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Abstract
In this paper, we consider the existence and global exponential stability of pseudo
almost automorphic solutions to quaternion-valued cellular neural networks with
infinitely distributed delays. Unlike most previous studies of quaternion-valued
cellular neural networks, we do not decompose the systems under consideration into
real-valued or complex-valued systems, but rather directly study quaternion-valued
systems. Our method and the results of this paper are new. An example is given to
show the feasibility of our main results.
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1 Introduction
The quaternion was introduced into mathematics in 1843 by Hamilton [1]. The skew field
of quaternions is

H :=
{

q|q = qR + iqI + jqJ + kqK}
,

where qR, qI , qJ , qK ∈ R and i, j, k satisfy Hamilton’s multiplication table formed by

i2 = j2 = k2 = ijk = –1, ij = –ji = k, jk = –kj = i, ki = –ik = j,

and the norm of q ∈H is

‖q‖H =
√

q̄q =
√

qq̄ =
√(

qR
)2 +

(
qI

)2 +
(
qJ

)2 +
(
qK

)2,

where q̄ = qR – iqI – jqJ – kqK . For x = (x1, x2, . . . , xn)T ∈ H
n, we define ‖x‖Hn =

max1≤p≤n{‖xp‖H} and |x|Hn =
∑n

p=1 ‖xp‖H. Quaternion algebra is a non-commutative di-
visible algebra. It is because of its non-commutative nature that the study of quaternions is
much more difficult than real and complex numbers. In recent years, with the rapid devel-
opment of quaternion algebra and the wide application of quaternions in many fields, the
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study of quaternion algebra and quaternion analysis has attracted more and more schol-
ars from various fields. Quaternion-valued differential equations, as special differential
equations, are widely used in quantum mechanics, fluid mechanics, Frenet–Serret frame
in differential geometry, dynamics model, robot operation, Kalman filter design, spatial
rigid body dynamics, computer Graphics, and so on [2–10].

On the one hand, since quaternion-valued neural network models have more advantages
than the real-value neural network models in dealing with affine transformation in three-
dimensional space, color image compression, color night vision, satellite attitude control,
and so on [11, 12], in recent years research on quaternion-valued neural networks has be-
come a hot research topic. As we know, the design, implementation, and application of
neural networks greatly depend on the dynamic behavior of neural networks. Therefore,
there are some research results in this area. Since the quaternion multiplication does not
satisfy the commutative law, most of the results are obtained by decomposing the con-
sidered quaternion-valued systems into real-valued systems or a complex-valued systems
[13–19]. Only very few results on the stability and dissipation of quaternion-valued neural
networks are obtained by direct method [20–22].

On the other hand, almost automorphicity is an extension of almost periodicity and
pseudo automorphicity is a natural generalization of almost automorphicity. At the same
time, for non-autonomous neural networks, periodicity, almost periodicity, and almost
automorphicity are important dynamics [23–28]. At present, there are no results on the
almost automorphicity of quaternion-valued neural networks obtained by direct method.

Inspired by the above discussion, in this paper, we are concerned with the following
quaternion-valued neural network with infinitely distributed delays:

ẋp(t) = –ap(t)xp(t) +
n∑

q=1

bpq(t)fq
(
xq(t)

)

+
n∑

q=1

cpq(t)
∫ t

–∞
kpq(t – s)gq

(
xq(s)

)
ds + Qp(t), (1)

where p ∈ In := {1, 2, . . . , n}, xp(t) : R →H denotes the activation of the pth neuron at time
t; ap(t) : R → R

+ represents the rate at which the pth unit will reset its potential to the
resting state in isolation when disconnected from the network, and external inputs at
time t; bpq, cpq : R → H represent the connection weights and the distributively delayed
connection weights between the qth neuron and the pth neuron at time t, respectively;
fq, gq : H →H are the activation functions of signal transmission; Qp : R →H is an external
input on the pth unit at time t; the kernel function kpq : R →R

+ satisfies
∫ +∞

0 kpq(s) ds = 1.
The initial value of system (1) is given by

xp(s) = ϕp(s), s ∈ (–∞, 0], p ∈ In,

where ϕp ∈ C((–∞, 0],H).
The main purpose of this paper is to study the existence and global exponential stabil-

ity of pseudo almost automorphic solutions to system (1). Our results and method are
new, and our method can be used to study the existence and stability of almost periodic
solutions, pseudo almost periodic solutions, almost automorphic solutions, and pseudo
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almost automorphic solutions for other types of quaternion-valued neural network mod-
els.

This paper is organized as follows. In Sect. 2, we introduce some basic definitions and
lemmas. In Sect. 3, the existence of pseudo almost automorphic solutions of system (1) is
discussed based on the contraction mapping principle. In Sect. 4, the global exponential
stability of pseudo almost automorphic solutions is studied based on proof by contradic-
tion. In Sect. 5, an example is given to illustrate the feasibility of our results of this paper.

