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Abstract
This paper addresses the resilient H∞ state estimation problem under variance
constraint for discrete uncertain time-varying recurrent neural networks with
randomly varying nonlinearities and missing measurements. The phenomena of
missing measurements and randomly varying nonlinearities are described by
introducing some Bernoulli distributed random variables, in which the occurrence
probabilities are known a priori. Besides, the multiplicative noise is employed to
characterize the estimator gain perturbation. Our main purpose is to design a
time-varying state estimator such that, for all missing measurements, randomly
varying nonlinearities and estimator gain perturbation, both the estimation error
variance constraint and the prescribed H∞ performance requirement are met
simultaneously by providing some sufficient criteria. Finally, the feasibility of the
proposed variance-constrained resilient H∞ state estimation method is verified by
some simulations.

Keywords: Time-varying neural networks; Resilient state estimation; Randomly
varying nonlinearities; Missing measurements; H∞ performance; Variance constraint

1 Introduction
In the past two decades, the popularization of the Internet has greatly changed our way of
life through the rapid communication ways [1–3]. Accordingly, many scholars have wit-
nessed successful applications of recurrent neural networks (RNNs) in wide fields includ-
ing pattern recognition, image processing, associate memory and optimization domains
[4–6]. Nevertheless, it should be noted that the nonlinearities are commonly inherent
characteristics between neurons, which indeed affect the understanding and analysis of
the neural networks (NNs). Thus, some efficient methods have been given to analyze dif-
ferent NNs. For example, an effective finite-time synchronization criterion has been pro-
posed in [7] for coupled stochastic NNs, where both the Markovian switching parameters
and saturation have been addressed. Moreover, some useful state estimation algorithms
have been given in [8] for delayed NNs to guarantee the H∞ as well as passivity and in [9]
for bidirectional associative NNs subject to mixed time-delays. During the analysis and
implementation of the methods related to RNNs, it should be noticed that the neuron
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states may not always available in reality, so there is a need to estimate them by utilizing
effective estimation methods [10–12]. Until now, many results have been published with
respect to the state estimation problem of different types of dynamical networks [13–16].
Nevertheless, it is worth mentioning that much published literature is only applicable to
time-invariant case, which might lead to certain application limitations. Hence, more and
more researchers have paid attention on the analysis of the state estimation problem for
time-varying system and proposed a variety of methods to analyze the behaviors of dy-
namics systems, see e.g. [17–20] and the references therein. To be specific, an event-based
joint input and state estimation strategy have been presented in [19] to ensure that the co-
variance of the estimation error has an upper bound at any time for the addressed linear
discrete time-varying systems. Accordingly, there exist the demands on the development
of efficient analysis methods for time-varying RNNs.

During the network communications or transmissions, the perfect measurements can
not be always available, thus increasing research effort has been made on the state estima-
tion problems against the missing measurements [20–22]. The missing measurements are
inevitable primarily due to the signal interference during the transmission including lim-
ited communication channels, noise interferences and so forth. For example, the study of
missing measurements has been conducted in the areas of principal component analysis
and partial least squares models [23]. Actually, it is well recognized that the existence of
the missing measurements would lead to poor system performance for the addressed NNs
[24, 25]. Accordingly, a large number of results have been given to deal with the state es-
timation problem for dynamics networks subject to missing measurements [26–29]. For
example, in [27, 28], the H∞ state estimation design strategies have been proposed for
discrete delayed neural networks, where the impacts from the multiple missing measure-
ments have been discussed. Nevertheless, few results have been reported to handle the
problem of state estimation for time-varying dynamics networks with missing measure-
ments [20, 30]. Recently, a new optimal state estimation algorithm has been developed
in [20] for time-varying complex networks, where the impacts from both the stochastic
coupling and the missing measurements within the framework of uncertain occurrence
probabilities have been addressed. However, it is worthwhile to notice that few scholars
have studied the state estimation problem of time-varying neural networks with missing
measurements, which constitutes one of research motivations.

