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Abstract
In this paper, we identify a weak focus with order up to 3 for a Leslie–Gower
prey–predator model with three parameters. The known work computed the first
Lyapunov quantity and discussed Hopf bifurcations of this system, but the
identification of weak focus and its maximal order was not completed yet. In this
paper, we decompose the varieties of the first three Lyapunov quantities of this
system by resultant, realroot isolation, and pseudo-division so as to prove that the
center-type equilibrium is a weak focus with order up to 3. Moreover, we give the
parameter conditions of each order. Finally, numerical simulations are employed to
illustrate the results obtained.
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1 Introduction
Studies on dynamics of prey–predator models give better understanding of the relations
between two species, and provide management for sustainable development. One of the
important models is the Leslie–Gower prey–predator model [21, 22] given by

⎧
⎨

⎩

ẋ = r1x(1 – x
K ) – yp(x),

ẏ = r2y(1 – y
bx ),

(1.1)

where x(t) and y(t) are densities of prey and predator at time t, respectively. The prey grows
with intrinsic growth rate r1 and carrying capacity K in the absence of predation. Func-
tional response function p(x) describes the feeding rate of prey consumption by predators.
The predator, according to the numerical response of Leslie–Gower type [18, 19], grows
with intrinsic growth rate r2 and carrying capacity bx proportional to the population of
prey, where b is a measure of the food quality of prey for conversion into predator births.
Moreover, r1, r2, K , and b are all positive constants.

Dynamics of system (1.1) has been studied extensively when the functional response
p(x) is of Holling types. Hsu and Huang [10] investigated the global stability of system
(1.1) with p(x) being Holling types I, II, and III. Moreover, they [11, 12] studied the limit
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cycles and Hopf bifurcation of this system when p(x) is type II. Huang, Ruan, and Song [15]
studied the local bifurcations of system (1.1) when p(x) is Holling type III. Li and Xiao [20]
and Huang et al. [16] investigated the bifurcations of this system with p(x) being Holling
type IV.

Harvesting is commonly practiced in fishery, forestry, and wildlife management. It is
very important to harvest biological resources with maximum sustainable yield while
maintaining the survival of all interacting population. Recently, much attention has been
paid to the dynamics of prey–predator model with harvesting (see, e.g., [1–3, 7, 13, 14, 24,
25]). When p(x) = ax, i.e., Holling type I, Zhu and Lan in [27] studied system (1.1) with
constant harvest h on prey, i.e.,

⎧
⎨

⎩

ẋ = r1x(1 – x
K ) – axy – h,

ẏ = r2y(1 – y
bx ),

(1.2)

where a > 0 is a constant and h > 0. By the rescaling x → x/K , y → ay/r1 and t → r1t as in
[27], system (1.2) reads

⎧
⎨

⎩

ẋ = x(1 – x) – xy – ε,

ẏ = y(δ – βy
x ),

(1.3)

where β = r2/(abK), δ = r2/r1, and ε = h/(r1K). It was proved in [8, 27] that system (1.3) may
undergo a saddle-node bifurcation and a Bogdanov–Takens bifurcation with codimen-
sion 2. Moreover, Hopf bifurcations of this system were also studied in [27, Theorem 4.3]
when the first Lyapunov number does not vanish. However, there is no further discussion
about the identification of weak focus or center when the first Lyapunov number vanishes.

In this paper, we continue the identification of weak focus or center in system (1.3). By
Lyapunov numbers, we prove that the equilibrium of center type in this system is a weak
focus with order up to 3 and can be exactly. The main difficulty comes from the computa-
tion of zeros of Lyapunov numbers restricted to subsets of biological sense. Such problem
is solved by resultant [17], pseudo-division [23], and realroot isolation [6]. Moreover, pa-
rameter conditions of each order are given. Simulation of two limit cycles arisen from a
degenerate Hopf bifurcation is employed to illustrate our results.

2 Condition of center type
For the biological sense, we discuss system (1.3) in the region (0, +∞) × [0, +∞) as in [8,
27]. The following lemma gives the number of equilibria of system (1.3).

Lemma 2.1 ([27, Theorem 3.1]) Let β , δ, and ε > 0.
(i) If ε > 1

4 , then system (1.3) has no equilibrium.
(ii) If ε = 1

4 , then system (1.3) has only one equilibrium ( 1
2 , 0).