2 Preliminaries
Let BC(R,Hn) be the set of all bounded continuous functions from R to H

n.

Definition 1 Function f ∈ BC(R,Hn) is said to be almost automorphic if, for every se-
quence of real numbers (s′

n)n∈N, there exists a subsequence (sn)n∈N such that

g(t) := lim
n→∞ f (t + sn)

is well defined for each t ∈R, and

lim
n→∞ g(t – sn) = f (t)

for each t ∈R.

For convenience, we denote by AA(R,Hn) the set of all almost automorphic functions
from R to H

n.
Similar to the proofs of the corresponding results in Ref. [29], one can get the following.

Lemma 1 If f , g ∈ AA(R,H) and if λ ∈ R, then we have f + g, fg,λf ∈ AA(R,H).

Lemma 2 x ∈ AA(R,H) and τ ∈R, then x(· – τ ) ∈ AA(R,H).

Lemma 3 If f ∈ C(R,H) satisfies the Lipschitz condition, x ∈ AA(R,H), then f (x(·)) belongs
to AA(R,H).

Let

AA0(R,H) =
{

f ∈ BC(R,H)
∣∣∣ lim

T→+∞
1

2T

∫ T

–T

∥∥f (t)
∥∥
H

dt = 0
}

.

Definition 2 A function f ∈ BC(R,H) is said to be pseudo almost automorphic if it can
be expressed as f = f1 + f0, where f1 ∈ AA(R,H) and f0 ∈ AA0(R,H). The collection of such
functions will be denoted by PAA(R,H).

Lemma 4 If ϕ ∈ PAA(R,H), then ϕ(· – h) ∈ PAA(R,H).

Proof Since ϕ ∈ PAA(R,H), we can write ϕ = ϕ1 + ϕ0, where ϕ1 ∈ AA(R,H) and ϕ0 ∈
AA0(R,H). Then we have

ϕ(· – h) = ϕ1(· – h) + ϕ0(· – h).
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In view of Lemma 2, ϕ1(· – h) ∈ AA(R,H) and

lim
T→+∞

1
2T

∫ T

–T

∥∥ϕ0(s – h)
∥∥
H

ds = lim
T→+∞

1
2T

∫ T–h

–T–h

∥∥ϕ0(s)
∥∥
H

ds = 0,

which implies that ϕ0(·–h) ∈ AA0(R,H). So ϕ(·–h) ∈ PAA(R,H). The proof is complete.�

Lemma 5 If ϕ,ψ ∈ PAA(R,H), then ϕψ ∈ PAA(R,H).

Proof We can write ϕ(t) = ϕ1(t) + ϕ0(t), ψ(t) = ψ1(t) + ψ0(t), where ϕ1,ψ1 ∈ AA(R,H) and
ϕ0,ψ0 ∈ AA0(R,H). Obviously,

ϕ(t)ψ(t) = ϕ1(t)ψ1(t) + ϕ1(t)ψ0(t) + ψ1(t)ϕ0(t) + ϕ0(t)ψ0(t).

By Lemma 1, ϕ1ψ1 ∈ AA(R,H). Since

lim
T→+∞

1
2T

∫ T

–T

∥∥ϕ1(t)ψ0(t) + ψ1(t)ϕ0(t) + ϕ0(t)ψ0(t)
∥∥
H

dt

≤ lim
T→+∞

‖ϕ1‖∞
2T

∫ T

–T

∥∥ψ0(t)
∥∥
H

dt + lim
T→+∞

‖ψ1‖∞
2T

∫ T

–T

∥∥ϕ0(t)
∥∥
H

dt

+ lim
T→+∞

‖ϕ0‖∞
2T

∫ T

–T

∥∥ψ0(t)
∥∥
H

dt = 0,

ϕ1ψ0 + ψ1ϕ0 + ϕ0ψ0 ∈ AA0(R,H). Therefore, ϕψ ∈ PAA(R,H). The proof is complete. �

Lemma 6 Let g ∈ C(R,H) and ϕ ∈ PAA(R,H). If there exists a positive constant L such
that

∥∥g(x) – g(y)
∥∥
H

≤ L‖x – y‖H, ∀x, y ∈H,

then the function g(ϕ(·)) ∈ PAA(R,H).

Proof Since ϕ ∈ PAA(R,H), we can write ϕ(t) = ϕ1(t) + ϕ0(t). Hence,

g
(
ϕ(t)

)
= g

(
ϕ1(t)

)
+ g

(
ϕ(t)

)
– g

(
ϕ1(t)

)
.

