

f T(z(s)
)
R1f

(
z(s)

)
ds, (15)

V̇4(t) = h2żT (t)(S2 + 0.5R2)ż(t) – h
∫ t

t–h
żT (s)S2ż(s) ds

–
∫ t

t–h

∫ t

θ

żT (s)R2ż(s) ds dθ , (16)

V̇5(t) = τ 2
1 żT (t)(S3 + 0.5R3)ż(t) – τ1

∫ t

t–τ1

żT (s)S3ż(s) ds

–
∫ t

t–τ1

∫ t

θ

żT (s)R3ż(s) ds dθ , (17)

where Π2 is defined in (11). Applying Lemma 2.4 and Lemma 2.5, it can be shown that

–h
∫ t

t–h
żT (s)S1ż(s) ds

= –h
∫ t

t–h(t)
żT (s)S1ż(s) ds – h

∫ t–h(t)

t–h
żT (s)S1ż(s) ds
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≤ –
[
z(t) – z

(
t – h(t)

)]T S1
[
z(t) – z

(
t – h(t)

)]

–
[
z
(
t – h(t)

)
– z(t – h)

]T S1
[
z
(
t – h(t)

)
– z(t – h)

]
, (18)

–τ2

∫ t

t–τ2

f T(z(s)
)
R1f

(
z(s)

)
ds

≤ –τ2

∫ t

t–τ2(t)
f T(z(s)

)
R1f

(
z(s)

)
ds

≤ –
∫ t

t–τ2(t)
f T(z(s)

)
dsR1

∫ t

t–τ2(t)
f
(
z(s)

)
ds

≤ –
∫ t

t–τ2(t)
zT (s) ds

(
ΛT R1Λ

)
∫ t

t–τ2(t)
z(s) ds, (19)

–h
∫ t

t–h
żT (s)S2ż(s) ds ≤ –ΘT

5 S2Θ5 – 3ΘT
6 S2Θ6 – 5ΘT

7 S2Θ7, (20)

–
∫ t

t–h

∫ t

θ

żT (s)R2ż(s) ds dθ

≤ –2ΘT
11R2Θ11 – 4ΘT

12R2Θ12 – 6ΘT
13R2Θ13, (21)

–τ1

∫ t

t–τ1

żT (s)S3ż(s) ds ≤ –ΘT
8 S3Θ8 – 3ΘT

9 S3Θ9 – 5ΘT
10S3Θ10, (22)

–
∫ t

t–τ1

∫ t

θ

żT (s)R3ż(s) ds dθ

≤ –2ΘT
14R3Θ14 – 4ΘT

15R3Θ15 – 6ΘT
16R3Θ16. (23)

From (13)–(23), we obtain

V̇1(t) + V̇3(t) + V̇4(t) + V̇5(t) = ηT (t)[Π1 + Π3 + Π4 + Π5]η(t), (24)

where Πi, i = 1, 3, 4, 5, are defined in (11).
Based on the error system (8), given any matrices T1 and T2 with appropriate dimen-

sions, it is true that

0 = 2
[
zT (t)T1 + żT (t)T2

]
[

–(IN ⊗ D)z(t) + (IN ⊗ A)f̄
(
z(t)

)
+ (IN ⊗ B)

× f̄
(
z
(
t – τ1(t)

))
+ (IN ⊗ C)

∫ t

t–τ2(t)
f̄
(
z(θ )

)
dθ + c1

(
G(1) ⊗ L1

)
z(t)

+ c2
(
G(2) ⊗ L2

)
z
(
t – τ1(t)

)
+ c3

(
G(3) ⊗ L3

)
∫ t

t–τ2(t)
z(θ ) dθ + Kz

(
t – h(t)

)

+ ω(t) – ż(t)
]

. (25)

Applying Lemma 2.3 and Lemma 2.4, we have

zT (t)(IN ⊗ T1A)f̄
(
z(t)

)

≤ 1
2ε1

zT (t)
(
IN ⊗ T1AAT TT

1
)
z(t) +

ε1

2
f̄ T(z(t)

