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Abstract
In this paper, we mainly study the stochastic stability and stochastic bifurcation of
Brusselator system with multiplicative white noise. Firstly, by a polar coordinate
transformation and a stochastic averaging method, the original system is transformed
into an Itô averaging diffusion system. Secondly, we apply the largest Lyapunov
exponent and the singular boundary theory to analyze the stochastic local and global
stability. Thirdly, by means of the properties of invariant measures, the stochastic
dynamical bifurcations of stochastic averaging Itô diffusion equation associated with
the original system is considered. And we investigate the phenomenological
bifurcation by analyzing the associated Fokker–Planck equation. We will show that,
from the view point of random dynamical systems, the noise “destroys” the
deterministic stability. Finally, an example is given to illustrate the effectiveness of our
analyzing procedure.
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1 Introduction
The determined Brusselator is a coupled differential equation written as

⎧
⎨

⎩

u′ = A – (B + 1)u + u2v,

v′ = Bu – u2v,
(1.1)

where u(t) and v(t) are the concentrations of reactants at time t, respectively. A > 0 and
B > 0 are external system parameters describing the (constant) supply of “reservoir” chem-
icals. As a theoretical model for a type of autocatalytic reaction, the Brusselator model has
attracted the attention of many scholars since it was proposed by Prigogine and Lefever
[1]. Abundant dynamical behaviors have been reported for several decades; see [2–6].

Unfortunately, it is generally recognized that the effects of “external fluctuations” (envi-
ronmental noises) are inevitable in dynamical systems due to various factors, such as pos-
sible changes of system parameters, variations in excitations, errors in modeling schemes.
Therefore, to be more realistic, there is need to take into account stochastic systems which
consider external influences in complex physical systems. There are a lot of papers about
the stochastic Brusselator model. Tu and You [7] considered the existence of random at-
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tractor. In [8], Arnold et al. performed mainly a numerical study of the bifurcation behavior
of the Brusselator under parametric white noise. For other results, see [9–11].

There exist two ways to develop a stochastic model corresponding to a deterministic
model to study the effect of fluctuating environment on its dynamical behavior. The first
one is to replace the time independent parameters involved with the deterministic model
system by some random parameters. For example, according to the orthogonal polynomial
approximation in Hilbert space, Ma [12] considered the stochastic Hopf bifurcation of the
following stochastic Brusselator model:

⎧
⎨

⎩

dx
dt = (B̄ – 1)x + A2y + B̄x2

A + 2Axy + x2y,
dy
dt = –B̄x – A2y – B̄x2

A – 2Axy – x2y,

where B̄ is a random parameter. The obtained critical value of the stochastic Hopf bifur-
cation is Bc = A2 + 1 –

√
3δ
2 .

And the second one is to add randomly fluctuating driving force directly to the deter-
ministic equations without affecting any particular parameter to incorporate the effect of
randomly fluctuating environment ([13, 14]). This type of stochastic perturbation tech-
nique to study the effect of fluctuating environment was first introduced by Beretta et al.
[15] on a population model system, and Shaikhet [16] and then other researchers used it
[17].

In this paper, following the second method, we assume that stochastic perturbations of
the state variables around their steady-state values E∗(u∗, v∗) are of Gaussian white noise
type which are proportional to the distances of u, v from their steady-state values E∗,
respectively. So, in order to study the effect of environmental fluctuation, the deterministic
model system (1.1) can be extended to a stochastic differential equation system as follows:

⎧
⎨

⎩

u′ = (A – (B + 1)u + u2v) dt – δ(u – u∗) dW (t),

v′ = (Bu – u2v) dt + δ(v – v∗) dW (t),
(1.2)

where (u∗, v∗) = (A, B
A ), A, B and δ are the deterministic parameters; W (t) is standard real-

valued Wiener process on the complete probability space (Ω ,F ,P).
Therefore, in this paper, by applying the stochastic average method, singular boundary

theory and invariant measure theory, we aim to analyze stochastic stability and bifurcation
of system (1.2).