By Lemma 3, we have g(ϕ1(·)) ∈ AA(R,H). Noticing that ϕ0 ∈ AA0(R,H), we have

lim
T→∞

1
2T

∫ T

–T

∥∥g
(
ϕ(t)

)
– g

(
ϕ1(t)

)∥∥
H

dt ≤ lim
T→∞

1
2T

∫ T

–T
L
∥∥ϕ(t) – ϕ1(t)

∥∥
H

dt

= lim
T→∞ L

1
2T

∫ T

–T

∥∥ϕ0(t)
∥∥
H

dt = 0,

which implies that g(ϕ(·)) – g(ϕ1(·)) ∈ AA0(R,H). Consequently, g(ϕ(·)) ∈ PAA(R,H). The
proof is complete. �

In the rest of this paper, we will adopt the following notation:

b+
pq = sup

t∈R

∥∥bpq(t)
∥∥
H

, c+
pq = sup

t∈R

∥∥cpq(t)
∥∥
H
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and make the following assumptions:
(H1) For all p, q ∈ In, ap ∈ AP(R,R+), bpq, cpq, Qp ∈ PAA(R,H), and a–

p = inft∈R ap(t) > 0.
(H2) For all q ∈ In, fq, gq ∈ C(H,H), and there exist constants Lf

q, Lg
q such that

∥∥fq(x) – fq(y)
∥∥
H

≤ Lf
q‖x – y‖H,

∥∥gq(x) – gq(y)
∥∥
H

≤ Lg
q‖x – y‖H

for all x, y ∈H and fq(0) = gq(0) = 0.
(H3) For every pair of p, q ∈ In, the kernel kpq ∈ C(R,R+) and satisfies

∫ +∞
0 kpq(s) ds = 1.

(H4) K = max1≤p≤n{ 1
a–

p

∑n
q=1[b+

pqLf
q + c+

pqLg
q]} < 1.

3 The existence of pseudo almost automorphic solutions
Before stating and proving our existence theorem, we first prove two lemmas.

Lemma 7 Assume that assumptions (H1)–(H3) hold and xq ∈ PAA(R,H) for all q ∈ In,
then for every pair of p, q ∈ In, the function ϕp : t → ∫ t

–∞ kpq(t – s)gq(xq(s)) ds belongs to
PAA(R,H).

Proof Because xq ∈ PAA(R,H), so xq ∈ BC(R,H). Since

∥∥ϕp(t)
∥∥
H

≤
∫ t

–∞

∥∥kpq(t – s)gq
(
xq(s)

)
ds

∥∥
H

≤ Lg
q‖xq‖

∫ +∞

0
kpq(s) ds = Lg

q‖xq‖,

we see that the integral
∫ t

–∞ kpq(t – s)gq(xq(s)) ds is absolutely convergent and the function
ϕp is bounded. In addition, it is easy to show that ϕp is continuous. Hence, ϕp ∈ BC(R,H).

Now, we prove that ϕp ∈ PAA(R,H).
By Lemma 6, we have gq(xq(·)) ∈ PAA(R,H). Hence, we can write gq(xq(t)) = uq(t) + vq(t),

where uq ∈ AA(R,H) and vq ∈ AA0(R,H). Consequently,

ϕp(t) =
∫ t

–∞
kpq(t – s)uq(s) ds +

∫ t

–∞
kpq(t – s)vq(s) ds

:= ϕ1
p(t) + ϕ0

p(t).

Step 1. We will prove that ϕ1
p ∈ AA(R,H). Let (s′

n) be a sequence of real numbers, we can
extract a subsequence (sn) of (s′

n) such that

lim
n→+∞ uq(t + sn) = ūq(t) and lim

n→+∞ ūq(t – sn) = uq(t)

for each t ∈R. Denote

ϕ̄1
p(t) =

∫ t

–∞
kpq(t – s)ūq(s) ds.

Then we have

∥∥ϕ1
p(t + sn) – ϕ̄1

p(t)
∥∥
H

=
∥∥∥∥

∫ t+sn

–∞
kpq(t + sn – s)uq(s) ds –

∫ t

–∞
kpq(t – s)ūq(s) ds

∥∥∥∥
H

≤
∫ t

–∞
kpq(t – s)

∥∥uq(s + sn) – ūq(s)
∥∥
H

ds.
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By the Lebesgue dominated convergence theorem, we obtain

lim
n→+∞ϕ1

p(t + sn) = ϕ̄1
p(t)

for each t ∈R. Similarly, we can obtain

lim
n→+∞ ϕ̄1

p(t – sn) = ϕ1
p(t)

for each t ∈R, which implies that ϕ1
p ∈ AA(R,H).