)
(IN ⊗ In)f̄

(
z(t)

)
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≤ 1
2ε1

zT (t)
(
IN ⊗ T1AAT TT

1
)
z(t) +

ε1

2
zT (t)

(
IN ⊗ ΛTΛ

)
z(t)

=
1
2

zT (t)(IN ⊗ T1A)ε–1
1
(
IN ⊗ AT TT

1
)
z(t) +

ε1

2
zT (t)

(
IN ⊗ ΛTΛ

)
z(t), (26)

zT (t)(IN ⊗ T1B)f̄
(
z
(
t – τ1(t)

))

≤ 1
2ε2

zT (t)
(
IN ⊗ T1BBT TT

1
)
z(t)

+
ε2

2
f̄ T((t – τ1(t)

))
(IN ⊗ In)f̄

(
z
(
t – τ1(t)

))

≤ 1
2ε2

zT (t)
(
IN ⊗ T1BBT TT

1
)
z(t)

+
ε2

2
zT(t – τ1(t)

)(
IN ⊗ ΛTΛ

)
z
(
t – τ1(t)

)

=
1
2

zT (t)(IN ⊗ T1B)ε–1
2
(
IN ⊗ BT TT

1
)
z(t)

+
ε2

2
zT(t – τ1(t)

)(
IN ⊗ ΛTΛ

)
z
(
t – τ1(t)

)
, (27)

zT (t)(IN ⊗ T1C)
∫ t

t–τ2(t)
f̄
(
z(θ )

)
dθ

≤ 1
2ε3

zT (t)
(
IN ⊗ T1CCT TT

1
)
z(t)

+
ε3

2

(∫ t

t–τ2(t)
f̄ T(z(θ )

)
dθ

)T

(IN ⊗ In)
(∫ t

t–τ2(t)
f̄
(
z(θ )

)
dθ

)

≤ 1
2ε3

zT (t)
(
IN ⊗ T1CCT TT

1
)
z(t)

+
ε3

2

(∫ t

t–τ2(t)
zT (θ )dθ

)T(
IN ⊗ ΛTΛ

)
(∫ t

t–τ2(t)
z(θ ) dθ

)

=
1
2

zT (t)(IN ⊗ T1C)ε–1
3
(
IN ⊗ CT TT

1
)
z(t)

+
ε3

2

(∫ t

t–τ2(t)
zT (θ )dθ

)T(
IN ⊗ ΛTΛ

)
(∫ t

t–τ2(t)
z(θ ) dθ

)

, (28)

żT (t)(IN ⊗ T2A)f̄
(
z(t)

)

≤ 1
2ε4

żT (t)
(
IN ⊗ T2AAT TT

2
)
ż(t) +

ε4

2
f̄ T(z(t)

)
(IN ⊗ In)f̄

(
z(t)

)

≤ 1
2ε4

żT (t)
(
IN ⊗ T2AAT TT

2
)
ż(t) +

ε4

2
zT (t)

(
IN ⊗ ΛTΛ

)
z(t)

=
1
2

żT (t)(IN ⊗ T2A)ε–1
4
(
IN ⊗ AT TT

2
)
ż(t) +

ε4

2
zT (t)

(
IN ⊗ ΛTΛ

)
z(t), (29)

żT (t)(IN ⊗ T2B)f̄
(
z
(
t – τ1(t)

))

≤ 1
2ε5

żT (t)
(
IN ⊗ T2BBT TT

2
)
ż(t)

+
ε5

2
f̄ T((t – τ1(t)

))
(IN ⊗ In)f̄

(
z
(
t – τ1(t)

))

≤ 1
2ε5

żT (t)
(
IN ⊗ T2BBT TT

2
)
ż(t)
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+
ε5

2
zT(t – τ1(t)

)(
IN ⊗ ΛTΛ

)
z
(
t – τ1(t)

)

=
1
2

żT (t)(IN ⊗ T2B)ε–1
5
(
IN ⊗ BT TT

2
)
ż(t)

+
ε5

2
zT(t – τ1(t)