(iii) If β

4(δ+β) < ε < 1
4 , then system (1.3) has exactly two equilibria (x1, 0) and (x2, 0), where

x1 = 1
2 (1 –

√
1 – 4ε) and x2 = 1

2 (1 +
√

1 – 4ε).
(iv) If ε = β

4(δ+β) , then system (1.3) has three equilibria (x1, 0), (x2, 0), and ( β

2(δ+β) , δ
2(δ+β) ).

(v) If ε < β

4(δ+β) , then system (1.3) has four equilibria (x1, 0), (x2, 0), (x3, y3), and (x4, y4),

where x3 = β–
√

–4βδε–4β2ε+β2

2(δ+β) , x4 = β+
√

–4βδε–4β2ε+β2

2(δ+β) , and yi = δxi
β

, i = 3, 4.
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Table 1 Properties of (x4, y4)

Parameter conditions Properties

0 < β < 1
2 0 < δ < 1

2 – β 0 < ε < ε1 stable node or focus
ε = ε1 center type
ε1 < ε < β

4(β+δ) unstable node or focus

0 < β < 1
2 δ ≥ 1

2 – β 0 < ε < β
4(β+δ) stable node or focus

β ≥ 1
2 δ > 0 0 < ε < β

4(β+δ) stable node or focus

The dynamics of all equilibria above was discussed in [27, Theorem 3.3, 3.4, 3.5 ]. It
shows that only the equilibrium (x4, y4) can be of center type for certain parameter values.
Let

ε1 =
β

4(β + δ)

(

1 –
(

δ – 2δ(β + δ)
2β + δ

)2)

. (2.1)

Then the following lemma gives the qualitative properties of (x4, y4).

Lemma 2.2 ([27, Theorem 3.4]) Dynamics of (x4, y4) are given in Table 1.

For convenience, let

Λ :=
{

(β , δ, ε) ∈R3 : 0 < β <
1
2

, 0 < δ <
1
2

– β , ε = ε1

}

.

Then, for (β , δ, ε) ∈ Λ, (x4, y4) = ( β(1–δ)
2β+δ

, δ(1–δ)
2β+δ

), and the Jacobian matrix of system (1.3) at
this point is given by

J(x4, y4) =

[
δ – β(1–δ)

2β+δ
δ2

β
–δ

]

.

So J(x4, y4) has a pair of imaginary eigenvalues iδ
√

1–2(β+δ)
2β+δ

. Moreover, by Theorem 4.3
in [27], the subcritical and supercritical Hopf bifurcations were discussed when the first
Lyapunov number does not vanish. However, there is no further discussion when the Lya-
punov number vanishes.

3 Identification of weak focus
In this section, we complete the identification of weak focus for (x4, y4) for all (β , δ, ε) ∈ Λ.

Theorem 3.1 Let (β , δ, ε) ∈ Λ. Then (x4, y4) = ( β(1–δ)
2β+δ

, δ(1–δ)
2β+δ

) is a weak focus of order at
most 3.

To make the preparation, we compute the first three Lyapunov numbers of this sys-
tem. By the translation x → x – x4, y → y – y4 and Taylor expansions, system (1.3) be-
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comes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = δx + β(δ–1)
2β+δ

y – x2 – xy,

ẏ = δ2

β
x – δy + δ2(2β+δ)

β2(δ–1) x2 – 2δ(2β+δ)
β(δ–1) xy + (2β+δ)

δ–1 y2 + δ2(2β+δ)2

β3(δ–1)2 x3 – 2δ(2β+δ)2

β2(δ–1)2 x2y

+ (2β+δ)2

(δ–1)2β
xy2 + δ2(2β+δ)3

β4(δ–1)3 x4 – 2δ(2β+δ)3

β3(δ–1)3 x3y + (2β+δ)3

β2(δ–1)3 x2y2 + δ2(2β+δ)4

β5(δ–1)4 x5

– 2δ(2β+δ)4

β4(δ–1)4 x4y + (2β+δ)4

β3(δ–1)4 x3y2 + δ2(2β+δ)5

β6(δ–1)5 x6 – 2δ(2β+δ)5

β5(δ–1)5 x5y + (2β+δ)5

β4(δ–1)5 x4y2

+ δ2(2β+δ)6

β7(δ–1)6 x7 – 2δ(2β+δ)6

β6(δ–1)6 x6y + (2β+δ)6

β5(δ–1)6 x5y2 + O(|x, y|8).