Step 2. We will prove that ϕ0
p ∈ AA0(R,H). Since

lim
T→∞

1
2T

∫ T

–T

∥∥ϕ0
p(t)

∥∥
H

dt

≤ lim
T→∞

1
2T

∫ T

–T

∫ +∞

0
kpq(δ)

∥∥vq(t – δ)
∥∥
H

dδ dt

≤
∫ +∞

0
kpq(δ) lim

T→∞
1

2T

∫ T

–T

∥∥vq(t – δ)
∥∥
H

dt dδ = 0,

ϕ0
p ∈ AA0(R,H). Consequently, ϕp(·) ∈ PAA(R,H). The proof is complete. �

Let X = PAA(R,Hn), then (X,‖ · ‖0) is a Banach space, where ‖x‖0 = supt∈R ‖x(t)‖Hn for
x ∈X. Let

ϕ0(t) =
(∫ t

–∞
e
∫ t

s –a1(u) duQ1(s) ds,
∫ t

–∞
e
∫ t

s –a2(u) duQ2(s) ds,

. . . ,
∫ t

–∞
e
∫ t

s –an(u) duQn(s) ds
)T

and take a constant ω̄ > ‖ϕ0‖0.

Lemma 8 Let (H1)–(H3) hold. For every ϕ = (ϕ1,ϕ2, . . . ,ϕn)T ∈ PAA(R,Hn) and p ∈ In, we
have

(Λpϕ)(t) =
∫ t

–∞
e
∫ t

s –ap(u) du

[ n∑

q=1

bpq(s)fq
(
ϕq(s)

)

+
n∑

q=1

cpq(s)
∫ s

–∞
kpq(s – u)gq

(
xq(u)

)
du + Qp(s)

]

ds

is pseudo almost automorphic.

Proof By (H1)–(H3), according to Lemmas 5–7, for every ϕ = (ϕ1,ϕ2, . . . ,ϕn)T ∈
PAA(R,Hn), we have that, for each p ∈ In,

Υp(t) :=
n∑

q=1

bpq(t)fq
(
ϕq(t)

)
+

n∑

q=1

cpq(t)
∫ t

–∞
kpq(t – s)gq

(
xq(s)

)
ds

+Qp(t) ∈ AA(R,H)
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is pseudo almost automorphic. Consequently, for every p ∈ In, Υp can be expressed as
Υp = Υ 1

p + Υ 0
p , where Υ 1

p ∈ AA(R,H), Υ 0
p ∈ AA0(R,H). So

(Λpϕ)(t) =
∫ t

–∞
e
∫ t

s –ap(u) duΥ 1
p (s) ds +

∫ t

–∞
e
∫ t

s –ap(u) duΥ 0
p (s) ds

=
(
Λ1

pϕ
)
(t) +

(
Λ0

pϕ
)
(t).

Step 1. We will prove Λ1
pϕ ∈ AA(R,H). Let (s′

n)n∈N be a sequence of real numbers, we
can extract a subsequence (sn)n∈N of (s′

n)n∈N such that, for every t ∈R and p ∈ Ip,

lim
n→+∞ ap(t + sn) = āp(t), lim

n→+∞ āp(t – sn) = ap(t)

and

lim
n→+∞Υ 1

p (t + sn) = Ῡ 1
p (t), lim

n→+∞ Ῡ 1
p (t – sn) = Υ 1

p (t).

Set

(
Λ̄1

pϕ
)
(t) =

∫ t

–∞
e–

∫ t
s āp(u) duῩ 1

p (s) ds,

then we have

lim
n→+∞

∥∥(
Λ1

pϕ
)
(t + sn) –

(
Λ̄1

pϕ
)
(t)

∥∥
H

= lim
n→+∞

∥∥∥∥

∫ t+sn

–∞
e–

∫ t+sn
s ap(u) duΥ 1

p (s) ds –
∫ t

–∞
e–

∫ t
s āp(u) duῩ 1

p (s) ds
∥∥∥∥
H

= lim
n→+∞

∥∥∥∥

∫ t

–∞
e–

∫ t
u ap(δ+sn) dδΥ 1

p (u + sn) du –
∫ t

–∞
e–

∫ t
s āp(δ) dδῩ 1

p (s) ds
∥∥∥∥
H

≤ lim
n→+∞

∫ t

–∞
e–

∫ t
u ap(δ+sn) dδ

∥∥(
Υ 1

p (s + sn) – Ῡ 1
p (s)

)∥∥
H

ds

+ lim
n→+∞

∥∥∥∥

∫ t

–∞

(
e–

∫ t
u ap(δ+sn) dδ – e–

∫ t
u āp(δ) dδ

)
Ῡ 1

p (s) ds
∥∥∥∥
H

.

By the Lebesgue dominated convergence theorem, we obtain that limn→+∞(Λ1
pϕ)(t + sn) =

(Λ̄1
pϕ)(t) for each t ∈ R and p ∈ Ip. Similarly, we can prove that limn→+∞(Λ̄1

pϕ)(t – sn) =
(Λ1

pϕ)(t) for each t ∈R and p ∈ Ip. Hence, the function Λ1
pϕ ∈ AA(R,H).