)(
IN ⊗ ΛTΛ

)
z
(
t – τ1(t)

)
, (30)

żT (t)(IN ⊗ T2C)
∫ t

t–τ2(t)
f̄
(
z(θ )

)
dθ

≤ 1
2ε6

żT (t)
(
IN ⊗ T2CCT TT

2
)
ż(t)

+
ε6

2

(∫ t

t–τ2(t)
f̄ T(z(θ )

)
dθ

)T

(IN ⊗ In)
(∫ t

t–τ2(t)
f̄
(
z(θ )

)
dθ

)

≤ 1
2ε6

żT (t)
(
IN ⊗ T2CCT TT

2
)
ż(t)

+
ε6

2

(∫ t

t–τ2(t)
zT (θ ) dθ

)T(
IN ⊗ ΛTΛ

)
(∫ t

t–τ2(t)
z(θ ) dθ

)

=
1
2

żT (t)(IN ⊗ T2C)ε–1
6
(
IN ⊗ CT TT

2
)
ż(t)

+
ε6

2

(∫ t

t–τ2(t)
zT (θ ) dθ

)T(
IN ⊗ ΛTΛ

)
(∫ t

t–τ2(t)
z(θ ) dθ

)

. (31)

Then, from (14), (24) and (25)–(31), we obtain

V̇ (t) ≤ ηT (t)

{ 7∑

i=1

Πi + zT (t)
[
(IN ⊗ T1A)ε–1

1
(
IN ⊗ AT TT

1
)

+ (IN ⊗ T1B)ε–1
2
(
IN ⊗ BT TT

1
)

+ (IN ⊗ T1C)ε–1
3
(
IN ⊗ CT TT

1
)]

z(t)

+ żT (t)
[
(IN ⊗ T2A)ε–1

4
(
IN ⊗ AT TT

2
)

+ (IN ⊗ T2B)ε–1
5
(
IN ⊗ BT TT

2
)

+ (IN ⊗ T2C)ε–1
6
(
IN ⊗ CT TT

2
)]

ż(t)

}

η(t), (32)

where Π6 and Π7 are defined in (11). Applying the Schur complement of Lemma 2.6, and
defining Ω(t) = σ ỹT (t)̃y(t) – 2(1 – σ )γ ỹT (t)ω(t) – γ 2ωT (t)ω(t), we have

V̇ (t) + Ω(t) ≤ ηT (t)Υ η(t),

where Υ is defined in (10). If we have Υ < 0, then

V̇ (t) + Ω(t) < 0. (33)

Thus, under the zero original condition, it can be inferred that for any Tp

∫ Tp

0
Ω(t) dt ≤

∫ Tp

0

[
Ω(t) + V̇ (t)

]
dt < 0,



Botmart et al. Advances in Difference Equations        (2019) 2019:383 Page 14 of 26

which indicates that
∫ Tp

0

[
σ ỹT (t)̃y(t) – 2(1 – σ )γ ỹT (t)ω(t)

]
dt ≤ γ 2

∫ Tp

0
ωT (t)ω(t) dt.

In this case, the condition (9) is ensured for any non-zero ω(t) ∈ L2[0,∞). If ω(t) = 0, in
view of (33), there exists a scalar δ such that

V̇ (t) < –δ
∥
∥z(t)

∥
∥2. (34)

We are now ready to deal with the EFPS of error system (8). Consider the Lyapunov–
Krasovskii functional e2αtV (t), where α is a constant. By (34), we have

d
dt

e2αtV (t) = e2αtV̇ (t) + 2αe2αtV (t) ≤ e2αt[–δ + 2αM]
∥
∥z(t + ε)

∥
∥

cl, (35)

where

M =
(
1 + τ1 + τ 2

1 + τ 3
1
)
λmax(P) + hλmax(S0) + h2λmax(S1)

+ τ1λmax
(
Q0 + ΛT Q1Λ + Q2 + ΛT Q3Λ

)
+ τ2λmax

(
ΛT R1Λ

)

+ h3λmax(S2 + R2) + τ 3
1 λmax(S3 + R3).