Recently, the phenomena of randomly varying nonlinearities have been modeled and
discussed in various fields [31, 32]. The existence of randomly varying nonlinearities has
brought more influences in physics, engineering, information science and other fields, and
hence the dynamics system analysis problems with randomly varying nonlinearities have
already received increasing interest [33–35]. For example, the state estimation algorithm
in distributed way has been established in [33] for a class of discrete systems over sensor
networks with incomplete measurements and randomly varying nonlinearities, and the
probability-dependent H∞ synchronization condition has been presented in [35] for dy-
namics networks by designing new control method. During the implementation process,
the presented estimation method would be fragile/non-resilient due to various reasons,
such as the numerical rounding error, finite-word length effects and analog-to-digital con-
version accuracy [36, 37]. Accordingly, the non-fragile/resilient estimation schemes have
wide application fields as in water quality processing [38] and synchronous generators [39].
In [40, 41], the non-fragile H∞ state estimation algorithms have been given for dynamical
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systems with Markov switching effects, where the possible estimator parameter variations
have been modeled and discussed. The resilient H∞ filtering methods have been given in
[42] for switched delayed neural networks with ensured finite-time criterion and in [43]
for time-varying dynamics systems through sensor networks with communication pro-
tocols. However, few resilient H∞ estimation methods can be available for time-varying
RNNs. On the other hand, from the engineering-oriented viewpoint on the state estima-
tion problems, it is of great practical significance to ensure the estimation performance
has a certain upper bound of related to the estimated error covariance [44]. Unlike to the
minimal estimation of error covariance, the variance-constrained state estimation strat-
egy could provide a looser evaluation by introducing a specific upper bound constraint,
which can reflect the admissible accuracy of the proposed estimation methods. Very re-
cently, a new variance-constrained filtering algorithm with distributed feature has been
established in [45] for time-varying sensor networks subject to deception attacks and state
estimation scheme; see [46] for time-varying complex networks to attenuate the impacts
induced by randomly varying topologies. As such, we make the first attempt to handle the
H∞ resilient estimation problem under variance constraint for time-varying RNNs with
randomly varying nonlinearities and missing measurements.

Inspired by the above discussions, we aim to design the resilient H∞ state estimation ap-
proach for the addressed discrete time-varying RNNs subject to missing measurements
and randomly varying nonlinearities under the variance constraint. In particular, the esti-
mator gain perturbation is considered by employing the Gaussian white noise. By resorting
to the matrix theory and stochastic analysis technique, a new nonlinear time-varying state
estimation method is proposed, which can ensure the error variance boundedness and
prescribed H∞ performance requirements simultaneously. From an engineering view-
point, the proposed recursive state estimation scheme has a time-varying feature appli-
cable for handling the estimation problems of neural networks, which is suitable for the
online estimation applications. Moreover, some sufficient conditions characterized by the
matrix inequalities are given to ensure two mixed performance indies, which can better
achieve satisfactory disturbance attenuation level and the estimation covariance perfor-
mance, thus performing wide application domains. The major features of the paper can
be summarized as follows: (1) the H∞ state estimation problem under variance constraint
is, for the first time, investigated for a class of discrete time-varying RNNs subject to miss-
ing measurements and randomly varying nonlinearities; (2) a new probability-dependent
time-varying state estimation algorithm is proposed, which can be implemented in terms
of the solutions to certain matrix inequalities; (3) the impacts caused by the missing mea-
surements and randomly varying nonlinearities onto two estimation performance indices
are discussed and examined simultaneously; and (4) the proposed estimation algorithm
has time-varying characteristic applicable for online applications, which performs new
advantages compared with the existing estimation results for time-invariant neural net-
works.

Notations. The symbols used throughout the paper are fairly standard. Rr denotes the r
dimensional Euclidean space. N+ stands for the sets of positive integers. For the matrix A
and the vector x, AT and xT represents the transpose A and x, respectively. The identity
matrix is denoted by I and the zero matrix is denoted by 0. E{x} means the mathematical
expectation of x. X > 0 means that X is a positive-definite symmetric matrix. In symmetric
block matrices, we use an asterisk ∗ to represent a term that is induced by symmetry, and
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diag{. . . } stands for a block-diagonal matrix. It is assumed that the matrices have compat-
ible dimensions if it is not explicitly specified.

2 Problem formulation and preliminaries
In this paper, we consider the n-neurons time-varying neural network given by

xk+1 = (Ak + �Ak)xk + αkB1kf (xk) + (1 – αk)B2kg(xk) + Ckv1k ,

yk = λkDkxk + v2k , (1)

zk = Mkxk ,

where xk = [x1,k x2,k . . . xn,k]T ∈ R
n represents the state vector of neural network, yk ∈

R
m denotes the measurement output, zk ∈ R

r stands for the controlled output, Ak =
diag{a1,k , a2,k , . . . , an,k} is the state coefficient matrix, Ck , Dk and Mk are known real ma-
trices with appropriate dimensions, v1k ∈ R

nw and v2k ∈ R
m are Gaussian white noises

with zero mean values and covariances V1 > 0 and V2 > 0, respectively. B1k = [b1ij(k)]n×n

and B2k = [b2ij(k)]n×n are the connection weight matrices. f (xk) = [f1(x1,k) . . . fn(xn,k)]T and
g(xk) = [g1(x1,k) . . . gn(xn,k)]T are the neuron activation functions. �Ak describes the pa-
rameter uncertainty satisfying