Step 2. We will prove that Λ0
pϕ ∈ AA0(R,H). For all p ∈ Ip, we have

lim
T→+∞

1
2T

∫ T

–T

∥∥(
Λ0

pϕ
)
(s) ds

∥∥
H

dt ≤ Ω1 + Ω2,

where

Ω1 = lim
T→+∞

1
2T

∫ T

–T

∫ t

–T

∥∥e
∫ t

s –ap(u) duΥ 0
p (s)

∥
∥
H

ds dt,

Ω2 = lim
T→+∞

1
2T

∫ T

–T

∫ –T

–∞

∥∥e
∫ t

s –ap(u) duΥ 0
p (s)

∥∥
H

ds dt.
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Let ζ = t – s, by Fubini’s theorem one has

1
2T

∫ T

–T

∫ t

–T

∥∥e
∫ t

s –ap(u) duΥ 0
p (s)

∥∥
H

ds dt

≤ 1
2T

∫ T

–T

∫ T

–T
e–(t–s)a–

p
∥∥Υ 0

p (s)
∥∥
H

ds dt

=
1

2T

(∫ T

–T

∫ t+T

0
e–ζa–

p
∥∥Υ 0

p (t – ζ )
∥∥
H

dζ

)
dt

≤ 1
2T

(∫ T

–T

∫ +∞

0
e–ζa–

p
∥∥Υ 0

p (t – ζ )
∥∥
H

dζ

)
dt

=
∫ +∞

0
e–ζa–

p

(
1

2T

∫ T

–T

∥∥Υ 0
p (t – ζ )

∥∥
H

dt
)

dζ

≤
∫ +∞

0
e–ζa–

p

(
T + ζ

T
1

2(T + ζ )

∫ T–ζ

–T–ζ

∥∥Υ 0
p (u)

∥∥
H

du
)

dζ .

Since the function Υ 0
p ∈ AA0(R,H),

lim
T→+∞

1
2T

∫ T–ζ

–T–ζ

∥∥Υ 0
p (u)

∥∥
H

du = 0.

Consequently, by the Lebesgue dominated convergence theorem, we obtain

Ω1 = lim
T→+∞

1
2T

∫ T

–T

∫ t

–T

∥∥e
∫ t

s –ap(u) duΥ 0
p (s)

∥∥
H

ds dt = 0.

On the other hand, since Υ 0
p is bounded, we have

Ω2 ≤ lim
T→+∞

1
2T

∫ T

–T

∫ –T

–∞
e–(t–s)a–

p
∥∥Υ 0

p (s)
∥∥
H

ds dt

= lim
T→+∞

1
2T

∫ T

–T

∫ +∞

T+t
e–ζa–

p
∥∥Υ 0

p (t – ζ )
∥∥
H

dζ dt

≤ lim
T→+∞

supt∈R ‖Υ 0
p (t)‖H

2T

∫ T

–T

∫ +∞

T+t
e–ζa–

p dζ dt

= lim
T→+∞

supt∈R ‖Υ 0
p (t)‖H

2T
1

a–
p

∫ T

–T
e–(t+T)a–

p dt

= lim
T→+∞

supt∈R ‖Υ 0
p (t)‖H

2T
1

(a–
p )2

[
1 – e–2a–

p T]
= 0.

Hence, Λ0
pϕ ∈ AA0(R,H) for all p ∈ Ip. Therefore, Λpϕ ∈ PAA(R,H). The proof is com-

plete. �

Theorem 1 Suppose (H1)–(H4) hold. Then system (1) has a pseudo almost automorphic
solution that is contained in X0 = {ϕ|ϕ ∈X,‖ϕ – ϕ0‖0 ≤ K ω̄

1–K }.
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Proof Let x = (x1, x2, . . . , xn)T ∈ C(R,Hn) satisfy

xp(t) =
∫ t

–∞
e
∫ t

s –ap(u) du

[ n∑

q=1

bpq(s)fq
(
xq(s)

)

+
n∑

q=1

cpq(s)
∫ s

–∞
kpq(s – u)gq

(
xq(u)

)
du + Qp(s)

]

ds, p ∈ In, (2)

then we can deduce that

ẋp(t) =
∫ t

–∞
–ap(t)e

∫ t
s –ap(u) du

[ n∑

q=1

bpq(s)fq
(
xq(s)

)

+
n∑

q=1

cpq(s)
∫ s

–∞
kpq(s – u)gq

(
xq(u)

)
du + Qp(s)

]

ds

+ e–
∫ t

t ap(u) du

[ n∑

q=1

bpq(s)fq
(
xq(s)

)

+
n∑

q=1

cpq(s)
∫ s

–∞
kpq(s – u)gq

(
xq(u)

)
du + Qp(s)

]

= –ap(t)xp(t) +
n∑

q=1

bpq(t)fq
(
xq(t)

)
+

n∑

q=1

cpq(t)
∫ t

–∞
kpq(t – s)gq

(
xq(s)

)
ds + Qp(t),

that is, x satisfies system (1).
Define an operator T : X0 → AA(R,Hn) by

T = (T1, T2, . . . , Tn)T ,

where, for any ϕ ∈ AA(R,Hn) and p ∈ In,

(Tpϕ)(t) =
∫ t

–∞
e
∫ t

s –ap(u) du

[ n∑

q=1

bpq(s)fq
(
ϕq(s)

)

+
n∑

q=1

cpq(s)
∫ s

–∞
kpq(s – u)gq

(
xq(u)

)
du + Qp(s)

]

ds.