From now on, we take α to be a constant satisfying α ≤ δ
2M , and then obtain from (35)

d
dt

e2αtV (t) ≤ 0, (36)

which, together with (12) and (36), implies that

e2αtV (t) ≤ V (0) =
5∑

i=1

Vi(0) ≤M
∥
∥z(ε)

∥
∥

cl, (37)

and therefore

V (t) ≤Me–2αt∥∥z(ε)
∥
∥

cl.

Noticing λmin(P)‖z(t)‖2 ≤ V (t), we obtain

∥
∥z(t)

∥
∥2 ≤ M

λmin(P)
e–2αt∥∥z(ε)

∥
∥

cl. (38)

Letting μ = M
λmin(P) and 
 = 2α, we can rewrite (38) as

∥
∥z(t)

∥
∥2 ≤ μe–
 t∥∥z(ε)

∥
∥

cl.

Hence, the error system (8) is EFPS. Thus, according to Definition 2.2, the error system (8)
is an EFPS with a mixed H∞ and passivity performance index γ . The proof is completed.�

Based on Theorem 3.1, the pinning sampled-data controller design, ensuring the EFPS
of delayed NNs (1), is explained.
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Theorem 3.2 Given constants τ1, τ2, τ̄1, h, γ and σ ∈ [0, 1], if real positive matrices P ∈
R4n×4n, Q0, Qi, S0 Si, Ri ∈ Rn×n (i = 1, 2, 3), positive constants εi, i = 1, 2, . . . , 6, and real
matrices Y , Z with appropriate dimensions, such that

Υ̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Υ̃11 Υ̃12 Υ̃13 Υ̃14 Υ̃15 Υ̃16 Υ̃17

∗ –ε1I 0 0 0 0 0
∗ ∗ –ε2I 0 0 0 0
∗ ∗ ∗ –ε3I 0 0 0
∗ ∗ ∗ ∗ –ε4I 0 0
∗ ∗ ∗ ∗ ∗ –ε5I 0
∗ ∗ ∗ ∗ ∗ ∗ –ε6I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (39)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Υ̃11 =
∑8

