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Abstract
Focusing on delay differential neoclassical growth model in random environments,
we introduce the stochastic model to describe the dynamics of the long-run behavior
of the economy with a parameter perturbed by white noises. We prove that the
global positive solution exists uniquely and estimate its ultimate boundedness in
mean and sample Lyapunov exponent. Finally, some numerical tests are given to
illustrate theoretical results.
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1 Introduction
The classic neoclassical growth model with time delay can be described as follows:

y′(t) = –αy(t) + βyγ (t – τ )e–δy(t–τ ), (1.1)

with the initial conditions

y(s) = ϕ(s) for s ∈ [–τ , 0],ϕ ∈ C
(
[–τ , 0], R+)

,ϕ(0) > 0. (1.2)

Here, R+ = [0, +∞), y is the capital per labor, τ is the delay in the production process,
α = n + sμ with μ being the depreciation ratio of capital, n is the growth rate of labor, and
s ∈ (0, 1) is the average propensity to save. Moreover, the other positive parameters β , γ ,
and δ possess obvious economic meanings. For more details on the background of model
(1.1), one can refer to the literature [1, 2].

It is easy to see that model (1.1), a determinate delay differential equation, was first pre-
sented by Matsumoto and Szidarovszky [1, 3] who created the economic model based on
the work of Day [4–6], Solow [7], Swan [8], Puu [9], and Bischi et al. [10]. Furthermore,
delay differential neoclassical growth model with variable coefficients and delays is also
examined in [11–16].

Nevertheless, environmental noises often interfere in the delay differential neoclassical
growth model. Indeed, May [17] have pointed out that in the population model, because of
environmental noises, many parameters involved with the system, such as growth rates,
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environmental capacity, competition coefficient, and so on, exhibit random fluctuation
to some degree. Since the neoclassical growth model is always affected by environmental
noises, the stochastic model is more suitable in the real world. However, to the best of our
knowledge, almost no one considered the stochastic delay differential neoclassical growth
model except Shaikhet [18], who has studied the stability of equilibriums of stochastically
perturbed delay differential neoclassical growth model.

Suppose that environmental noises disturb the parameter α, the stochastically per-
turbed model is described by the stochastic delay differential equation

dy(t) =
[
–αy(t) + βyγ (t – τ )e–δy(t–τ )]dt + σy(t) dB(t), (1.3)

where B(t) is a one-dimensional Brownian motion with B(0) = 0 defined on a complete
probability space (Ω , {Ft}t≥0,P), σ 2 denotes the intensity of the noise.

This paper has two purposes. One is to find the criteria to guarantee the unique global
positive solution, and the other is to estimate the ultimate boundedness and the sample
Lyapunov exponent of (1.3).

Let us quickly sketch the structure of the paper. In Sect. 2, we obtain a simple condi-
tion that ensures the global positive solution of (1.3) exists uniquely almost surely. Next,
we estimate its the ultimate boundedness in mean and the sample Lyapunov exponent in
Sect. 3. In Sect. 4, we present a test example with numerical simulation to support the
main results. Finally, we conclude and expect our results in the last section.

2 Preliminary results
In this section, some basic definitions and lemmas are provided in order to prove the main
result in the next section.

Definition 2.1 (See [19]) If there is independent of initial conditions (1.2) L > 0 satisfying

lim sup
t→∞

E
∣∣y(t)

∣∣ ≤ L,

then equation (1.3) is said to be ultimately bounded in mean.

Lemma 2.1 If α > σ 2

2 , then for any y ∈ R,

–
(
2α – σ 2)y2 + 2

βγ γ

δγ eγ
y ≤ K

(
1 + y2), (2.1)

–
(
2α – σ 2)y2 + 2

βγ γ

δγ eγ
y ≤ β2γ 2γ

(2α – σ 2)δ2γ e2γ
, (2.2)

where K = min{ β2γ 2γ

(2α–σ 2)δ2γ e2γ , βγ γ

δγ eγ }.