�Ak = HkFkNk , (2)

where Hk and Nk are appropriately dimensional known matrices, the unknown matrix Fk

satisfies

FT
k Fk ≤ I, ∀k ∈N

+. (3)

The Bernoulli distributed random variables αk and λk are utilized to describe the phe-
nomena of randomly varying nonlinearities and missing measurements, respectively, and
satisfy

Prob{αk = 1} = E{αk} = ᾱ, Prob{αk = 0} = 1 – ᾱ,

Prob{λk = 1} = E{λk} = λ̄, Prob{λk = 0} = 1 – λ̄,

where ᾱ ∈ [0, 1] and λ̄ ∈ [0, 1] are known constants.

Assumption 1 For the activation functions f (·) and g(·) with f (0) = g(0) = 0, there exist
four scalars λ–

i , λ+
i , σ –

i and σ +
i satisfying the following conditions:

λ–
i ≤ fi(s1) – fi(s2)

s1 – s2
≤ λ+

i ,

σ –
i ≤ gi(s1) – gi(s2)

s1 – s2
≤ σ +

i , ∀s1, s2 ∈R, s1 �= s2.
(4)
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In order to estimate the states of neurons, the following time-varying nonlinear state
estimator is constructed:

x̂k+1 = Akx̂k + ᾱB1kf (x̂k) + (1 – ᾱ)B2kg(x̂k) + (Kk + δkK̄k)(yk – λ̄Dkx̂k),

ẑk = Mkx̂k ,
(5)

where x̂k is the estimation of neuron state xk , K̄k is a known real matrix with appropriate
dimension, δk is zero mean Gaussian white noise with unity covariance. Kk is the estimator
gain matrix to be determined later. In the sequel, suppose that αk , λk , v1k , v2k and δk are
mutually independent.

Remark 1 During the implementation process, the state estimation performance of the
neural networks is usually affected by the numerical rounding error, finite-word length
effects and analog-to-digital conversion accuracy, which inevitably lead to the possible
deviations of the estimation values provided by the state estimator. Thus, the presented
estimation method might be a fragile/non-resilient one. Therefore, we aim to take the es-
timator gain perturbations into account during the estimator design with hope to provide
a resilient time-varying state estimator with admissible adjustment ability. Accordingly,
the estimator gain perturbations are modeled by a zero mean Gaussian white noise δk and
the nominal matrix K̄k , where the changes of the white noise δk are utilized to character-
ize the admissible errors of the estimator gain. As such, a resilient state estimation scheme
under prescribed performance indices is expected to be given later for the addressed time-
varying RNNs.

Let the estimation error be ek = xk – x̂k and the controlled output estimation error be z̃k =
zk – ẑk . Then the estimation error dynamics can be obtained from (1) and (5) as follows:

ek+1 =
[
Ak – (Kk + δkK̄k)λ̄Dk

]
ek + �Akxk + α̃kB1kf (xk) + ᾱB1kf (ek)

– α̃kB2kg(xk) + (1 – ᾱ)B2kg(ek) – (Kk + δkK̄k)(λ̃kDkxk + v2k) + Ckv1k ,

z̃k = Mkek ,

(6)

with f (ek) = f (xk) – f (x̂k), g(ek) = g(xk) – g(x̂k), α̃k = αk – ᾱ and λ̃k = λk – λ̄.
To simplify the notation, we can define

ηk =
[

xT
k eT

k

]T
, vk =

[
vT

1k vT
2k

]T
,

f (ηk) =
[
f T (xk) f T (ek)

]T
, g(ηk) =

[
gT (xk) gT (ek)

]T
.

Considering (1), (6) and the above notations, we can easily derive the following augmented
system:

ηk+1 = (Ak + λ̃kD1k + λ̃kδkD2k + δkA2k)ηk + (B1k + α̃kBk)f (ηk)

+ (B2k – α̃kB̌k)g(ηk) + (C1k + δkC2k)vk ,

z̃k = Mkηk ,

(7)
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where

Ak =

[
Ak + �Ak 0

�Ak Ak – λ̄KkDk

]

, D1k =

[
0 0

–KkDk 0

]

,

D2k =

[
0 0

–K̄kDk 0

]

, A2k =

[
0 0
0 –λ̄K̄kDk

]

, B1k =

[
ᾱB1k 0

0 ᾱB1k

]

,

Bk =

[
B1k 0
B1k 0

]

, B2k =

[
(1 – ᾱ)B2k 0

0 (1 – ᾱ)B2k

]

, B̌k =

[
B2k 0
B2k 0

]

,

C1k =

[
Ck 0
Ck –Kk

]

, C2k =

[
0 0
0 –K̄k

]

, Mk =
[

0 Mk

]
.