i=1 Π̃i,

Υ̃12 = IN ⊗ β1YA, Υ̃13 = IN ⊗ β1YB, Υ̃14 = IN ⊗ β1YC,

Υ̃15 = IN ⊗ β2YA, Υ̃16 = IN ⊗ β2YB, Υ̃17 = IN ⊗ β2YC,

Π1 = ΘT
1 PΘ2 + ΘT

2 PΘ1 – ΘT
3 S1Θ3 – ΘT

4 S1Θ4 + zT
1 S0z1 – zT

5 S0z5,

Π2 = zT
1 (Q0 + Q2)z1 + zT

1 ΛT (Q1 + Q3)Λz1 – zT
3 Q0z3 – (1 – τ̄1)zT

2 Q2z2

– zT
3 (ΛT Q1Λ)z3 – (1 – τ̄1)zT

2 (ΛT Q3Λ)z2,

Π3 = τ 2
2 zT

1 (ΛT R1Λ)z1 – zT
13(ΛT R1Λ)z13,

Π4 = h2zT
6 (S2 + 0.5R2)z6 – ΘT

5 S2Θ5 – 3ΘT
6 S2Θ6 – 5ΘT

7 S2Θ7

– 2ΘT
11R2Θ11 – 4ΘT

12R2Θ12 – 6ΘT
13R2Θ13,

Π5 = τ 2
1 zT

6 (S3 + 0.5R3)z6 – ΘT
8 S3Θ8 – 3ΘT

9 S3Θ9 – 5ΘT
10S3Θ10

– 2ΘT
14R3Θ14 – 4ΘT

15R3Θ15 – 6ΘT
16R3Θ16,

Π̃6 = β1zT
1 YC0 + β1CT

0 Y T z1 + β2zT
6 YC0 + β2CT

0 Y T z6 + β1zT
1 Zz4

+ β1zT
4 ZT z1 + β2zT

6 Zz4 + β2zT
4 ZT z6 + β1zT

1 Yz14 + β1zT
14Y T z1

– β1zT
1 Yz6 – β1zT

6 Y T z1 + β2zT
6 Yz14 + β2zT

14Y T z6 – β2zT
6 Yz6

– β2zT
6 Y T z6,

Π7 = (ε1 + ε4)zT
1 (IN ⊗ ΛTΛ)z1 + (ε2 + ε5)zT

2 (IN ⊗ ΛTΛ)z2

+ (ε3 + ε6)zT
13(IN ⊗ ΛTΛ)z13,

Π8 = σ (Jz1)T (Jz1) – (1 – σ )γ (Jz1)T z14 – (1 – σ )γ zT
14(Jz1) – γ 2zT

14z14,

C0 = [c1(G(1) ⊗ L1) – (IN ⊗ D)]z1 + c2(G(2) ⊗ L2)z2 + c3(G(3) ⊗ L3)z13,

(40)

with

Θ1 =
[
zT

1 , zT
7 , zT

8 , zT
9
]T , Θ2 =

[
zT

6 , zT
1 – zT

3 , τ1zT
1 – zT

7 , 0.5τ 2
1 zT

1 – zT
8
]T ,

Θ3 = z1 – z4, Θ4 = z4 – z5, Θ5 = z1 – z5,

Θ6 = z1 + z5 –
2
h

z10, Θ7 = z1 – z5 +
6
h

z10 –
12
h2 z11,

Θ8 = z1 – z3, Θ9 = z1 + z3 –
2
τ1

z7,
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Θ10 = z1 – z3 +
6
τ1

z7 –
12
τ 2

1
z8, Θ11 = z1 –

1
h

z5,

Θ12 = z1 +
2
h

z5 –
6
h2 z10, Θ13 = z1 –

3
h

z5 +
24
h2 z10 –

60
h3 z11, Θ14 = z1 –

1
τ1

z7,

Θ15 = z1 +
2
τ1

z7 –
6
τ 2

1
z8, Θ16 = z1 –

3
τ1

z7 +
24
τ 2

1
z8 –

60
τ 3

1
z9,

then the synchronization error system (8) is exponentially stable and meets a predefined
H∞/passive performance index γ . Meanwhile, the designed controller gains are given as
follows:

K = Y –1Z.

Proof Denote

T1 = β1Y , T2 = β2Y , (41)

then the LMIs (39) can be achieved. This completes the proof. �

Remark 3 In Theorem 3.2, we investigate the EFPS of NNs via mixed control. ui1(t) is
a nonlinear control (not pinning sampled-data control). Based on the principle of EFPS,
ui1(t) needs to be applied for every node. And, based on the principle of pinning sampled-
data control, ui2(t) is a pinning sampled-data control meant to apply for the first l nodes
0 ≤ i ≤ l.

Remark 4 The advantage of this paper is that this is the first time hybrid couplings are
addressed containing constant, discrete and distributed delay couplings considered in the
problem of exponential function projective synchronization of delayed neural networks
including with mixed H∞ and passivity. So, our conditions are more general than [33, 34]
where these couplings are not considered. Hence, we can see that their conditions cannot
be applied to our examples.

Remark 5 A challenging problem of this work that is this is the first time the control prob-
lem and the passive control problem of exponential function projective synchronization
for neural networks with hybrid coupling based on appropriate pinning sampled-data con-
trol are studied. The Lyapunov–Krasovskii functional V (t) in (12) has effectively been ap-
plied to the entire information on three kinds of time-varying delays. Moreover, some
novel double and triple integral functional terms are constructed, for which Wirtinger-
based integral inequalities have been employed to give much tighter upper bound on
Lyapunov–Krasovskii functional’s derivative and reduce the conservatism effectively.