(3.1)

With the change of variables [9, Sect. 2.1]

u =
x
2

, v = –
√

2β + δ

2
√

1 – 2β – 2δ
x +

β(1 – δ)
2δ

√
(2β + δ)(1 – 2β – 2δ)

y

and time rescaling t → δ

√
1–2(β+δ)

2β+δ
t, system (3.1) can be written as

u̇ = –v +
2(βδ + δ2 + β)

βδ(δ – 1)
√

– 2δ–1+2β

2β+δ

u2 +
2(2β + δ)
β(δ – 1)

uv,

v̇ = u +
2(4β2δ + 9βδ2 + 5δ3 – 4βδ – 5δ2 – β + δ)(2β + δ)

βδ(δ – 1)2(2δ – 1 + 2β)
u2

–
2(2β + δ)(5δ – 3 + 4β)

β(δ – 1)2
√

– 2δ–1+2β

2β+δ

uv –
2(2β + δ)2

(δ – 1)2β
v2

+ 4
(2β + δ)2(2δ – 1 + 2β)

β2(δ – 1)3 u3 +
8(2β + δ)3

√
– 2δ–1+2β

2β+δ

β2(δ – 1)3 u2v –
4(2β + δ)3

β2(δ – 1)3 uv2

+
8(2β + δ)3(2δ – 1 + 2β)

β3(δ – 1)4 u4 +
16(2β + δ)4

√
– 2δ–1+2β

2β+δ

β3(δ – 1)4 u3v –
8(2β + δ)4

β3(δ – 1)4 u2v2

+
16(2β + δ)4(2δ – 1 + 2β)

β4(δ – 1)5 u5 +
32(2β + δ)5

√
– 2δ–1+2β

2β+δ

β4(δ – 1)5 u4v –
16(2β + δ)5

β4(δ – 1)5 u3v2

+
32(2β + δ)5(2δ – 1 + 2β)

β5(δ – 1)6 u6 +
64(2β + δ)6

√
– 2δ–1+2β

2β+δ

β5(δ – 1)6 u5v –
32(2β + δ)6

β5(δ – 1)6 u4v2

+
64(2β + δ)6(2δ – 1 + 2β)

β6(δ – 1)7 u7 +
128(2β + δ)7

√
– 2δ–1+2β

2β+δ

β6(δ – 1)7 u6v –
64(2β + δ)7

β6(δ – 1)7 u5v2

+ O
(|u, v|8).

(3.2)

In the polar coordinate u = r cos θ and v = r sin θ , system (3.2) takes the form

dr
dθ

= R2(θ )r2 + R3(θ )r3 + R4(θ )r4 + R5(θ )r5 + R6(θ )r6 + R7(θ )r7 + O
(
r8), (3.3)

where each Ri, i = 2, 3, . . . , 7, is a polynomial of sin θ and cos θ , and its coefficients are de-
termined by the coefficients of system (3.2). Then we consider solutions of system (3.3) in
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the formal series

r(θ , r0) =
∞∑

i=1

ri(θ )ri
0 (3.4)

with the initial condition

r(0, r0) = r0, (3.5)

where r0 > 0 is sufficiently small. Substituting (3.4) into (3.3) and comparing the coeffi-
cients, we have

ṙ2(θ ) = R2, ṙ3(θ ) = R3 + 2R2r2, ṙ4(θ ) = R4 + 3R3r2 + R2
(
r2

2 + 2r3
)
,

ṙ5(θ ) = R5 + 4R4r2 + 3R3
(
r2

2 + r3
)

+ 2R2(r2r3 + r4),

ṙ6(θ ) = R6 + 5R5r2 +
(
6r2

2 + 4r3
)
R4 +

(
r3

2 + 6r2r3 + 3r4
)
R3

+
(
2r2r4 + r2

3 + 2r5
)
R2,

ṙ7(θ ) = R7 + 6r2R6 +
(
10r2

2 + 5r3
)
R5 +

(
4r3

2 + 12r2r3 + 4r4
)
R4

+
(
3r2

2r3 + 6r2r4 + 3r2
3 + 3r5

)
R3 + (2r2r5 + 2r3r4 + 2r6)R2.