Next, we introduce the covariance matrix Xk described by

Xk = E
{
ηkη

T
k
}

= E

{[
xk

ek

][
xk

ek

]T}

. (8)

The main purpose of this paper is to design a time-varying nonlinear state estimator (5)
such that the following two requirements are achieved simultaneously.

(R1) Let the scalar γ > 0, the positive-definite matrices Wϕ and Wφ be given. For the
initial state η0, the estimation error z̃k satisfies the following constraint:

J1 : = E

{ N–1∑

k=0

(‖z̃k‖2 – γ 2‖vk‖2
Wϕ

)
}

– γ 2
E

{
ηT

0 Wφη0
}

< 0, (9)

where ‖vk‖2
Wϕ

= vT
k Wϕvk .

(R2) The estimation error covariance satisfies the following bounded constraint:

J2 : = E
{

ekeT
k
} ≤ Ψk , (10)

where Ψk (0 ≤ k < N) is a set of pre-defined upper matrix, which reflects the
admissible estimation precision demand with respect to the specific situation.

Remark 2 In this paper, our main purpose is to design a time-varying state estimator such
that, for all missing measurements, randomly varying nonlinearities and estimator gain
perturbations, both the estimation error variance constraint and the prescribed H∞ per-
formance requirement are met simultaneously by providing some sufficient criteria. On
the one hand, the H∞ performance requirement within finite horizon is used to reflect the
attenuation capacity of the presented estimation algorithm against the effects from the ex-
ogenous disturbances and initial value. On the other hand, the upper bound constraint on
the estimation error covariance is also introduced to evaluate the estimation accuracy.
Compared with the traditional estimation method in the minimum variance framework,
a prescribed upper bound constraint regarding the estimation error covariance is needed
to be ensured, which could provide another evaluation way to the characterize the esti-
mation performance.
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Remark 3 In the practical circumstances, both the nonlinear effects and random cou-
pling are inevitable [7]. Moreover, there is a common case that the NNs consist of a large
number of highly interconnected neurons. Thus, it is generally difficult to obtain all states
of the neurons due to the inherent interaction effects. Consequently, it is necessary to
propose a proper way estimating the state information of all neurons, which has wide
theoretical importance and practical significance. For example, a battery state-of-charge
estimator has been designed in [47] to testify the usefulness of the merging fuzzy neural
networks with a novel learning structure. As such, the desirable state estimation strategy
with resilience ability for time-varying RNNs subject to missing measurements and ran-
domly varying nonlinearities can provide important solvable method, thereby enriching
the state estimation techniques for NNs.

At the end of this section, the following lemmas are introduced to facilitate further
derivations.

Lemma 1 ([26]) Suppose that Γ = diag{μ1,μ2, . . . ,μn} is a diagonal matrix. For x =
[x1 x2 . . . xn]T ∈ R

n, let H(x) = [h1(x1) h2(x2) . . . hn(xn)]T be a continuous nonlinear func-
tion satisfying

l–
i ≤ hi(s)

s
≤ l+

i , s ∈R, s �= 0

with l+
i and l–

i being constant scalars. Then

[
x

H(x)

]T [
Γ L1 –Γ L2

–Γ L2 Γ

][
x

H(x)

]

≤ 0,

where L1 = diag{l+
1 l–

1 , l+
2 l–

2 , . . . , l+
nl–

n} and L2 = diag{ l+1 +l–1
2 , l+2 +l–2

2 , . . . , l+n +l–n
2 }.

Lemma 2 ([48]) Let R, F , H and Q be real matrices of appropriate dimensions with Q and
F satisfying Q = QT and FFT ≤ I . Then Q + RFH + HT FT RT < 0 holds if and only if there
exists ε > 0 such that

Q + εRRT + ε–1HT H < 0.

Lemma 3 If the activation functions f (s) and g(s) satisfy the conditions in Assumption 1,
then the following inequalities hold:

f (s)f T (s) ≤
{

ρ + 1
ρ

2(1 – ρ)
(Λ2 + Λ0)2 +

1
ρ(1 – ρ)

(Λ2 – Λ0)2
}
‖s‖2,

g(s)gT (s) ≤
{

ρ + 1
ρ

2(1 – ρ)
(Σ2 + Σ0)2 +

1
ρ(1 – ρ)