4 Numerical examples
Several numerical examples are given to present the feasibility of the proposed method
and the effectiveness of the above theoretical results.
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Figure 1 The trajectory of the isolated node (42)

Example 4.1 Consider the isolated node with both discrete and distributed delays:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎣
ṡ1(t)

ṡ2(t)

⎤

⎦ = –

⎡

⎣
1 0

0 1

⎤

⎦

⎡

⎣
s1(t)

s2(t)

⎤

⎦ +

⎡

⎣
2.0 –0.1

–5.0 1.5

⎤

⎦

⎡

⎣
f (s1(t))

f (s2(t))

⎤

⎦

+

⎡

⎣
–1.5 –0.1

–0.2 –1.0

⎤

⎦

⎡

⎣
f (s1(t – 1))

f (s2(t – 1))

⎤

⎦

+

⎡

⎣
0.6 0.15

–1.8 –0.12

⎤

⎦

⎡

⎣
∫ t

t–τ2(t) f (s1(θ )) dθ
∫ t

t–τ2(t) f (s2(θ )) dθ

⎤

⎦ ,

(42)

where f (si) = tanh(si(t)), (i = 1, 2), τ1(t) = 1
1+e–t and τ2(t) = 0.25 sin2(t). Then the trajectory

of the isolated node (42) with initial conditions s1(r) = 0.4 cos(t), s2(r) = 0.6 cos(t), ∀r ∈
[–1, 0] is shown in Fig. 1. For mixed H∞/passive EFPS of delayed NNs (1), choosing the
time-varying scaling function α(t) = 0.6 + 0.25 sin( 0.5π

15 t), the coupling strength c1 = 0.5,
c2 = 0.5, c3 = 0.5, and the inner-coupling matrices are given by

L1 =

[
1 0
0 1

]

, L2 =

[
0.5 0
0 0.5

]

, L3 =

[
0.5 0
0 0.5

]

.

We consider the directed NNs as shown in Fig. 2. From Fig. 2, the outer-coupling matrices
are described by

G(1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

–1 0 1 0 0 0 0
1 –1 0 0 0 0 0
0 0 –1 1 0 0 0
1 1 0 –2 0 0 0
0 1 0 1 –2 0 0
0 0 1 1 0 –3 1
0 0 0 1 1 0 –2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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Figure 2 Simple directed neural networks with
seven nodes

Table 1 Minimum allowable values of γ for mixed H∞ and passivity analysis satisfied with different
values of h and σ

γmin h = 0.05 h = 0.1 h = 0.15 h = 0.2

σ = 0 0.2124 0.4151 0.6210 0.8754
σ = 0.5 0.4831 0.6434 0.9212 1.2420
σ = 1 0.6967 0.9772 1.3864 1.8464

G(2) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

–1 0 0 0 0 1 0
1 –1 0 0 0 0 0
1 0 –2 1 0 0 0
1 1 0 –3 1 0 0
0 1 0 0 –1 0 0
0 0 1 1 0 –3 1
0 0 0 1 1 0 –2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

G(3) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

–1 0 0 1 0 0 0
1 –1 0 0 0 0 0
0 1 –1 0 0 0 0
0 1 1 –3 1 0 0
0 1 1 1 –3 0 0
0 0 0 0 0 –1 1
0 0 0 0 1 0 –1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

As presented in Fig. 2, according to the pinned-node selection, nodes 1, 3, 4, 5, and 6 are
chosen as controller. By applying our Theorem 3.2, the relation among the parameters h,
σ , and γ , are shown in Table 1. Moreover, the histogram referring to the obtained relation
is also plotted in Fig. 3. Table 2 gives the maximum allowable sampling period of h for
different values of 
 . Thus, if we set 
 = 0.3 and h = 0.5, then the gain matrices of the
designed controllers will be obtained as follows:

K1 =

[
–1.3426 –0.4325
–0.5346 –1.6532

]

, K3 =

[
–0.9362 –0.5792
–0.6378 –0.8462

]

,

K4 =

[
–1.1431 –0.3214
–0.4391 –0.7896

]

, K5 =

[
–1.9403 –0.9432
–0.8451 –1.2056

]

,
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Figure 3 Relation among h, σ , and γ

Table 2 Maximum allowable sampling period of h in Example 4.1


 0.1 0.3 0.5 0.7 0.9

h 0.7543 0.6140 0.4814 0.3211 0.2034

Figure 4 The trajectory of the isolated node (42) and network (1) with the time-varying scaling function

K6 =

[
–1.4232 –0.2142
–0.1674 –2.0543

]

, K2 = K7 =

[
0 0
0 0

]

.