The organization of the rest of this paper is as follows: In Sect. 2, we state some pre-
liminary results needed in later sections. Moreover, by applying polar coordinate trans-
formation and stochastic averaging method, we obtain a stochastic averaging Itô diffusion
equation. In Sect. 3, we establish our main results ensuring the stochastic local stability
and global stability of system (1.2) by using the largest Lyapunov exponent and the singular
boundary theory. In Sect. 4, the stochastic dynamical and phenomenological bifurcations
of stochastic averaging Itô diffusion equation associated with system (1.2) will be discussed
by means of the properties of invariant measures and by considering the Fokker–Planck
equation, the phenomenological bifurcation of system (1.2) is shown. In Sect. 5, numerical
simulation results are given to illustrate the effectiveness of our analytical results. Finally,
we present our discussions and conclusions.
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2 Preliminaries
For the reader’s convenience, firstly, we present the following results about singular
boundary theory. To learn more about the classification of singular boundary, see [18]
and [19], the reference cited therein.

According to [18] and [19], denote by xs the boundaries of one-dimensional Itô stochas-
tic differential equation

dρ = m(ρ) dt + σ (ρ) dWρ(t).

The subscript s can be either l or r, denoting the left or right boundary.
Singular Boundary of the First Kind: Consider a singular boundary xs of the first kind,

namely, the diffusion term σ (xs) = 0. The boundary is said to be a shunt if m(xs) �= 0, and a
trap if m(xs) = 0.

We introduce the following definitions.
(i) αs is the diffusion exponent of xs, if

σ 2(x) = O|x – xs|αs (x → xs), αs ≥ 0.

(ii) βs is the drift exponent of xs, if

m(x) = O|x – xs|βs (x → xs), βs ≥ 0.

(iii) cs is the drift exponent of xs, given by

cl = lim
x→x+

l

2m(x)(x – xl)αl–βl

σ 2(x)
, cr = – lim

x→x–
r

2m(x)(xr – x)αr–βr

σ 2(x)
.

Singular Boundary of the Second Kind: We call the boundary xs the singular boundary
of the second kind if the drift term m(xs) is unbounded and |xs| < ∞.

(i) αs is the diffusion exponent of xs, if

B2(x) = O|x – xs|–αs (x → xs), αs ≥ 0.

(ii) βs is the drift exponent of xs, if

m(x) = O|x – xs|–βs (x → xs), βs ≥ 0.

(iii) cs is the drift exponent of xs, given by

cl = lim
x→x+

l

2m(x)(x – xl)βl–αl

σ 2(x)
, cr = – lim

x→x–
r

2m(x)(xr – x)βr–αr

σ 2(x)
.

We also give some definitions as regards stochastic stability and bifurcation.

Definition 2.1 (D-Bifurcation [18, 20]) Dynamical bifurcation is concerned with a family
random dynamical systems which is differential and has invariant measure μα . If there
exists a constant αD satisfying the condition in any neighborhood of αD, there exist an-
other constant α and the corresponding invariant measure να �= μα satisfying να → μα as
α → αD. Then the constant αD is a point of dynamical bifurcation.
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Definition 2.2 (P-Bifurcation [18, 20]) Phenomenological bifurcation is concerned with
the change in the shape of stationary probability density of a family random dynamical sys-
tems with the change of the parameter. If there exists a constant α0 satisfying the condition
in any neighborhood of αD, there exist two other constants α1, α2 and their corresponding
invariant measures pα1 , pα2 where pα1 and pα2 are not equivalent. Then the constant α0 is
a point of phenomenological bifurcation.

Definition 2.3 (Stochastically Stable [18–20]) The trivial solution x(t, t0, x0) of stochastic
differential equation is said to be stochastically stable or stable in probability if for every
pair of ε ∈ (0, 1) and α > 0, there exists a δ = δ(ε, δ, t0) > 0 such that

P
{∣
∣x(t, t0, x0)

∣
∣ < α,∀t ≥ t0

} ≥ 1 – ε,

whenever |x0| < δ. Otherwise, it is said to be stochastically unstable.

Next, we will apply polar coordinate transformation and stochastic averaging method
to obtain an averaging Itô diffusion equation from system (1.2).

Note that system (1.2) has the same steady-state values E∗(A, B
A ) as system (1.1). By ap-

plying the translation

⎧
⎨

⎩

x = u – A,

y = v – B
A ,

system (1.2) becomes

⎧
⎨

⎩

dx = ((B – 1)x + A2y + 2Axy + x2y + B
A x2) dt – δx dW (t),

dy = (–Bx – A2y – 2Axy – x2y – B
A x2) dt + δy dW (t).

(2.1)

Hence, to analyze stochastic stability and bifurcation of system (1.2) at E∗ is equivalent to
consider the stochastic stability and bifurcation of system (1.2) at (0, 0).