(Σ2 – Σ0)2
}
‖s‖2, ρ ∈ (0, 1),

(11)
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where

Λ2 = diag

{
λ+

1 + λ–
1

2
,
λ+

2 + λ–
2

2
, . . . ,

λ+
n + λ–

n
2

}
= diag

{
λ1

i
}

,

Λ0 = diag

{
λ+

1 – λ–
1

2
,
λ+

2 – λ–
2

2
, . . . ,

λ+
n – λ–

n
2

}
= diag

{
λ0

i
}

,

Σ2 = diag

{
σ +

1 + σ –
1

2
,
σ +

2 + σ –
2

2
, . . . ,

σ +
n + σ –

n
2

}
= diag

{
σ 1

i
}

,

Σ0 = diag

{
σ +

1 – σ –
1

2
,
σ +

2 – σ –
2

2
, . . . ,

σ +
n – σ –

n
2

}
= diag

{
σ 0

i
}

.

(12)

Proof The proof this lemma can be easily obtained, hence it is omitted for brevity. �

3 Discussions of H∞ performances and covariance constraint
In this section, both the H∞ performance requirement and the upper bounded constraint
of the estimation error covariance matrix are considered. The sufficient criteria are pro-
posed accordingly based on the recursive matrix inequality technique.

3.1 H∞ performance requirement
Firstly, a sufficient condition is obtained to ensure that the output estimation error satisfies
the specified H∞ performance index over the finite horizon.

Theorem 1 Consider the time-varying RNNs (1) subject to randomly varying nonlinear-
ities and missing measurements. Suppose that the scalars γ > 0, ᾱ ∈ [0, 1] and λ̄ ∈ [0, 1],
matrices Wϕ > 0 and Wφ > 0, state estimator gain matrix Kk in (5) are given. If Q0 ≤ γ 2Wφ

and there exists a series of positive-definite real-value matrices {Qk}1≤k≤N+1 satisfying the
following recursive matrix inequality:

Φ =

⎡

⎢⎢
⎢
⎣

Φ11 Λ21 + AT
k Qk+1B1k Σ22 + AT

k Qk+1B2k 0
∗ Φ22 Φ23 0
∗ ∗ Φ33 0
∗ ∗ ∗ Φ44

⎤

⎥⎥
⎥
⎦

< 0, (13)

where

Φ11 = AT
k Qk+1Ak + λ̄(1 – λ̄)DT

1kQk+1D1k + λ̄(1 – λ̄)DT
2kQk+1D2k

+ AT
2kQk+1A2k + MT

k Mk – Qk – Λ11 – Σ12,

Φ22 = BT
1kQk+1B1k + ᾱ(1 – ᾱ)BT

k Qk+1Bk – F̄ ,

Φ23 = BT
1kQk+1B2k – ᾱ(1 – ᾱ)BT

k Qk+1B̌k ,

Φ33 = BT
2kQk+1B2k + ᾱ(1 – ᾱ)B̌T

k Qk+1B̌k – H̄ ,

Φ44 = CT
1kQk+1C1k + CT

2kQk+1C2k – γ 2Wϕ ,

Λ11 =

[
Γ1Λ1 0

0 Γ2Λ1

]

, Λ21 =

[
Γ1Λ2 0

0 Γ2Λ2

]

, Σ12 =

[
Γ3Σ1 0

0 Γ4Σ1

]

,
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Σ22 =

[
Γ3Σ2 0

0 Γ4Σ2

]

, F̄ =

[
Γ1 0
0 Γ2

]

, H̄ =

[
Γ3 0
0 Γ4

]

,

Γ1 = diag{μ11,μ12, . . . ,μ1n}, Γ2 = diag{μ21,μ22, . . . ,μ2n},
Γ3 = diag{μ31,μ32, . . . ,μ3n}, Γ4 = diag{μ41,μ42, . . . ,μ4n},
Λ1 = diag

{
λ+

1λ–
1 ,λ+

2λ–
2 , . . . ,λ+

nλ–
n
}

, Σ1 = diag
{
σ +

1 σ –
1 ,σ +

2 σ –
2 , . . . ,σ +

n σ –
n
}

,

then the H∞ performance constraint defined in (9) can be achieved for all nonzero vk .