(3.6)

Initial condition (3.5) is equivalent to

r1(0) = 1, r2(0) = r3(0) = · · · = 0. (3.7)

By (3.6) and (3.7), we compute the first three Lyapunov numbers [9, 26] and obtain

L1 :=
1

2π
r3(2π ) = –

(2β + δ)f1(β , δ)

2β2δ2(1 – δ)2
√

1–2(β+δ)
2β+δ

,

L2 :=
1

2π
r5(2π ) = –

(2β + δ)2f2(β , δ)

1440δ4β4(1 – δ)6(1 – 2(δ + β))3
√

1–2(β+δ)
2β+δ

,

L3 :=
1

2π
r7(2π ) = –

(2β + δ)3f3(β , δ)

290,304β6δ6(1 – δ)10(1 – 2(β + δ))5
√

1–2(β+δ)
2β+δ

,

(3.8)

where

f1 = –δ4 + βδ3 +
(
2β2 – 6β

)
δ2 +

(
–4β2 + β

)
δ – 2β2,

f2 = 44,032β7δ4 + 159,744β6δ5 + 213,160β5δ6 + 113,134β4δ7 – 7311β3δ8

– 38,891β2δ9 – 18,873βδ10 – 2979δ11 – 88,064β7δ3 – 498,688β6δ4

– 1,046,432β5δ5 – 1,105,866β4δ6 – 647,821β3δ7 – 193,579β2δ8 – 12,702βδ9

+ 3114δ10 – 44,032β7δ2 + 37,888β6δ3 + 511,528β5δ4 + 938,282β4δ5

+ 815,517β3δ6 + 363,446β2δ7 + 55,850βδ8 – 175δ9 + 25,600β6δ2 – 85,024β5δ3

– 318,382β4δ4 – 407,661β3δ5 – 258,846β2δ6 – 47,730βδ7 – 628δ8 – 32,768β6δ
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– 57,224δ2β5 – 7774β4δ3 + 60,035β3δ4 + 93,521β2δ5 + 18,575βδ6 – 20δ7

+ 9472β5δ + 3050δ2β4 + 5937β3δ3 – 24,775β2δ4 – 5252βδ5 – 7816β5 – 6042β4δ

– 12,177β3δ2 + 1332β2δ3 + 500βδ4 – 1682β4 + 841β3δ,

and f3 is given in the Appendix.
Let V (ξ1, ξ2, . . . , ξn) be the set of common zeros of ξi, i = 1, 2, . . . , n, and denote

D :=
{

(β , δ) ∈R2 : 0 < β <
1
2

, 0 < δ <
1
2

– β

}

.

Then we have the following lemma which is useful in the proof of Theorem 3.1.

Lemma 3.1 V (f1, f2, f3) ∩D = ∅.

Proof To simplify the set V (f1, f2, f3), we calculate the resultants [17] by Maple and obtain

r12 := res(f1, f2, δ) = 849,346,560,000β12(2β + 1)16R1,

r13 := res(f1, f3, δ) = 110,075,314,176β16(2β + 1)26R2,

r23 := res(r12, r13,β) = 0,

where

R1 = 32β3 + 96β2 – 354β + 3,

R2 = 104,783,189,114,880,000β12 + 137,477,299,942,195,200β11

– 4,012,954,143,001,436,160β10 + 22,669,901,410,243,203,072β9

– 28,794,164,697,367,780,864β8 – 1,137,630,004,464,368,357,888β7

+ 1,201,272,894,249,597,010,176β6 + 2,920,602,692,653,681,087,776β5

+ 1,883,711,731,319,280,895,324β4 + 507,067,392,712,426,159,422β3

+ 59,630,504,525,663,789,802β2 – 2,192,824,040,861,997,795β

+ 17,501,360,748,480,000.

Let lcoeff(ξ , x) be the leading coefficient of ξ with respect to x. Then

lcoeff(f1, δ) = –1 	= 0, lcoeff(r12,β) = 1,781,208,836,997,120,000 	= 0.

Applying Theorem 1 in [4], we have the decomposition

V (f1, f2, f3) =V
(
f1, f2, f3, lcoeff(f1, δ)

) ∪ V
(

f1, f2, f3, r12, r13, lcoeff(r12,β)
lcoeff(f1, δ)

)

∪ V
(

f1, f2, f3, r12, r13, r23

lcoeff(f1, δ), lcoeff(r12,β)

)

,
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where V ( ξ1,ξ2,...,ξn
η1,η2,...,ηm

) denotes the set of common zeros of ξis (i = 1, 2, . . . , n) at which ηis
(i = 1, 2, . . . , m) do not vanish. It follows that

V (f1, f2, f3) = V (f1, f2, f3, r12, r13) = V (f1, f2, f3,R1,R2).