By the polar coordinate transformation x = ρ cos θ , y = ρ sin θ and Itô formula, we have

⎧
⎨

⎩

dρ = f1(ρ, θ ) dt + g11(ρ, θ ) dW (t),

dθ = f2(ρ, θ ) dt + g21(ρ, θ ) dW (t),
(2.2)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(ρ, θ ) = (A2(cos θ sin θ – sin2 θ ) + B(cos2 θ – sin θ cos θ ) – cos2 θ )ρ

+ (2A(sin θ cos2 θ – sin2 θ cos θ ) + B cos2 θ
A (cos θ – sin θ ))ρ2

+ (sin θ cos3 θ – (sin θ cos θ )2)ρ3,

f2(ρ, θ ) = (–(A2 sin θ + B cos θ )(cos θ + sin θ ) + cos θ sin θ )

– ((2A sin θ cos θ + B
A cos2 θ )(cos θ + sin θ ))ρ

– (sin θ cos2 θ (cos θ + sin θ ))ρ2,

g11(ρ, θ ) = –δρ cos 2θ ,

g21(ρ, θ ) = δ sin 2θ .

(2.3)
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According to the Khasminskii limiting theorem [18–20], the stochastic response process
ρ(t), θ (t) of system (2.2) weakly converges to a two-dimensional Markov diffusion process.
Therefore, by using the stochastic averaging method introduced in Chap. 5, Sect. 5.1 of
Ref. [18], we obtain the averaged Itô stochastic differential equation for system (2.2):

⎧
⎨

⎩

dρ = m1(ρ) dt + σ1(ρ) dWρ(t),

dθ = m2(ρ) dt + σ2(ρ) dWθ (t),
(2.4)

where Wρ(t) and Wθ (t) are independent and standard Wiener processes, the drift coeffi-
cients mi(ρ) (i = 1, 2) and the square of diffusion coefficients σi(ρ) (i = 1, 2) are

m1(ρ) =
1

2π

∫ 2π

0

{

f1(ρ, θ ) +
1
2

[
∂g11(ρ, θ )

∂ρ
g11(ρ, θ ) +

∂g11(ρ, θ )
∂θ

g21(ρ, θ )
]}

dθ

=
1
2

(

B – A2 – 1 +
3δ2

2

)

ρ –
1
8
ρ3,

σ 2
1 (ρ) =

1
2π

∫ 2π

0

(
g11(ρ, θ )

)2 dθ =
1
2
δ2ρ2,

m2(ρ) =
1

2π

∫ 2π

0

{

f2(ρ, θ ) +
1
2

[
∂g21(ρ, θ )

∂ρ
g11(ρ, θ ) +

∂g21(ρ, θ )
∂θ

g21(ρ, θ )
]}

dθ

= –
1
2
(
B + A2) –

1
8
ρ2,

σ 2
2 (ρ) =

1
2π

∫ 2π

0

(
g21(ρ, θ )

)2 dθ =
δ2

2
.

Therefore, system (2.4) can be rewritten as

⎧
⎨

⎩

dρ = [ 1
2 (B – A2 – 1 + 3δ2

2 )ρ – 1
8ρ3] dt + ( δ2ρ2

2 ) 1
2 dWρ(t),

dθ = [– 1
2 (B + A2) – 1

8ρ2] dt + ( δ2

2 ) 1
2 dWθ (t).

(2.5)

Here, we can find that the average amplitude ρ(t) is a one-dimensional Markov diffusion
process. Thus, it is efficient to consider the averaging amplitude equation of system (2.5)
to obtain the critical point of stochastic stability and bifurcation phenomena of system
(1.2). That is, we only need to investigate the following equation:

dρ =
[

1
2

(

B – A2 – 1 +
3δ2

2

)

ρ –
1
8
ρ3

]

dt +
(

δ2ρ2

2

) 1
2

dWρ(t). (2.6)

3 Stochastic stability
The essential idea of this section is to consider the stability properties of the trivial solution
ρ = 0 of the stochastic model (2.6), which also addresses the asymptotical stability of the
fixed point E∗(A, B

A ) of system (1.2). Hereafter, we always assume B < A2 + 1.

3.1 Local stochastic stability
In the theory of stochastic stabilization, the largest Lyapunov exponent is fairly prevalent
as a measure to judge stability of a stochastic dynamical system. Hence, we will study the
change of stability of the averaging amplitude equation (2.6) at the equilibrium point by
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calculating the largest Lyapunov exponent of the associated linearized system. We obtain
the following results.