Proof It is easy to analyze the property of the quadratic function, so we omit the
proof. �

Lemma 2.2 If α > σ 2

2 , then for any given initial condition (1.2), (1.3) has a unique solution
y(t) on [0, +∞) and y(t) is positive almost surely for t ≥ 0.
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Proof Because the constant coefficients of the equations are locally Lipschitz continuous,
there is a unique max local solution y(t) on [–τ , τe) for initial condition (1.2), where τe is
explosion time. Firstly, we prove y(t) > 0 on [0, τe] almost surely. We will deal with it stage
by stage. For t ∈ [0, τ ], model (1.3) with initial condition (1.2) becomes the following linear
stochastic differential equations:

⎧
⎨

⎩
dy(t) = [–αy(t) + b1(t)] dt + σy(t) dB(t),

y0 = ϕ(0) > 0,
(2.3)

where b1(t) = βϕγ (t –τ )e–δϕ(t–τ ) ≥ 0 a.s., t ∈ [0, τ ]. It is easy to see that (2.3) has the explicit
solution y(t) = e–(α– σ2

2 )t+σB(t)[y(0) +
∫ t

0 e(α– σ2
2 )s–σB(s)b1(s) ds] > 0 a.s. for t ∈ [0, τ ]. Next, on

t ∈ [τ , 2τ ], (1.3) becomes the following linear stochastic differential equation:

⎧
⎨

⎩
dy(t) = [–αy(t) + b2(t)] dt + σy(t) dB(t),

yτ = y(τ ) > 0 a.s.,
(2.4)

where b2(t) = βyγ (t – τ )e–δy(t–τ ) > 0 a.s., t ∈ [τ , 2τ ]. Also, (2.4) has the explicit solution
y(t) = e–(α– σ2

2 )(t–τ )+σ (B(t)–B(τ ))[y(τ ) +
∫ t
τ

e(α– σ2
2 )s–σB(s)b2(s) ds] > 0 a.s. for t ∈ [τ , 2τ ]. This pro-

cess can be repeated to demonstrate that for any integer m ≥ 1, y(t) > 0 on [mτ , (m + 1)τ ]
a.s. Hence, model (1.3) with initial condition (1.2) has the unique solution y(t) > 0 almost
surely for t ∈ [0, τe].

In order to prove this solution is global, it is sufficient to show τe = ∞ a.s. Let k0 > 0
be sufficiently large such that max–τ≤t≤0 |y(t)| < k0. For every integer k ≥ k0, define the
stopping time

τk = inf
{

t ∈ [0, τe) : y(t) ≥ k
}

,

where infφ = ∞ (φ is the empty set). It is obvious that τk is increasing as k → ∞. Set
τ∞ = limk→∞ τk , where τ∞ ≤ τe a.s. If we can show that τ∞ = ∞ a.s., then τe = ∞ a.s.

Define a C2-function V (y) = y2. Let k ≥ k0 and T > 0 be arbitrary. It follows from the Itô
formula that, for 0 ≤ t ≤ τk ∧ T ,

dV
(
y(t)

)
= LV

(
y(t), y(t – τ )

)
dt + 2σV

(
y(t)

)
dB(t), (2.5)

where LV : R × R → R is defined by LV (x1, x2) = –(2α – σ 2)x2
1 + 2βx1xγ

2 e–δx2 . Using (2.2)
and noting the fact that supx∈R+ xγ e–x = γ γ

eγ , we can show that

LV
(
y(t), y(t – τ )

) ≤ –
(
2α – σ 2)y2(t) + 2

βγ γ

δγ eγ

∣
∣y(t)

∣
∣ ≤ β2γ 2γ

(2α – σ 2)δ2γ e2γ
. (2.6)

In view of (2.6), we obtain from (2.5) that

dV
(
y(t)

) ≤ β2γ 2γ

(2α – σ 2)δ2γ e2γ
dt + 2σV

(
y(t)

)
dB(t). (2.7)
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For any t1 ∈ [0, T], integrating both sides of (2.7) from 0 to τk ∧ t1 yields

V
(
y(τk ∧ t1)

) ≤ V
(
y(0)

)
+

∫ τk∧t1

0

β2γ 2γ

(2α – σ 2)δ2γ e2γ
dt +

∫ τk∧t1

0
2σV

(
y(t)

)
dB(t).