Note the resultant

res(R1,R2,β) = c0 	= 0,

where

c0 = 5,966,262,075,746,365,907,228,887,461,619,703,253,674,326,002,113,602,564,041,246,673,889,434,463,423,692,800.

So

V (R1,R2) = ∅.

Thus

V (f1, f2, f3) ∩D = V (f1, f2, f3,R1,R2) ∩D = ∅.

This completes the proof. �

Proof of Theorem 3.1 Since (β , δ) ∈ D, it follows from (3.8) that the zeros of Li are deter-
mined by those of fi, i = 1, 2, 3, respectively. By Lemma 3.1, we see that

V (L1, L3, L3) ∩D = ∅.

Thus, (x4, y4) is a weak focus of order up to 3 when (β , δ, ε) ∈ Λ. �

In what follows, we find the parameter conditions of each order; moreover, we prove
that (x4, y4) is a stable weak focus when it is order 3. To make the preparation, let

P :=
{

(β , δ) ∈ R2 : R1 = 0,β ∈ I1, δ = –
χ1(β)
χ2(β)

}

,

where

I1 :=
[

4,560,287
536,870,912

,
142,509

16,777,216

]

,

χ1 := 2β
(
1024β9 + 11,648β8 + 637,440β7 + 2,535,296β6 – 3,034,496β5

– 252,024β4 + 64,672β3 + 3460β2 + 76β – 1
)
,

χ2 := 5120β10 + 51,712β9 + 192,000β8 + 1,575,936β7 + 6,133,120β6

– 1,954,656β5 – 699,568β4 – 44,256β3 – 2460β2 – 92β + 1.

(3.9)



Su Advances in Difference Equations        (2019) 2019:363 Page 8 of 14

It suffices to prove that P 	= ∅ is well defined. By the Maple command “realroot(χ2, 1/106)”
to isolate the real roots of χ2, we get two consecutive intervals

[

–
1,002,639

16,777,216
, –

8,021,111
134,217,728

]

,
[

4,597,919
536,870,912

,
143,685

16,777,216

]

.

It is easy to check that I1 ⊂ (0, 4,597,919
536,870,912 ). Thus χ2(β) 	= 0 for all β ∈ I1 andP is well defined.

Moreover, using the Maple command “realroot(R1, 1/106)”, we get only three intervals:
[– 43,210,753

8,388,608 , – 21,099
4096 ], I1, and I2 := [ 17,973,673

8,388,608 , 8,986,837
4,194,304 ]. Thus, P 	= ∅ is well defined.

Theorem 3.2 Let (β , δ, ε) ∈ Λ. Then
(i) (x4, y4) is order 1 if (β , δ, ε) ∈ Λ1 := {(β , δ, ε) ∈ Λ : f1(β , δ) 	= 0};

(ii) (x4, y4) is order 2 if (β , δ, ε) ∈ Λ2 := {(β , δ, ε) ∈ Λ : f1(β , δ) = 0, (β , δ) /∈P};
(iii) (x4, y4) is a stable weak focus with order 3 if (β , δ, ε) ∈ Λ3 := Λ \ (Λ1 ∪ Λ2).

The following lemma is useful in the proof of Theorem 3.2.

Lemma 3.2 V (f1, f2) ∩D = P .

Proof By Lemma 2 in [4], we have the decomposition

V (f1, f2) =V
(
f1, f2, lcoeff(f1, δ)

) ∪ V
(

f1, f2, r12

lcoeff(f1, δ)

)

=V (f1, f2, r12).

Thus

V (f1, f2) ∩D = V (f1, f2, r12) ∩D = V (f1, f2,R1) ∩D.

From the argument just above Theorem 3.2, we see that the positive zeros of R1 are just
in the intervals I1 and I2. Since I2 = [ 17,973,673

8,388,608 , 8,986,837
4,194,304 ] ⊂ ( 1

2 , +∞), it can be inferred that

V (f1, f2, r12) ∩D =
{

(β , δ) ∈R2 : β ∈ I1,R1 = 0, f1 = f2 = 0
} ∩D.