Theorem 3.1
(i) When δ2 < A2 + 1 – B, the trivial solution of the linear Itô stochastic differential

equation (2.6) is stable in the meaning of probability, i.e., the stochastic system (1.2) is
stable at the equilibrium point E∗.

(ii) When δ2 > A2 + 1 – B, the trivial solution of the linear Itô stochastic differential
equation (2.6) is unstable in the meaning of probability, i.e., the stochastic system
(1.2) is unstable at the equilibrium point E∗.

Proof To evaluate the largest Lyapunov exponent of averaged Itô equation (2.6), we con-
sider the stability of linear Itô stochastic differential equation at the trivial solution ρ = 0
first. Then one can obtain the following linearized Itô differential equation:

dρ =
1
2

(

B – A2 – 1 +
3δ2

2

)

ρ dt +
(

δ2

2

) 1
2
ρ dWρ(t), (3.1)

of which the solution is

ρ(t) = ρ(0) exp

(∫ t

0

[
1
2

(

B – A2 – 1 +
3δ2

2

)

–
δ2

4

]

ds +
∫ t

0

(
δ2

2

) 1
2

dWρ(t)
)

, (3.2)

so the associated largest Lyapunov exponent is

λ = lim
t→+∞

ln‖ρ(t)‖
t

=
1
2

(

B – A2 – 1 +
3δ2

2

)

–
δ2

4
=

B – A2 – 1 + δ2

2
.

Based on Oseledet’s multiplicative ergodic theorem [21] (see Chap. 3 in [20] for more
details), the necessary and sufficient conditions for asymptotic stability with probability
one of the trivial solution of system (1.2) require that the largest Lyapunov exponent in
Eq. (2.6) should be negative. Consequently, the trivial solution is locally asymptotic stable
if and only if λ < 0, i.e., δ2 < A2 + 1 – B.

This completes the proof. �

3.2 Global stochastic stability
It is worth to mention that the largest Lyapunov exponent based on the multiplicative
ergodic theorem is effective to estimate local stability, but it is incapable of global stability.
Alternatively, we use the singular boundary theory associated with Eq. (2.6) to examine
the global behaviors of the trivial solution of the system.

Generally, the boundaries of diffusion process are singular, and the boundary classifica-
tion is often determined by the diffusion exponent, the drift exponent and the character
value [18].

Theorem 3.2 If δ2 < A2 + 1 – B, the trivial solution of system (2.6) is globally stable, i.e.,
the stochastic system (1.2) is globally stable at the equilibrium point.
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Proof As ρ → 0+, it is found that the asymptotic expressions for the drift term m1(ρ) and
the square of the diffusion term σ1(ρ) are of the forms

m1(ρ) =
1
2

(

B – A2 – 1 +
3δ2

2

)

ρ + O(ρ),

σ 2
1 (ρ) =

δ2ρ2

2
.

From the above equations, we know that the diffusion exponent αl (l denotes the left
boundary), drift exponent βl and character value cl are, respectively,

αl = 2, βl = 1, cl = lim
ρ→0+

2m1(ρ)(ρ – 0)αl–βl

σ 2
1 (ρ)

=
2(B – A2 – 1 + 3δ2

2 )
δ2 .

Hence, the left boundary ρ = 0 of the averaged Itô (2.6) is a trap belong to the singular
boundary of the first kind. In addition, according to the classification for singular boundary
in Ref. [18] (see Table 2.8-2 in Sect. 2.8.2 for details), we know that the left boundary
ρ = 0 is repulsively natural if cl > 1, i.e., δ2 > A2 + 1 – B, a strictly natural if cl = 1, i.e.,
δ2 = A2 + 1 – B, and an attractively natural if cl < 1, i.e., δ2 < A2 + 1 – B.

Similarly, for the right boundary ρ → +∞, it is found that the asymptotic expressions
for the drift term m1(ρ) and the square of the diffusion term σ1(ρ) are of the forms

m1(ρ) = –
1
8
ρ3, σ 2

1 (ρ) =
δ2ρ2

2
.