Proof Define

Vk = ηT
k+1Qk+1ηk+1 – ηT

k Qkηk . (14)

Next, it follows from the augmented system (7) that

E{Vk} = E
{
ηT

k AT
k Qk+1Akηk + λ̄(1 – λ̄)ηT

k DT
1kQk+1D1kηk + λ̄(1 – λ̄)ηT

k DT
2k

× Qk+1D2kηk + ηT
k AT

2kQk+1A2kηk + f T (ηk)BT
1kQk+1B1kf (ηk)

+ ᾱ(1 – ᾱ)f T (ηk)BT
k Qk+1Bkf (ηk) + gT (ηk)BT

2kQk+1B2kg(ηk)

+ ᾱ(1 – ᾱ)gT (ηk)B̌T
k Qk+1B̌kg(ηk) + 2ηT

k AT
k Qk+1B1kf (ηk)

+ 2ηT
k AT

k Qk+1B2kg(ηk) + 2f T (ηk)BT
1kQk+1B2kg(ηk)

– 2ᾱ(1 – ᾱ)f T (ηk)BT
k Qk+1B̌kg(ηk)

+ vT
k CT

1kQk+1C1kvk + vT
k CT

2kQk+1C2kvk – ηT
k Qkηk

}
. (15)

Adding the zero term z̃T
k z̃k – γ 2vT

k Wϕvk – z̃T
k z̃k + γ 2vT

k Wϕvk to E{Vk} leads to

E{Vk} = E

{[
η̄T

k vT
k

]
Φ̃

[
η̄k

vk

]

– z̃T
k z̃k + γ 2vT

k Wϕvk

}

,

where

η̄T
k =

[
ηT

k f T (ηk) gT (ηk)
]

,

Φ̃ =

⎡

⎢⎢
⎢
⎣

Φ̃11 AT
k Qk+1B1k AT

k Qk+1B2k 0
∗ Φ̃22 Φ23 0
∗ ∗ Φ̃33 0
∗ ∗ ∗ Φ44

⎤

⎥⎥
⎥
⎦

< 0,

Φ̃11 = AT
k Qk+1Ak + λ̄(1 – λ̄)DT

1kQk+1D1k + λ̄(1 – λ̄)DT
2kQk+1D2k

+ AT
2kQk+1A2k + MT

k Mk – Qk ,

Φ̃22 = BT
1kQk+1B1k + ᾱ(1 – ᾱ)BT

k Qk+1Bk ,

Φ̃33 = BT
2kQk+1B2k + ᾱ(1 – ᾱ)B̌T

k Qk+1B̌k ,

(16)

and Φ23 as well as Φ44 being defined below (13).
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Moreover, based on Assumption 1 and Lemma 1, we have

[
xk

f (xk)

]T [
Γ1Λ1 –Γ1Λ2

–Γ1Λ2 Γ1

][
xk

f (xk)

]

≤ 0,

[
ek

f (ek)

]T [
Γ2Λ1 –Γ2Λ2

–Γ2Λ2 Γ2

][
ek

f (ek)

]

≤ 0,

[
xk

g(xk)

]T [
Γ3Σ1 –Γ3Σ2

–Γ3Σ2 Γ3

][
xk

g(xk)

]

≤ 0,

[
ek

g(ek)

]T [
Γ4Σ1 –Γ4Σ2

–Γ4Σ2 Γ4

][
ek

g(ek)

]

≤ 0, k = 1, 2, . . . , n,

where Λ2 and Σ2 are defined in (12), Λ1, Σ1, Γ1, Γ2, Γ3 and Γ4 are defined in (13). From
the above inequalities, we can deduce that

[
ηk

f (ηk)

]T [
Λ11 –Λ21

–Λ21 F̄

][
ηk

f (ηk)

]

≤ 0,

[
ηk

g(ηk)

]T [
Σ12 –Σ22

–Σ22 H̄

][
ηk

g(ηk)

]

≤ 0,

(17)

where Λ11, Λ21, Σ12, Σ22, F̄ and H̄ are mentioned below (13). Then, together with (16)–
(17), this yields

E{Vk} ≤ E

{[
η̄T

k vT
k

]
Φ̃

[
η̄k

vk

]

– z̃T
k z̃k + γ 2vT

k Wϕvk –
[
ηT

k Λ11ηk – 2ηT
k Λ21f (ηk)

+ f T (ηk)F̄f (ηk)
]

–
[
ηT

k Σ12ηk – 2ηT
k Σ22g(ηk) + gT (ηk)H̄g(ηk)

]}

= E

{
[
η̄T

k vT
k

]
Φ

[
η̄k

vk

]

– z̃T
k z̃k + γ 2vT

k Wϕvk

}

. (18)

Summarizing (18) from 0 to N – 1 with respect to k, it is not difficult to see that

N–1∑

k=0

E{Vk} = E
{
ηT

N QNηN – ηT
0 Q0η0

}

≤ E

{N–1∑

k=0

[
η̄T

k vT
k

]
Φ

[
η̄k

vk

]}

– E

{N–1∑

k=0

(
z̃T

k z̃k – γ 2vT
k Wϕvk

)
}

, (19)

where Φ is defined in (13). Therefore, we can derive the following inequality:

J1 ≤ E

{N–1∑

k=0

[
η̄T

k vT
k

]
Φ

[
η̄k

vk

]

+ ηT
0
(
Q0 – γ 2Wφ

)
η0

}

– E
{
ηT

N QNηN
}

. (20)

According to Φ < 0, QN > 0 and the initial condition Q0 ≤ γ 2Wφ , it follows that J1 < 0. The
proof in Theorem 1 is now complete. �
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So far, we have presented the criterion to guarantee the H∞ performance within the
finite horizon. Next, we are ready to propose the sufficient condition to ensure the upper
bound constraint with respect to the covariance matrix Xk .