Furthermore, the EFPS of chaotic behaviour for the isolated node α(t)s(t) (42) and net-
work xi(t) (1) with the time-varying scaling function α(t) is given in Fig. 4. Figure 5 shows
the state trajectories of the isolated node α(t)s(t) (42) and network xi(t) (1). Figure 6 shows
the EFPS errors between the states of the isolated node α(t)s(t) (42) and network xi(t) (1)
where zij(t) = xij(t) – αj(t)sj(t) for i = 1, 2, . . . , 7, j = 1, 2 without pinning sampled-data con-
trol (5). Figure 7 shows the EFPS errors between the states of the isolated node α(t)s(t) (42)
and network xi(t) (1) where zij(t) = xij(t) – αj(t)sj(t) for i = 1, 2, . . . , 7, j = 1, 2 with pinning
sampled-data control (5).
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Figure 5 The state trajectory of the isolated node α(t)s(t) (42) and network xi(t) (1)

Figure 6 The EFPS error between isolate node α(t)s(t) (42) and network xi(t) (1) without sample-data pinning
control (5)

Example 4.2 Consider the isolated node with both discrete and distributed delays:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎣
ṡ1(t)

ṡ2(t)

⎤

⎦ = –

⎡

⎣
1 0

0 1

⎤

⎦

⎡

⎣
s1(t)

s2(t)

⎤

⎦ +

⎡

⎣
1.8 –0.15

–5.1 3.5

⎤

⎦

⎡

⎣
f (s1(t))

f (s2(t))

⎤

⎦

+

⎡

⎣
–1.7 –0.12

–0.24 –1.5

⎤

⎦

⎡

⎣
f (s1(t – 1))

f (s2(t – 1))

⎤

⎦

+

⎡

⎣
0.6 0.15

–2 –0.1

⎤

⎦

⎡

⎣
∫ t

t–τ2(t) f (s1(θ )) dθ
∫ t

t–τ2(t) f (s2(θ )) dθ

⎤

⎦ ,

(43)

where f (si) = tanh(si(t)), (i = 1, 2), τ1(t) = 1
1+e–t and τ2(t) = 1.2 sin2(t). Then the trajec-

tory of the isolated node (43) with initial conditions s1(r) = 0.5 cos(t), s2(r) = 0.1 cos(t),
∀r ∈ [–1.2, 0] is shown in Fig. 8. Choosing the time-varying scaling function α(t) =
0.65 + 0.2 sin( π

15 t), the coupling strength c1 = 0.1, c2 = 0.1, c3 = 0.1, and the inner-coupling
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Figure 7 The EFPS error between isolate node α(t)s(t) (42) and network xi(t) (1) with sample-data pinning
control (5)

Figure 8 The trajectory of the isolated node (43)

matrices are given by

L1 =

[
1 0
0 1

]

, L2 =

[
0.1 0
0 0.1

]

, L3 =

[
0.1 0
0 0.1

]

.

We consider the undirected NNs as shown in Fig. 9, and the outer-coupling matrices are
described by

G(1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

–2 0 0 1 0 1
0 –3 0 1 1 1
0 0 –3 1 1 1
1 1 1 –4 1 0
0 1 1 1 –3 0
1 1 1 0 0 –3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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Figure 9 Simple undirected neural networks with
six nodes

Table 3 Maximum allowable sampling period of h in Example 4.2


 0.1 0.3 0.5 0.7 0.9

h 0.8367 0.7134 0.5941 0.4723 0.3781

G(2) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

–2 1 1 0 0 0
1 –2 1 0 0 0
1 1 –5 1 1 1
0 0 1 –3 1 1
0 0 1 1 –3 1
0 0 1 1 1 –3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