So, it is a singular boundary of the second kind. Accordingly, the diffusion exponent αr

(r denotes the right boundary), the drift exponent βr and character value cr for the right
boundary ρ → +∞ are, respectively,

αr = 2, βr = 3, cr = – lim
ρ→+∞

2m1(ρ)ραr–βr

σ 2
1 (ρ)

=
1

2δ2 > 0,

i.e., for any δ > 0, cr > –1. According to the classification for singular boundary in [18] (see
Table 2.8-4 in Sect. 2.8.2 for details), we know the right boundary ρ = +∞ is a repulsively
natural. Therefore, if δ2 < A2 + 1 – B, the boundary ρ = 0 is attractively natural and the
boundary ρ = +∞ is exclusively natural. All solution curves enter the inner system from
the right boundary and will be attracted by the left boundary, which implies that the trivial
solution of system (2.6) is globally stable, i.e., the stochastic system (1.2) is globally stable
at the equilibrium point.

This completes the proof. �

Remark 3.1 Note that if δ2 < A2 + 1 – B holds, the stochastic system (1.2) is not only locally
but also globally stable at the equilibrium point. And the high-order-term coefficients of
the drift term have no effects on the global stability of the trivial solution.

4 Stochastic bifurcation
In this section, we mainly investigate the bifurcation behaviors of some related systems
from the dynamical viewpoint and phenomenological approach.
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4.1 Stochastic D-bifurcation
In this subsection, similar to the discussions in [20, 22], we will prove that the stochastic
system (2.6) undergoes a D-bifurcation when δ2 = A2 + 1 – B. One can see Example 4.2.15
in [20] for detailed introductions.

Suppose vt = ( 1
8 ) 1

2 ρ , we rewrite system (2.6) as

dvt =
[

1
2

(

B – A2 – 1 +
3δ2

2

)

vt – v3
t

]

dt +
(

δ2

2

) 1
2

vt dWr(t),

which is equivalent to the following Stratonovich stochastic differential equation:

dvt =
(
αvt – v3

t
)

dt + εvt ◦ dW (t), (4.1)

where α = B–A2–1+δ2

2 , ε = ( δ2

2 ) 1
2 .

As is well known, (4.1) is solved by

v → ψα(t,ω)v =
v exp(αt + εWt(ω))

(1 + 2v2
∫ t

0 exp[2(αs + εWs(ω))] ds) 1
2

, (4.2)

where v is the initial value of vt . We now determine the domain Dα(t,ω), where Dα(t,ω) :=
{φ ∈ R|(t,ω,φ) ∈ D} ⊂ X(D = R × Ω × X) is the (in general possibly empty) set of initial
values v ∈ R for which the trajectories still exist at time t and the range Rα(t,ω) of ψα(t,ω) :
Dα(t,ω) → Rα(t,ω).

We obtain

Dα(t,ω) =

⎧
⎨

⎩

R, t ≥ 0;

(–dα(t,ω), dα(t,ω)), t < 0.

Here

dα(t,ω) =
1

(2| ∫ t
0 exp(2αs + 2εWs(ω)) ds|) 1

2
> 0

and

Rα(t,ω) = Dα

(
–t,υ(t)ω

)
=

⎧
⎨

⎩

(–rα(t,ω), rα(t,ω)), t > 0;

R, t ≤ 0,

where

rα(t,ω) = dα

(
–t,υ(t)ω

)
=

exp(αt + εWt(ω))
(2| ∫ t

0 exp(2(αs + εWs(ω))) ds|) 1
2

> 0.

We can now determine

Eα(ω) :=
⋂

t∈R

Dα(t,ω)
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and obtain

Eα(ω) =

⎧
⎨

⎩

(–d–
α(t,ω), d–

α(t,ω)), α > 0;

{0}, α ≤ 0,

where

0 < d–
α(t,ω) =

1
(2| ∫ ∞

0 exp(2(αs + εWs(ω))) ds|) 1
2

< ∞.

The ergodic invariant measures are
• for α ≤ 0, the only invariant measures is μα

1,ω = δ0,
• for α > 0, we have the three invariant forward Markov measures μα

1,ω = δ0,
μα

2,ω = δ–d–
α (ω) and μα

3,ω = δd–
α (ω); the functions are the solutions of the corresponding

Fokker–Planck equations (FPK).
Next, we will calculate the Lyapunov exponent for each of these measures.
The linearized random dynamical system (RDS) φt = Dψα(t,ω, v)φ is as follows:

dφt =
[
α – 3ψ2

α(t,ω, v)
]
φt dt + εφt ◦ dWt .

So

Dψα(t,ω, v)φ = φ exp

(

αt + εWt(ω) – 3
∫ t

0
ψ2

α(s,ω, v) ds
)

.