3.2 Variance constraint analysis
In this subsection, the upper bound constraint of the covariance matrix Xk is ensured by
providing a sufficient criterion.

Theorem 2 Consider the time-varying RNNs (1) subject to randomly varying nonlineari-
ties and missing measurements. Let the scalars ᾱ ∈ [0, 1], λ̄ ∈ [0, 1] and the estimator gain
matrix Kk in (5) be given. Under the initial condition G0 = X0, if there exists a set of positive-
definite matrices {Gk}1≤k≤N+1 satisfying

Gk+1 ≥ Ψ (Gk), (21)

where

Ψ (Gk) = (1 + ε1 + ε2)AkGkAT
k + λ̄(1 – λ̄)D1kGkDT

1k + λ̄(1 – λ̄)D2kGkDT
2k

+ A2kGkAT
2k +

(
1 + ε–1

1 + ε3
)

tr(Gk)B1kY1BT
1k + ᾱ(1 – ᾱ)

(
1 + ε–1

4
)

× tr(Gk)B̌kY2B̌T
k + ᾱ(1 – ᾱ)(1 + ε4) tr(Gk)BkY1BT

k +
(
1 + ε–1

2

+ ε–1
3

)
tr(Gk)B2kY2BT

2k + C1kVCT
1k + C2kVCT

2k ,

V = diag{V1, V2},

Y1 =
ρ + 1

ρ

2(1 – ρ)
(Λ2 + Λ0)2 +

1
ρ(1 – ρ)

(Λ2 – Λ0)2,

Y2 =
ρ + 1

ρ

2(1 – ρ)
(Σ2 + Σ0)2 +

1
ρ(1 – ρ)

(Σ2 – Σ0)2,

(22)

then we have Gk ≥ Xk (∀k ∈ 1, 2, . . . , N + 1).

Proof As we know from (8), the equation of state covariance Xk can be calculated by

Xk+1 = E
{
ηk+1η

T
k+1

}

= E
{
Akηkη

T
k AT

k + λ̄(1 – λ̄)D1kηkη
T
k DT

1k + λ̄(1 – λ̄)D2kηkη
T
k DT

2k + A2kηk

× ηT
k AT

2k + ᾱ(1 – ᾱ)Bkf (ηk)f T (ηk)BT
k + B1kf (ηk)ηT

k AT
k + Akηkf T (ηk)

×BT
1k + B2kg(ηk)gT (ηk)BT

2k + ᾱ(1 – ᾱ)B̌kg(ηk)gT (ηk)B̌T
k + B2kg(ηk)ηT

k

×AT
k + AkηkgT (ηk)BT

2k + B2kg(ηk)f T (ηk)BT
1k + B1kf (ηk)gT (ηk)BT

2k

+ B1kf (ηk)f T (ηk)BT
1k – ᾱ(1 – ᾱ)Bkf (ηk)gT (ηk)B̌T

k – ᾱ(1 – ᾱ)B̌kg(ηk)

× f T (ηk)BT
k + C1kVCT

1k + C2kVCT
2k

}
.

On the basis of the inequality abT + baT ≤ ζaaT + ζ –1bbT with ζ > 0, we can obtain

E
{
Akηkf T (ηk)BT

1k + B1kf (ηk)ηT
k AT

k
}

≤ E
{
ε1Akηkη

T
k AT

k + ε–1
1 B1kf (ηk)f T (ηk)BT

1k
}

,
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E
{
AkηkgT (ηk)BT

2k + B2kg(ηk)ηT
k AT

k
}

≤ E
{
ε2Akηkη

T
k AT

k + ε–1
2 B2kg(ηk)gT (ηk)BT

2k
}

,

E
{
B1kf (ηk)gT (ηk)BT

2k + B2kg(ηk)f T (ηk)BT
1k

}

≤ E
{
ε3B1kf (ηk)f T (ηk)BT

1k + ε–1
3 B2kg(ηk)gT (ηk)BT

2k
}

,

E
{

–ᾱ(1 – ᾱ)Bkf (ηk)gT (ηk)B̌T
k – ᾱ(1 – ᾱ)B̌kg(ηk)f T (ηk)BT

k
}

≤ E
{
ε4ᾱ(1 – ᾱ)Bkf (ηk)f T (ηk)BT

k + ε–1
4 ᾱ(1 – ᾱ)B̌kg(ηk)gT (ηk)B̌T

k
}

,

where εi (i = 1, 2, 3, 4) are positive scalars. Then it is straightforward to see that