Then we further reduce the right-hand side by pseudo-division [17]. To find the de-
pendence of δ on β , we employ the Maple command “prem(ξ ,η, x)” to get the pseudo-
reminder of ξ divided by η and obtain

w3 := prem(w1, w2,β) = 25,480,396,800,000β10(2β + 1)7ϕ2(β)
(
χ2(β)δ + χ1(β)

)
,

where

w1 = prem(f2, f1,β), w2 = prem(f1, w1,β) (3.10)

and the expressions are given in the Appendix, and

ϕ = 2304β6 – 2048β5 – 49,024β4 + 105,886β3 – 54,553β2 + 6716β – 122.
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Since f1 = f2 = 0, we can deduce that w1 = w2 = w3 = 0. Moreover, similar to the proof of
χ2(β) 	= 0 for all β ∈ I1 (just below (3.9)), one can easily get that ϕ(β) 	= 0 for all β ∈ I1.
Thus, from w3 = 0 it follows that

δ = –
χ1(β)
χ2(β)

.

Similar to the proof of χ2(β) 	= 0 for all β ∈ I1, we can obtain that the derivative (– χ1(β)
χ2(β) )′ > 0

for all β ∈ I1. So the function – χ1(β)
χ2(β) is strictly increasing in I1, and it can easily be checked

that

0.11 < –
χ1(β)
χ2(β)

< 0.12 < 1 – β , β ∈ I1.

Therefore,

V (f1, f2) ∩D = V (f1, f2,R1) ∩D = P . �

Proof of Theorem 3.2 (i) It is easy to see that Λ1 	= ∅. In fact, a simple computation yields
that at (β , δ) = (0.1, 0.1), ε1 = 0.12 and f1 = –0.0198 < 0. So (0.1, 0.1, 0.12) ∈ Λ1 and Λ1 	= ∅.
Therefore, (x4, y4) is a weak focus with order 1 if (β , ε, δ) ∈ Λ1.

(ii) (x4, y4) is a weak focus of order 2 if (β , ε, δ) ∈ {(β , ε, δ) ∈ Λ : f1 = 0, f2 	= 0}. By
Lemma 3.2, Λ2 = {(β , δ, ε) ∈ Λ : f1 = 0, f2 	= 0}. Moreover, it suffices to prove that Λ2 	= ∅.
In fact, by setting β = 0.012, one can compute f1|δ=0.03 = –0.0000103068 and f1|δ=0.033 =
0.000010142955. Thus, there is a certain δ∗ ∈ (0.03, 0.033) such that

f1(0.012, δ∗) = 0.

On the other hand, applying the Maple command “realroot(., 1/106)” to the polynomial
f2(0.012, δ), we obtain the first two positive intervals [ 5,787,933

134,217,728 , 2,893,967
67,108,864 ] and [ 765,987

8,388,608 ,
6,127,897

67,108,864 ]. Since 5,787,933
134,217,728 ≈ 0.04312346131, we see that

f2(0.012, δ) 	= 0, δ ∈ (0.03, 0.033).

By (2.1), one has ε∗ := ε1|(ε,δ)=(0.012,δ∗). Therefore, (0.012, δ∗, ε∗) ∈ Λ2 and hence Λ2 	= ∅.
(iii) (x4, y4) is a weak focus of order 3 if (β , ε, δ) ∈ {(β , ε, δ) ∈ Λ : f1 = 0, f2 = 0}. By Theo-

rem 3.1 and Lemma 3.2, we see that

Λ3 =
{

(β , ε, δ) ∈ Λ : (β , ε) ∈P , ε = ε1
}

.

Then we claim that

f3(β , δ) > 0, (β , δ) ∈P . (3.11)

In fact, substituting δ = – χ1(β)
χ2(β) into f3, we have

f̃3(β) := f3

(

β , –
χ1(β)
χ2(β)

)

.
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With a Maple command, we can easily compute the derivative

f̃ ′
3(β) =

ν1(β)
ν2(β)

,

where ν1 and ν2 are polynomials with order 201 and 190, respectively. We omit the
concrete expressions of the two functions. Moreover, by the Maple command
“realroot(ν1(β)ν2(β), 1/106)”, we have two consecutive intervals

[
1,112,351

134,217,728
,

4,449,405
536,870,912

]

,
[

4,582,613
536,870,912

,
2,291,307

268,435,456

]

.