Hence, if μω = δv0(ω) is a ψα-invariant measure, its Lyapunov exponent is

λ(μ) = lim
t→∞

1
t

log
∥
∥Dψα(t,ω, v)φ

∥
∥ = α – 3 lim

t→∞
1
t

∫ t

0
ψ2

α(s,ω, v) ds = α – 3Ev2,

on the condition that the integrability condition (IC) v2 ∈ L1(P) is satisfied.
Therefore, we conclude to the following.

(i) For α ∈ R, the IC for μα
1,ω = δ0 is trivially satisfied and we have

λ
(
μα

1,ω
)

= α.

So μα
1,ω is stable for α < 0 and unstable for α > 0.

(ii) For α > 0, μα
2,ω = δ–d–

α (ω) is F0
–∞ measurable, as a result, the density p2(v) = Eμα

2,ω

satisfies the FPK

L∗p2(v) = –
((

αv +
ε2

2
v – v3

)

p2(v)
)′

+
ε2

2
(
v2p2(v)

)′′ = 0,

of which the unique probability density solution is

p2(v) = Nαv
2α

ε2 –1 exp

(

–
v2

ε2

)

, v > 0,

where N–1
α = Γ ( α

ε2 )ε
2α

ε2 .
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Since

Eμα
2,ω

v2 = E
(
–dα

–
)2 =

∫ ∞

0
v2p2(v) dv < ∞,

the IC is satisfied. The calculation of the Lyapunov exponent is accomplished by
observing that

(
d–

α (υtω)
)2 =

exp(2αt + 2εWt(ω))
2
∫ t

–∞ exp(2αs + 2εWs(ω)) ds
=

Ψ ′(t)
2Ψ (t)

,

where

Ψ (t) =
∫ t

–∞
exp

(
2αs + 2εWs(ω)

)
ds.

Then by the ergodic theorem

E
(
d–

α

)2 =
1
2

lim
t→∞

1
t

logΨ (t) = α,

therefore,

λ
(
μα

2,ω
)

= –2α < 0,

which implies the invariant measure μα
2,ω is stable for α > 0.

(iii) For α > 0, μα
3,ω = δd–

α (ω) is F0
–∞ measurable and because of its probability density

p3(v) is equal to p2(v),

E
(
–d–

α

)2 = E
(
d–

α

)2 = α,

then λ(μα
3,ω) = λ(μα

2,ω) = –2α < 0. Likewise, we conclude that the invariant measure
μα

3,ω is stable for α > 0.
Hence, the following result is obvious.

Theorem 4.1 If α < 0, i.e., δ2 < A2 + 1 – B, the RDS ψα(t,ω) possesses exactly one invariant
measure μα

1,ω , which is stable. If α > 0, i.e., δ2 > A2 + 1 – B, the RDS ψα(t,ω) possesses three
random Dirac measures μα

1,ω , μα
2,ω , μα

2,ω , where μα
1,ω is unstable, while μα

2,ω and μα
3,ω are

stable. Therefore, the RDS ψα(t,ω) undergoes a D-bifurcation at the point αD = 0, i.e., the
stochastic system (2.6) undergoes a stochastic pitchfork bifurcation (for more details, see
[20]) when δ2 passes through A2 + 1 – B.

Remark 4.1 Note that if δ = 0, αD = 0 is equivalent to B = A2 + 1, which is just the critical
condition for the Hopf bifurcation of the determined system (1.1).

4.2 Stochastic P-bifurcation
In this section, we would like to use the phenomenological approach to determining the
stochastic bifurcation of system (2.6). In the following, we consider the steady-state proba-
bility density function Pst(ρ) of the linear Itô stochastic differential equation. According to
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Namachivaya’s theory ([20, 23]), the extreme value of Pst(ρ) gives essential information on
the stationary behavior of the Fokker–Planck equation arising from nonlinear stochastic
systems.

More specifically, if Pst(ρ) has a maximum value at ρ∗, the sample trajectory will stay
for a longer time in the neighborhood of ρ∗, i.e., ρ∗ is stable in the meaning of probability
(with a bigger probability). If Pst(ρ) has a minimum value (zero), it is just the opposite.

Notice that the averaged FPK equation associated with Eq. (2.6) is

∂P(ρ)
∂t

= –
∂

∂ρ

{[
1
2

(

B – A2 – 1 +
3δ2

2

)

ρ –
1
8
ρ3

]

P(ρ)
}

+
1
2

∂2

∂ρ2

[(
δ2ρ2

2

)

P(ρ)
]

,

where P(ρ) is the probability density of diffusion process ρ(t) and the stationary probabil-
ity density Pst(ρ) satisfies the following degenerate equation:

0 = –
∂

∂ρ

{[
1
2

(

B – A2 – 1 +
3δ2

2

)

ρ –
1
8
ρ3

]

Pst(ρ)
}

+
1
2

∂2

∂ρ2

[(
δ2ρ2

2

)

Pst(ρ)
]

.