This implies

EV
(
y(τk ∧ t1)

) ≤ V
(
y(0)

)
+ E

∫ τk∧t1

0

β2γ 2γ

(2α – σ 2)δ2γ e2γ
dt ≤ K̃ , (2.8)

where K̃ = V (y(0)) + Tβ2γ 2γ

(2α–σ 2)δ2γ e2γ . Specially, EV (y(τk ∧ T)) ≤ K̃ for all k ≥ k0.
It is clear that V (y(τk ,ω)) ≥ k2 for every ω ∈ {τk < T}. Then we obtain from (2.8) that

K̃ ≥ EV
(
y(τk ∧ T)

) ≥ E
[
I{τk <T}(ω)V

(
y(τk ,ω)

)] ≥ P{τk < T}k2,

where I{τk <T} is the indicator function of {τk < T}. Letting k → ∞ gives limk→∞ P{τk ≤
T} = 0, so P{τ∞ ≤ T} = 0. Because T > 0 is arbitrary, we obtain P{τ∞ < ∞} = 0. Hence
P{τ∞ = ∞} = 1 is proved and the proof of Lemma 2.2 is completed. �

Remark 2.1 It is amusing to find from Lemma 2.2 that the local existence of positive so-
lution of (1.3) with (1.2) is independent of noise intensities, but the global existence of
positive solution is no longer, which is verified by (2.2).

3 Main results
In this section we present a criterion for the ultimate boundedness in mean of model (1.3),
which is an important property in the stochastic population model.

Theorem 3.1 Let α > σ 2

2 hold and y(t) be the global solution of (1.3) for any given initial
value (1.2). Then y(t) is positive almost surely on t ≥ 0 and it has the properties that

lim sup
t→∞

Ey(t) ≤ βγ γ

αδγ eγ
(3.1)

and

lim sup
t→∞

1
t

∫ t

0
Ey2(s) ds ≤ 4β2γ 2γ

(2α – σ 2)2δ2γ e2γ
. (3.2)

In particular, (1.3) is ultimately bounded in mean.

Proof In view of Lemma 2.2, it is easy to see that y(t) > 0 on t ≥ 0 almost surely. Again
using (1.1) and the formula supx∈R+ xγ e–x = γ γ

eγ , we have

dy(t) ≤
(

–αy(t) +
βγ γ

δγ eγ

)
dt + σy(t) dB(t). (3.3)

This, with the help of the Itô formula, implies that

d
[
eαty(t)

]
= eαt[αy(t) dt + dy(t)

] ≤ βγ γ

δγ eγ
eαt dt + σ eαty(t) dB(t). (3.4)
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So

eαtEy(t) ≤ y(0) +
∫ t

0

βγ γ

δγ eγ
eαs ds = y(0) +

βγ γ

αδγ eγ

(
eαt – 1

)
.

This yields lim supt→∞ Ey(t) ≤ βγ γ

αδγ eγ . To show the other assertion (3.2), we derive from
(2.5) and (2.6) that

d
[
y2(t)

]
=

[
–
(
2α – σ 2)y2(t) + 2βy(t)yγ (t – τ )e–δy(t–τ )]dt + 2σy2(t) dB(t)

≤
[

–
(
2α – σ 2)y2(t) + 2

βγ γ

δγ eγ

∣∣y(t)
∣∣
]

dt + 2σy2(t) dB(t).

This implies

0 ≤ Ey2(t) ≤ y2(0) + E
[∫ t

0

(
–
(
2α – σ 2)y2(s) + 2

βγ γ

δγ eγ

∣∣y(s)
∣∣
)

ds
]

. (3.5)

Noting –(α – σ 2

2 )y2(s) + 2 βγ γ

δγ eγ |y(s)| ≤ 2β2γ 2γ

(2α–σ 2)δ2γ e2γ , we obtain from (3.5) that

(
α –

σ 2

2

)∫ t

0
Ey2(s) ds ≤ y2(0) +

2β2γ 2γ

(2α – σ 2)δ2γ e2γ
t,

which suggests that

lim sup
t→∞

1
t

∫ t

0
Ey2(s) ds ≤ 4β2γ 2γ

(2α – σ 2)2δ2γ e2γ
.

So the proof is now completed. �

Theorem 3.2 Let α > σ 2

2 hold. Then the sample Lyapunov exponent of the solution of (1.3)
with (1.2) should not be greater than K

2 , that is,

lim sup
t→∞

1
t

ln y(t) ≤ K
2

, a.s. (3.6)

Proof Using the Itô formula and the fact supx∈R+ xγ e–x = γ γ

eγ once more, we obtain from
(1.3) and (2.1) that

ln
(
1 + y2(t)

)
= ln

(
1 + y2(0)

)
+

∫ t

0

1
1 + y2(s)

[
–
(
2α – σ 2)y2(s)

+ 2βy(s)yγ (s – τ )e–δy(s–τ )]ds – 2
∫ t

0

σ 2y4(s)
(1 + y2(s))2 ds + M(t)

≤ ln
(
1 + y2(0)