It is easy to check that

I1 =
[

4,560,287
536,870,912

,
142,509

16,777,216

]

⊂
(

4,449,405
536,870,912

,
4,582,613

536,870,912

)

.

Hence, f̃ ′
3(β) 	= 0 for all β ∈ I1 and f̃3 is continuous and strictly monotone in I1. Since

f̃3

(
4,560,287

536,870,912

)

≈ 0.001805786293, f̃3

(
142,509

16,777,216

)

≈ 0.001806068008,

it can be deduced that f̃3(β) > 0 for β ∈ I1 and (3.11) holds. Therefore, (x4, y4) is a stable
weak focus of order 3 when (β , δ, ε) ∈ Λ3. �

By the classical Hopf bifurcation theorem [5], there are at most three limit cycles bifur-
cated from a Hopf bifurcation in this system.

4 Simulation and conclusions
To display two limit cycles in this system, we set (β , δ, ε) = (0.0085, 0.112, 0.00997691).
Then (x4, y4) = (0.05851163234, 0.7709768027). In Fig. 1(a) and Fig. 2(a), we plot orbits
from P1(0.05855, y4) and P2(0.05856, y4), respectively. However, from those two figures,
one can hardly see whether the orbits spiral outward or inward. Thus, in Fig. 1(b) and
Fig. 2(b), we zoom in the orbits near P1 and P2, respectively. It shows that the orbit from P1

spirals outward, while the orbit from P2 spirals inward, as t → +∞. Thus, there is a stable
limit cycle in the annual regions bounded by the two orbits from P1 and P2. In Fig. 3, the
orbit from P3(0.087, y4) spirals outward. So there is an unstable limit cycle between the
orbits from P2 and P3.

In this paper, we identify a weak focus of order up to 3 for system (1.3). In [27], Zhu
and Lan investigated the saddle-node bifurcation and Hopf bifurcation of codimension
1 in this system. In [8], Gong and Huang studied Bogdanov–Takens bifurcation at the
cusp of codimension 2 in this system. Our study supplements the qualitative properties of
equilibria in this system, shows that there are at most three limit cycles bifurcated from a
Hopf bifurcation. The results in [8, 27] and this paper reveal that the codimension of local
bifurcations in system (1.3) is at most 3.
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Figure 1 Orbit from P1 spirals outward

Figure 2 Orbit from P2 spirals inward

Figure 3 Orbit from P3 spirals outward

Appendix
f3 in (3.8) is given by

f3 = 96,731,136β12δ6 + 721,649,664β11δ7 + 2,794,354,688β10δ8 + 5,410,942,208β9δ9

– 1,560,727,360β8δ10 – 34,792,929,176β7δ11 – 88,326,105,106β6δ12

– 120,969,984,391β5δ13 – 103,238,957,197β4δ14 – 56,414,336,562β3δ15

– 19,214,245,368β2δ16 – 3,715,638,831βδ17 – 311,347,881δ18
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– 193,462,272β12δ5 – 1,515,257,856β11δ6 – 5,302,849,536β10δ7