For the above equation, its exact stationary solution Pst(ρ) can be expressed as follows:

Pst(ρ) = Cρ
2(B–A2–1)+δ2

δ2 exp

(

–
ρ2

4δ2

)

in which C is a normalization constant and C–1 =
Γ ( B–A2–1+δ2

δ2 )(2δ)
2(B–A2–1+δ2)

δ2

2 .
To obtain the extreme value point of the probability density Pst(ρ), we need to solve

dPst(ρ)
dρ

= 0,

that is,

ρ
– 2(A2+1–B)

δ2
[
ρ2 – 2

(
δ2 – 2

(
A2 + 1 – B

))]
exp

(

–
ρ2

4δ2

)

= 0. (4.3)

For the roots of Eq. (4.3), there are three cases to discuss.
(i) If δ2 < 2(A2 + 1 – B), for Eq. (4.3), there are no real roots. The probability density

function Pst(ρ) tends to infinite as ρ → 0+. In this case, the random trajectories of
system (2.6) are concentrated in a neighborhood of the point ρ = 0.

(ii) When δ2 = 2(A2 + 1 – B), for (4.3), there is only one root, ρ = 0, for which

d2Pst(ρ)
dρ2

∣
∣
∣
∣
ρ=0

= –
(A2 + 1 – B – ρ2

4 ) exp(– ρ2

8(A2+1–B) )
4(A2 + 1 – B)2

∣
∣
∣
∣
ρ=0

= –
1

4(A2 + 1 – B)
< 0,

i.e., the probability density function Pst(ρ) possesses the maximum value at the
point ρ = 0.

(iii) When δ2 > 2(A2 + 1 – B), for (4.3), there is one positive root,
ρ = ρ∗ =

√
2(δ2 – 2(A2 + 1 – B)), of the probability density function Pst(ρ) and, by

calculation,

d2Pst(ρ)
dρ2

∣
∣
∣
∣
ρ=ρ∗

< 0,
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i.e., Pst(ρ) possesses a maximum value at the point ρ = ρ∗. Meantime, Pst(ρ) attains
the minimum value at the point ρ = 0, but the derivative of Pst(ρ) does not exist at
the point ρ = 0. In this case, the random trajectories of system (2.6) are
concentrated in a neighborhood of the point ρ = ρ∗.

Therefore, we obtain the following result.

Theorem 4.2 If A2 + 1 – B > 0, Eq. (2.6) undergoes stochastic P-bifurcations when the pa-
rameter δ =

√
2(A2 + 1 – B), i.e., system (1.2) undergoes phenomenological bifurcations at

the critical parameter value δ =
√

2(A2 + 1 – B).

5 Numerical simulations
In this section, we consider an illustrative numerical example to verify the analytic results
obtained above.

Example 5.1 For (2.6), the values of the parameters in simulations are chosen as follows:
A = 1, B = 1.88. In this case, A2 + 1 – B = 0.12 > 0. Following the discussion in Sect. 4.2, we
have stationary probability density function

Pst(ρ) =
ρ

δ2–0.24
δ2 e– ρ2

4δ2

Γ ( δ2–0.12
δ2 )[(2δ)

2(δ2–0.12)
δ2 ]

,

and by solving dPst(ρ)
dρ

= 0, we need to solve

ρ
–0.24
δ2

[
ρ2 – 2

(
δ2 – 0.24

)]
= 0. (5.1)

Hence, we have the following.
Case 1. When δ2 < 0.24, Eq. (5.1) has no real roots. The probability density function

Pst(ρ) tends to infinity as ρ → 0+. In this case, the random trajectories of system
(2.6) are concentrated in a neighborhood of the point ρ = 0. See Fig. 1.

Figure 1 Portraits of Pst(ρ) when A = 1, B = 1.88, δ
= 0.3898979486 < 0.4898979486 = δ0
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Figure 2 Portraits of Pst(ρ) when A = 1, B = 1.88,
δ = δ0 = 0.4898979486

Figure 3 Portraits of Pst(ρ) when A = 1, B = 1.88,
δ = 0.5898979486 > 0.4898979486 = δ0

Case 2. When δ2 = 0.24, Eq. (5.1) has only one root ρ = 0. And

d2Pst(ρ)
dρ2

∣
∣
∣
∣
ρ=0

< 0,

the probability density function Pst(ρ) becomes smooth and possesses the maximum
value at the point ρ = 0. See Fig. 2, for details.