G(3) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

–2 1 0 0 0 1
1 –3 1 0 0 1
0 1 –2 1 0 0
0 0 1 –3 1 1
0 0 0 1 –2 1
1 1 0 1 1 –4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

As presented in Fig. 9, according to the pinned-node selection, nodes 3, 4, and 6 are cho-
sen as controller. Table 3 gives the maximum allowable sampling period of h for different
values of 
 . Thus, if we set 
 = 0.3 and h = 0.5, then the gain matrices of the designed
controllers will be obtained. Thus, if we set 
 = 0.5 and h = 0.7, then the gain matrices of
the designed controllers will be obtained as follows:

K3 =

[
–3.2051 –1.3624
–2.3479 –2.7312

]

, K4 =

[
–1.3465 –0.1384
–0.2478 –0.7543

]

,

K6 =

[
–2.4312 –1.0065
–0.9431 –1.457

]

, K1 = K2 = K5 =

[
0 0
0 0

]

.

Furthermore, the EFPS of chaotic behaviour for the isolated node α(t)s(t) (43) and network
xi(t) (1) with α(t) is given Fig. 10. Figure 11 shows the state trajectories of the isolated node
α(t)s(t) (43) and network xi(t) (1). Figure 12 shows the EFPS errors between the states
of the isolated node α(t)s(t) (43) and network xi(t) (1) where zij(t) = xij(t) – αj(t)sj(t) for
i = 1, 2, . . . , 6, j = 1, 2 without pinning sampled-data control (5). Figure 13 shows the EFPS
errors between the states of the isolated node α(t)s(t) (43) and network xi(t) (1) where
zij(t) = xij(t) – αj(t)sj(t) for i = 1, 2, . . . , 6, j = 1, 2 with pinning sampled-data control (5).
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Figure 10 The trajectory of the isolated node (43) and network (1) with the time-varying scaling function

Figure 11 The state trajectory of the isolated node α(t)s(t) (43) and network xi(t) (1)

Remark 6 The networks in both examples of our study and the ones in the literature [21,
32, 39] are different. In [21], the FPS of the network is achieved under pinning feedback
controller design but the concerned network is still undirected. In [39], the conditions
for pinning synchronization are suitable for directed network. In this paper, the pinning
synchronization suitable for both directed and undirected networks. So, the considered
networks are more general.

Remark 7 Accordingly, it is worthwhile to focus on sampled-data control and it has caused
much attention recently [30–34]. In the sampled-data implementation, an important issue
is to reduce the data transmission load when using a sampled-data controller to realize the
stability, since the computation and communication resources are limited often. However,
it is interesting to extend this method to NN systems with even-triggered sampling control
in which the control packet can be lost due to several factors, for instance, communica-
tion interference, congestion or the transmission event is not triggered and the controller
is not updated except when its magnitude reaches the prescribed threshold. Hence, it is
necessary to design an event-triggered sampling control for NNs system, which can ef-
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Figure 12 The EFPS error between the isolate node α(t)s(t) (43) and network xi(t) (1) without sample-data
pinning control (5)

Figure 13 The EFPS error between the isolate node α(t)s(t) (43) and network xi(t) (1) with sample-data
pinning control (5)

fectively save the communication bandwidth by only sending a necessary sampling signal
through the network; see [42, 43]. Nevertheless, considering the sampled-data controller
and the digital form controller, which uses only the sampled information of the system at
its instants, the important benefits in using a sampled-data controller are low-cost con-
sumption, reliability, easy installation and being handy in real world problems.

5 Conclusions
In this paper, mixed H∞/passive EFPS of NNs with time-varying delays and hybrid cou-
pling are investigated. We have applied the using of nonlinear and pinning sampled-data
controls. Some sufficient conditions were derived to guarantee the EFPS by using of the
Lyapunov–Krasovskii function method. In order to manipulate the scaling functions, the
drive system and response systems could be synchronized up to the desired scaling func-
tions based on the pinning sampled-data control technique. Furthermore, numerical ex-
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amples are given to illustrate the effectiveness of the proposed theoretical results in this
paper as well.
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