Obviously, for any ϕ ∈X0, we have

‖ϕ‖0 ≤ ‖ϕ – ϕ0‖0 + ‖ϕ0‖0 ≤ Kω̄

1 – K
+ ω̄ =

ω̄

1 – K
.

Step 1. We prove that for every ϕ ∈X0, Tϕ ∈X0. Since

∥∥Tϕ(t) – ϕ0(t)
∥∥
Hn

≤ max
1≤p≤n

{∫ t

–∞

∥∥∥∥∥
e
∫ t

s –ap(u) du
n∑

q=1

bpq(s)fq
(
ϕq(s)

)
∥∥∥∥∥
H

ds
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+
∫ t

–∞

∥∥∥∥∥
e
∫ t

s –ap(u) du
n∑

q=1

cpq(s)
∫ s

–∞
kpq(s – v)gq

(
xq(v)

)
dv

∥∥∥∥∥
H

ds

≤ max
1≤p≤n

{ n∑

q=1

[∫ t

–∞
e–a–

p (t–s)b+
pqLf

q‖ϕ‖0 ds +
∫ t

–∞
e–a–

p (t–s)c+
pqLg

q‖ϕ‖0 ds
]}

≤ max
1≤p≤n

1
a–

p

{ n∑

q=1

[
b+

pqLf
q‖ϕ‖0 + c+

pqLg
q‖ϕ‖0

]
}

≤ ω̄

1 – K
max

1≤p≤n

{
1

a–
p

n∑

q=1

[
b+

pqLf
q + c+

pqLg
q
]
}

≤ Kω̄

1 – K
,

which implies that Tϕ ∈X0.
Step 2. We will prove that the mapping T is a contraction mapping of X0. For any ϕ,φ ∈

X0, we have

∥∥Tϕ(t) – Tψ(t)
∥∥
Hn

≤ max
1≤p≤n

{∫ t

–∞

∥∥∥∥∥
e
∫ t

s –ap(u) du
n∑

q=1

bpq(s)
[
fq

(
ϕq(s)

)
– fq

(
ψq(s)

)]
∥∥∥∥∥
H

ds

+
∫ t

–∞

∥∥∥∥∥
e
∫ t

s –ap(u) du
n∑

q=1

cpq(s)
∫ s

–∞
kpq(s – v)

[
gq(ϕq(v) – gq(ψq(v)

]
dv

∥∥∥∥∥
H

ds

}

≤ max
1≤p≤n

{∫ t

–∞
e–a–

p (t–s)
n∑

q=1

b+
pqLf

q‖ϕ – ψ‖0 ds

+
∫ t

–∞
e–a–

p (t–s)
n∑

q=1

c+
pqLg

q‖ϕ – ψ‖0

}

≤ max
1≤p≤n

{
1

a–
p

n∑

q=1

[
b+

pqLf
q + c+

pqLg
q
]
}

‖ϕ – ψ‖0

= K‖ϕ – ψ‖0,

which means that the mapping T is a contracting mapping. Therefore, there exists a
unique fixed point ϕ∗ ∈ X0 such that Tϕ∗ = ϕ∗, that is, system (1) has a pseudo almost
automorphic solution. The proof is complete. �

4 Global exponential stability
In this section, for x = (x1, x2, . . . , xn)T ∈ C((–∞, 0],Hn), we denote

‖x‖τ =
n∑

p=1

sup
t∈(–∞,0]

∥∥xp(t)
∥∥
H

.

Definition 3 Let x = (x1, x2, . . . , xn)T be a pseudo almost automorphic solution of sys-
tem (1) with the initial value ϕ = (ϕ1,ϕ2, . . . ,ϕn)T ∈ C((–∞, 0],Hn) and y = (y1, y2, . . . , yn)T
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be an arbitrary solution of system (1) with the initial value ψ = (ψ1,ψ2, . . . ,ψn)T ∈
C((–∞, 0],Hn), respectively. If there exist positive constants η and M such that

∣∣x(t) – y(t)
∣∣
Hn ≤ M‖ϕ – ψ‖τ e–ηt , t ≥ 0,

then the pseudo almost automorphic solution x of system (1) is said to be globally expo-
nentially stable.

Theorem 2 Assume that (H1)–(H4) hold, and suppose further that there exists a positive
constant λ0 such that

∫ +∞

0
kpq(s)eλ0s ds < +∞.