Case 3. When δ2 > 0.24, there is one positive root ρ = ρ∗ = 0.4647140841 of (5.1). Pst(ρ)
possesses a maximum value at the point ρ = ρ∗. In the meantime, Pst(ρ) attains the
minimum value at the point ρ = 0, but the derivative of Pst(ρ) does not exist at the
point ρ = 0. In this case, the random trajectories of system (2.6) are concentrated in
a neighborhood of the point ρ = ρ∗. See Fig. 3.

Therefore, we find the critical point

δ0 =
√

2
(
A2 + 1 – B

)
= 0.4898979486.

As a result, we conclude that Eq. (2.6) undergoes a stochastic phenomenological bifurca-
tion at δ = δ0, as shown in Fig. 1, 2, 3.
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Finally, we investigate the dynamics of system (1.2). We mainly consider the joint prob-
ability density �(x, y) to Cartesian coordinates x and y. By the relation �(x, y) = |J|� (ρ, θ )
and P(r) =

∫ π
2

–π
2

� (ρ, θ ) dθ , where the determinant of the Jacobian matrix J of the nonlinear
transformation is given by |J| = 1

ρ
and � is the joint probability density to ρ and θ (see

[24]), we obtain

�(x, y) =
(x2 + y2)

δ2–0.24
2δ2 e– x2+y2

4δ2

πΓ ( δ2–0.12
δ2 )[(2δ)

2(δ2–0.12)
δ2 ]

.

By similar discussions, we can draw the following conclusions.
Case 1. When δ2 < 0.24, the joint probability density function �(x, y) tends to infinite as

x → 0 and y → 0. The result is shown in Fig. 4.
Case 2. When δ2 = 0.24, a maximum value appears at the point O(0, 0). See Fig. 5 for

details.
Case 3. When δ2 > 0.24, a maximum value appears at the points of stable limit cycle

x2 + y2 = 0.4319183600, and a minimum value arises at the point O(0, 0). In the
meantime, we notice that the partial derivatives of joint probability density �(x, y)
are discontinuous at the original point O(0, 0). See Fig. 6.

Figure 4 Portraits of �(x, y) (left) and distribution of invariant densities (right) when A = 1, B = 1.88,
δ = 0.3898979486 < 0.4898979486 = δ0

Figure 5 Portraits of �(x, y) (left) and distribution of invariant densities (right) when A = 1, B = 1.88,
δ = 0.4898979486 = δ0
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Figure 6 Portraits of �(x, y) (left) and distribution of invariant densities (right) when A = 1, B = 1.88,
δ = 0.5898979486 > 0.4898979486 = δ0

Therefore, we find the critical point

δ0 =
√

2
(
A2 + 1 – B

)
= 0.4898979486.

As a result, we conclude that Eq. (1.2) undergoes a stochastic phenomenological bifurca-
tion at δ = δ0.

6 Conclusions
In this paper, by applying the stochastic average method, singular boundary theory and
invariant measure theory, we study the stochastic stability and stochastic bifurcation of the
Brusselator system with multiplicative white noise. Finally, an example is given to illustrate
the effectiveness of our analyzing procedure.

Throughout the paper, we always assume that B < A2 + 1. In this case, as is well known,
the deterministic system (1.1) is stable. But for the stochastic case, system (1.2) undergoes
stochastic D-bifurcation when δ =

√
A2 + 1 – B and the stochastic P-bifurcation occurs if

δ =
√

2(A2 + 1 – B). Therefore, we conclude that the noise will destabilize the system under
some condition.

Furthermore, we find that, for some small noise when δ <
√

A2 + 1 – B, system (1.2) is
globally stable. We conclude that the small noise cannot affect the dynamical behaviors of
system (1.2).

However, to the best of our knowledge, most of the existing results as regards the
stochastic bifurcation analysis are mainly reported for the lower-dimensional stochastic
models, especially one- or two-dimensional ones (see [24]). There are very few results
about the high-dimensional stochastic systems because of the difficulty of the model re-
duction of high-dimensional ones. Moreover, besides the noise effects, many other factors
such as time delays and impulsive input may affect the dynamical behaviors of the models.
These factors we will consider in the future.
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