)
+

∫ t

0

1
1 + y2(s)

[
–
(
2α – σ 2)y2(s)

+ 2
βγ γ

δγ eγ
y(s)

]
ds – 2

∫ t

0

σ 2y4(s)
(1 + y2(s))2 ds + M(t)

≤ ln
(
1 + y2(0)

)
+ Kt – 2

∫ t

0

σ 2y4(s)
(1 + y2(s))2 ds + M(t), (3.7)
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where M(t) = 2
∫ t

0
σy2(s)
1+y2(s) dB(s). For every n ≥ 0, application of the known exponential mar-

tingale inequality (Theorem 1.7.4 of [20]) yields

P
{

sup
0≤t≤n

[
M(t) – 2

∫ t

0

σ 2y4(s)
(1 + y2(s))2 ds

]
> 2 ln n

}
≤ 1

n2 .

Using the Borel–Cantelli lemma, one sees that for almost all ω ∈ Ω there are random
integers n0 = n0(ω) ≥ 1 such that

sup
0≤t≤n

[
M(t) – 2

∫ t

0

σ 2y4(s)
(1 + y2(s))2 ds

]
≤ 2 ln n if n ≥ n0.

That is,

M(t) ≤ 2
∫ t

0

σ 2y4(s)
(1 + y2(s))2 ds + 2 ln n (3.8)

for all 0 ≤ t ≤ n, n ≥ n0 almost surely. Then (3.7), together with (3.8), implies that

ln
(
1 + y2(t)

) ≤ ln
(
1 + y2(0)

)
+ Kt + 2 ln n

for all 0 ≤ t ≤ n, n ≥ n0 almost surely. Hence, for almost all ω ∈ Ω , if n ≥ n0, n – 1 ≤ t ≤ n,
we get

1
t

ln
(
1 + y2(t)

) ≤ 1
n – 1

[
ln

(
1 + y2(0)

)
+ Kn + 2 ln n

]
.

This implies

lim sup
t→∞

1
t

ln y(t) ≤ lim sup
t→∞

1
2t

ln
(
1 + y2(t)

)

≤ lim sup
n→∞

1
2(n – 1)

[
ln

(
1 + x2(0)

)
+ Kn + 2 ln n

]
=

K
2

a.s.

The proof is over. �

Remark 3.1 One can surprisingly find that the condition α > σ 2

2 depends on noise intensity
but statement (3.1) does no more. In other words, the ultimate boundedness in mean of
(1.3) will fix under small noises. Namely, the property of this boundedness is robust when
the environmental noise is small.

4 An example and its numerical simulations
In this section, we provide a test example with numerical simulations to illustrate the main
results.

Example 4.1 Consider the following stochastic delay differential neoclassical growth
model:

dy(t) =
[
–0.0011y(t) + 0.02y2(t – 1)e–y(t–1)]dt + 0.0447y(t) dB(t). (4.1)
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Figure 1 Numerical solutions of (4.1) for the initial
value 0.1, 0.2, 0.3

Obviously, α = 0.0011, γ = 2, β = 0.02, δ = τ = 1, σ = 0.0447, and α ≥ σ 2

2 hold. In
view of Theorems 3.1 and 3.2, we conclude that the solution of system (4.1) satisfies
lim supt→∞ Ey(t) ≤ 80

11e2 , lim supt→∞
1
t
∫ t

0 Ey2(s) ds ≤ 640,000
e4 , and lim supt→∞

1
t ln y(t) ≤ 2

25e2 ,
a.s. Based on Milstein’s numerical method [21], one can verify this fact in numerical sim-
ulations of Fig. 1.

5 Conclusions
In this paper, we consider the delay differential neoclassical growth model under a stochas-
tic perturbation. This perturbation is of the white noise type that is directly proportional
to the model state. Moreover, we deduce the simple sufficient condition α > σ 2

2 that guar-
antees the global positive solution of (1.3) exists uniquely, and we estimate its ultimate
boundedness and sample Lyapunov exponent. In particular, all results of [22] are the spe-
cial situations of this paper with γ = 1. It is easy to see that if environmental noises are suf-
ficiently large such that the condition α > σ 2

2 does not hold, then Lemma 2.2, Theorems 3.1
and 3.2 are invalid. The future work consists of two parts. One is to find conditions weaker
than α > σ 2

2 such that all the results of this paper still hold. The other is to study deeply
dynamic behaviors of the addressed model, such as persistence, extinction, and so on.
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