Then system (1) has a pseudo almost automorphic solution that is globally exponentially
stable.

Proof By Theorem 1, system (1) has a pseudo almost automorphic solution, let x(t) be the
pseudo almost automorphic solution with the initial value ϕ(t), and y(t) be an arbitrary
solution with the initial value ψ(t). Set zp(t) = yp(t) – xp(t), φp(t) = ψp(t) – ϕp(t), we have

żp(t) + ap(t)zp(t)

=
n∑

q=1

bpq(t)
[
fq

(
zq(t)

)
+ xq(t)) – fq

(
xq(t)

)]

+
n∑

q=1

cpq(t)
∫ t

–∞
kpq(t – s)

[
gq

(
zp(s) + xq(s)

)
– gq

(
xq(s)

)]
ds, (3)

where p ∈ In. Let Θp be defined by

Θp(ω) = a–
p – ω –

n∑

q=1

[
b+

pqLf
q + c+

pqLg
q

∫ +∞

0
kpq(s)eωs ds

]
,

where p ∈ In, ω ∈ [0, +∞) and Θp(ω) → –∞;ω → +∞, there exist ε∗
p > 0 such that Θp(εp) >

0 for εp ∈ (0, ε∗
p). Let η = min{ε∗

1 , ε∗
2 , . . . , ε∗

n}, we obtain

Θp(η) ≥ 0, p = 1, 2, . . . , n.

So we can take a positive constant λ satisfying 0 < λ < min{η, a–
1 , a–

2 , . . . , a–
n ,λ0} such that

Θp(λ) > 0, which implies that, for p = 1, 2, . . . , n,

1
a–

p – λ

n∑

q=1

[
b+

pqLf
q + c+

pqLg
q

∫ +∞

0
kpq(s)eλs ds

]
< 1. (4)
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Multiplying both sides of (3) by e
∫ s

0 ap(u) du and integrating on [0, t], we have

zp(t) = φp(0)e–
∫ t

0 ap(u) du +
∫ t

0
e–

∫ t
s ap(u) du

×
[ n∑

q=1

bpq(t)
[
fq

(
zq(t)

)
+ xq(t)) – fq

(
xq(t)

)]

+
n∑

q=1

cpq(t)
∫ s

–∞
kpq(s – μ)

[
gq

(
zp(μ) + xq(μ)

)
– gq

(
xq(μ)

)]
dμ

]

ds. (5)

Let

M = max
1≤p≤n

( a–
p

∑n
q=1[b+

pqLf
q + c+

pqLg
q]

)
.

In view of (H4), M > 1, and we can deduce that

(
1
M

–
1

a–
p – λ

n∑

q=1

[
b+

pqLf
q + c+

pqLg
q

∫ +∞

0
kpq(s)eλs ds

])

< 0. (6)

It is easy to see that

∥∥z(t)
∥∥

0 =
∥∥φ(t)

∥∥
τ
≤ ‖φ‖τ ≤ M‖φ‖τ e–λt , t ∈ (–∞, 0].

We claim that

∥∥z(t)
∥∥

0 ≤ M‖φ‖τ e–λt , t > 0. (7)

To prove (7), we show for any ξ > 1 that the following inequality holds:

∥∥z(t)
∥∥

0 ≤ ξM‖φ‖τ e–λt , t > 0. (8)

If (8) is false, then there must be some t1 > 0 and some p ∈ {1, 2, . . . , n} such that

∥∥z(t1)
∥∥

0 =
∥∥zp(t1)

∥∥
0 = ξM‖φ‖τ e–λt1 , t > 0 (9)

and

∥∥z(t)
∥∥

0 < ξM‖φ‖τ e–λt , t ∈ (–∞, t1). (10)

By (4), (5), (6), (10), and (H3), we have

∥∥zp(t1)
∥∥

0 ≤ ‖φp‖τ e–t1a–
p +

∫ t1

0
e–(t1–s)a–

p

[ n∑

q=1

b+
pqLf

q
∥∥zq(s)

∥∥
H

+
n∑

q=1

c+
pq

∫ s

–∞
kpq(s – μ)Lg

q
∥∥zq(s)

∥∥
H

dμ

]

ds
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≤ ‖φp‖τ e–t1a–
p +

∫ t1

0
e–(t1–s)a–

p

[ n∑

q=1

b+
pqLf

qξM‖φ‖τ e–λs

+
n∑

q=1

c+
pq

∫ s

–∞
kpq(μ)Lg

qξM‖φ‖τ e–λ(s–μ) dμ

]

ds

≤ ‖φp‖τ e–t1a–
p +

∫ t1

0
e–(t1–s)a–

p ξM‖φ‖τ e–λs

[ n∑

q=1

b+
pqLf

q

+
n∑

q=1

c+
pq

∫ s

–∞
kpq(μ)Lg

qeλμ dμ

]

ds

≤ ξM‖φ‖τ e–λt1

[
e(λ–a–

p )t1

ξM
+

1
a–

p –λ

( n∑

q=1

b+
pqLf

q

+
n∑

q=1

d+
pq

∫ s

–∞
kpq(μ)Lg

qeλμ dμ
(
1 – e(λ–a–

p )t1
)
)]