– 5,687,015,424β9δ8 + 34,784,497,408β8δ9 + 183,262,825,224β7δ10

+ 428,364,184,432β6δ11 + 596,890,067,742β5δ12 + 530,640,116,824β4δ13

+ 303,520,979,088β3δ14 + 108,038,736,288β2δ15 + 21,746,905,794βδ16

+ 1,887,281,424δ17 – 96,731,136β12δ4 – 329,711,616β11δ5 – 357,365,760β10δ6

– 7,943,540,736β9δ7 – 76,738,029,696β8δ8 – 327,868,403,096β7δ9

– 790,827,616,688β6δ10 – 1,180,047,690,204β5δ11 – 1,127,224,701,235β4δ12

– 689,017,098,052β3δ13 – 259,999,332,192β2δ14 – 55,014,678,765βδ15

– 4,977,345,762δ16 – 65,470,464β11δ4 – 1,497,653,248β10δ5

– 1,938,664,448β9δ6 + 39,046,967,040β8δ7 + 244,518,144,840β7δ8

+ 710,636,624,720β6δ9 + 1,214,492,149,230β5δ10 + 1,294,446,982,792β4δ11

+ 865,905,700,612β3δ12 + 351,842,676,004β2δ13 + 790,68,647,724βδ14

+ 7,504,928,688δ15 + 28,016,640β11δ3 + 1,160,488,960β10δ4

+ 6,104,721,920β9δ5 + 1,348,262,016β8δ6 – 82,124,328,304β7δ7

– 343,639,174,498β6δ8 – 718,676,593,199β5δ9 – 887,593,367,266β4δ10

– 665,765,134,544β3δ11 – 295,896,637,096β2δ12 – 71,325,295,217βδ13

– 7,140,536,213δ14 + 237,187,072β10δ3 – 734,119,936β9δ4 – 3,071,971,584β8δ5

+ 13,284,843,280β7δ6 + 95,475,893,600β6δ7 + 256,301,099,196β5δ8

+ 379,247,745,456β4δ9 + 326,564,669,496β3δ10 + 161,106,471,060β2δ11

+ 42,020,446,450βδ12 + 4,451,967,104δ13 – 226,289,664β10δ2 – 752,545,792β9δ3

+ 142,250,752β8δ4 – 556,322,736β7δ5 – 15,433,168,944β6δ6

– 55,876,146,576β5δ7 – 102,248,964,518β4δ8 – 103,412,295,132β3δ9

– 57,273,221,944β2δ10 – 16,256,443,195βδ11 – 1,820,911,280δ12

+ 383,757,312β9δ2 + 590,915,840β8δ3 – 25,879,728β7δ4 + 1,235,251,616β6δ5

+ 7,222,295,148β5δ6 + 17,288,566,128β4δ7 + 21,099,650,344β3δ8

+ 13,099,102,924β2δ9 + 4,031,542,872βδ10 + 471,592,872δ11 – 163,747,584β9δ

– 613,492,032β8δ2 – 654,952,440β7δ3 – 431,442,486β6δ4 – 529,750,101β5δ5

– 1,697,582,593β4δ6 – 2,779,581,518β3δ7 – 1,863,751,104β2δ8

– 602,714,576βδ9 – 70,272,664δ10 + 106,369,536β8δ + 218,433,512β7δ2

+ 246,572,592β6δ3 + 61,714,598β5δ4 – 10,586,824β4δ5 + 222,984,680β3δ6

+ 153,830,940β2δ7 + 47,504,424βδ8 + 4,596,480δ9 – 20,280,960β8

– 44,424,632β7δ – 93,660,320β6δ2 – 77,282,164β5δ3 + 17,502,537β4δ4
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– 8,688,656β3δ5 – 6,098,760β2δ6 – 1,410,248βδ7 – 5,197,976β7 – 1,721,328β6δ

+ 13,698,342δ2β5 – 831,544β4δ3 + 21,924β3δ4 + 1,250,858β6 – 625,429β5δ.

w1 and w2 in (3.10) are given by

w1 = 480β2(2304β7δ2 + 2304β6δ3 – 4608β7δ – 8192β6δ2 – 2048β5δ3 – 2304β7

– 2048β6δ – 51,072β5δ2 – 49,024β4δ3 – 1024β6 + 86,272β5δ + 224,196β4δ2

+ 105,886β3δ3 + 43,904β5 – 121,096β4δ – 220,298β3δ2 – 54,553β2δ3

– 58,308β4 + 49,394β3δ + 58,488β2δ2 + 6716βδ3 + 16,614β3 – 8265β2δ

– 3381βδ2 – 122δ3 – 856β2 + 408βδ + 18δ2 + 2β – δ
)
,

w2 = –230,400β4(512β11δ2 + 2,948,096β11δ + 2,949,376β10δ2 + 1,179,136β11

+ 24,999,936β10δ + 25,775,360β9δ2 + 10,795,776β10 + 65,688,320β9δ

+ 72,043,136β8δ2 + 30,435,072β9 + 87,579,904β8δ + 104,710,944β7δ2

+ 38,775,424β8 + 55,586,624β7δ + 84,918,096β6δ2 + 40,341,024β7

+ 31,649,056β6δ + 48,360,064β5δ2 + 15,650,960β6 + 2,267,712β5δ

+ 15,585,152β4δ2 + 7,090,912β5 + 64,832β4δ + 3,417,384β3δ2

+ 1,218,464β4 – 366,024β3δ + 405,096β2δ2 + 150,620β3 – 62,822β2δ

+ 21,884βδ2 + 7354β2 – 3793βδ + 202δ2 + 36β – 18δ
)
.
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