≤ ξM‖φ‖τ e–λt1

[

e(λ–a–
p )t1

(
1
M

–
1

a–
p – λ

n∑

q=1

[
b+

pqLf
q

+ c+
pqLg

q

∫ +∞

0
kpq(s)eλs ds

])

+
(

1
a–

p – λ

[
bpqLf

q + cpqLg
q

∫ +∞

0
kpq(s)eλs ds

])]

≤ ξM‖φ‖τ e–λt1

[
1

a–
p – λ

n∑

q=1

[
b+

pqLf
q + c+

pqLg
q

∫ +∞

0
kpq(s)eλs ds

]]

< ξM‖φ‖τ e–λt1 ,

which contradicts equality (9), and so (8) holds. Let ξ → 1, then (7) holds. Hence, the
pseudo almost automorphic solution of (1) is globally exponentially stable. The proof is
completed. �

5 Example
In this section, we give an example to show the feasibility of our obtained results in this
paper.

Example 1 In system (1), let n = 2, xp(t) = xR
p (t) + ixI

p(t) + jxJ
p(t) + kxK

p (t) ∈ H, kpq(t) = e–t ,
and take

fq(xq) =
1

40
sin

(
xR

q + xI
q
)

+ i
1

50
sin

(
xI

q – xK
q
)

+ j
1

64
arctan

(
xR

q – 2xJ
q
)

+ k
1

48
sin

(
xJ

q – xK
q
)
,

gq(xq) =
1

125
sin

(
xR

q – 3xJ
q
)

+ i
1

200
sin

(
xI

q – xJ
q
)

+ j
1

175
arctan

(
2xR

q – xJ
q
)

+ k
1

130
sin

(
xR

q + xK
q
)
,
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(
a1(t)
a2(t)

)

=

(
2.3 + 0.1 sin

√
2t

2.5 + 0.2 cos
√

5t

)

,

(
b11(t) b12(t)
b21(t) b22(t)

)

=

(
1

100+t2 + i0.06 sin t 1
25+t2 + k0.1 sin t

0.15 – i0.11 cos t + k0.2 cos
√

3t + 1
100+t2

1
16+t2 + j0.2 sin

√
3t

)

,

(
c11(t) c12(t)
c21(t) c22(t)

)

=

(
1

16+t2 + 0.1 sin
√

7t + i0.02 sin
√

3t 0.13 + k0.1 sin
√

11t
1

100+t2 + 0.15 – i0.01 cos
√

6t + j0.02 cos
√

5t 0.11 + k0.2 sin t

)

,

(
Q1(t)
Q2(t)

)

=

(
1
2 sin

√
5t + i 1

12 sin
√

8t + j 1
8 cos

√
5t + k 1

15 sin t + 3
1+t2

1
5 sin

√
2t + i 1

12 sin
√

7t + j 1
7 cos t + k 1

10 sin
√

7t – sin t
1+t2

)

.

By computing, we have Lf
q = 1

20 , Lg
q = 1

25 , a–
1 = 2.2, a–

2 = 2.3, b+
11 = 0.061, b+

12 = 0.108, b+
21 =

0.274, b+
22 = 0.210, c+

11 = 0.120, c+
12 = 0.130, c+

21 = 0.153, c+
22 = 0.228. So (H1) and (H2) are

satisfied. Besides, it is easy to obtain that

max
1≤p≤2

{
1

a–
p

[ 2∑

q=1

b+
pqLf

q +
2∑

q=1

.c+
pqLg

q

]}

≈ 0.024 < 1.

Therefore, all of the conditions of Theorem 2 are satisfied. Thus, according to Theorem 2,
system (1) has a pseudo almost automorphic solution that is globally exponentially stable
(see Figs. 1–3).

Figure 1 Curves of xRp(t) and xIp(t), p = 1, 2
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Figure 2 Curves of xJp(t) and xKp (t), p = 1, 2

Figure 3 Curves of xRp(t), x
I
p(t), x

J
p(t), and xKp (t) in 3-dimensional space for stable case, p = 1, 2

6 Conclusion
In this paper, we have obtained the existence and global exponential stability of pseudo al-
most automorphic solutions to quaternion-valued cellular neural networks with infinitely
distributed delays via direct method. Our method and the results of this paper are new, and
our method can be used to study the existence and stability of almost periodic solutions,
pseudo almost periodic solutions, almost automorphic solutions, and pseudo almost au-
tomorphic solutions for other types of quaternion-valued neural network models.
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