Xk+1 ≤ E
{

(1 + ε1 + ε2)Akηkη
T
k AT

k + λ̄(1 – λ̄)D1kηkη
T
k DT

1k + λ̄(1 – λ̄)D2kηk

× ηT
k DT

2k + A2kηkη
T
k AT

2k +
(
1 + ε–1

1 + ε3
)
B1kf (ηk)f T (ηk)BT

1k

+ ᾱ(1 – ᾱ)
(
1 + ε–1

4
)
B̌kg(ηk)gT (ηk)B̌T

k + ᾱ(1 – ᾱ)(1 + ε4)Bkf (ηk)f T (ηk)BT
k

+
(
1 + ε–1

2 + ε–1
3

)
B2kg(ηk)gT (ηk)BT

2k + C1kVCT
1k + C2kVCT

2k
}

.

Furthermore, it follows from Lemma 3 that

E
{

f (ηk)f T (ηk)
} ≤ E

{
Y1‖ηk‖2} = E

{
Y1η

T
k ηk

}
,

E
{

g(ηk)gT (ηk)
} ≤ E

{
Y2‖ηk‖2} = E

{
Y2η

T
k ηk

}
,

where Y1 and Y2 are defined in (22). Thus, one has

Xk+1 ≤ E
{

(1 + ε1 + ε2)Akηkη
T
k AT

k + λ̄(1 – λ̄)D1kηkη
T
k DT

1k

+ λ̄(1 – λ̄)D2kηkη
T
k DT

2k + A2kηkη
T
k AT

2k +
(
1 + ε–1

1 + ε3
)
B1kY1η

T
k ηkBT

1k

+ ᾱ(1 – ᾱ)
(
1 + ε–1

4
)
B̌kY2η

T
k ηkB̌T

k + ᾱ(1 – ᾱ)(1 + ε4)BkY1η
T
k ηk

× BT
k +

(
1 + ε–1

2 + ε–1
3

)
B2kY2η

T
k ηkBT

2k + C1kVCT
1k + C2kVCT

2k
}

. (23)

According to the feature of the trace, we can obtain

E
{
ηT

k ηk
}

= E
{
tr
(
ηkη

T
k
)}

= tr(Xk). (24)

Combining (23) with (24) results in

Xk+1 ≤ (1 + ε1 + ε2)AkXkAT
k + λ̄(1 – λ̄)D1kXkDT

1k + λ̄(1 – λ̄)D2kXkDT
2k

+ A2kXkAT
2k +

(
1 + ε–1

1 + ε3
)

tr(Xk)B1kY1BT
1k + ᾱ(1 – ᾱ)

(
1 + ε–1

4
)

× tr(Xk)B̌kY2B̌T
k + ᾱ(1 – ᾱ)(1 + ε4) tr(Xk)BkY1BT

k +
(
1 + ε–1

2

+ ε–1
3

)
tr(Xk)B2kY2BT

2k + C1kVCT
1k + C2kVCT

2k

= Ψ (Xk).

Noting that G0 ≥ X0 and letting Gk ≥ Xk , we can derive the following inequality:

Ψ (Gk) ≥ Ψ (Xk) ≥ Xk+1. (25)
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Then, from (21) and (25), we arrive at

Gk+1 ≥ Ψ (Gk) ≥ Ψ (Xk) ≥ Xk+1. (26)

Therefore, the proof is complete. �

Based on the above theorems, a sufficient condition can be presented to guarantee the
specified H∞ performance and estimation error variance constraint by solving the recur-
sive matrix inequalities.

Theorem 3 Consider the time-varying RNNs (1) and suppose that the estimator gain ma-
trix Kk is given. For given scalars γ > 0, ᾱ ∈ [0, 1] and λ̄ ∈ [0, 1], positive-definite matrices
Wϕ > 0 and Wφ > 0, under the initial conditions Q0 ≤ γ 2Wφ and G0 = X0, if there are two
series of positive-definite real-valued matrices {Qk}1≤k≤N+1 and {Gk}1≤k≤N+1 satisfying the
following matrix inequalities:

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

Ξ11 Ξ12 Ξ13 Ξ14 0
∗ Ξ22 0 0 0
∗ ∗ Ξ33 0 Ξ35

∗ ∗ ∗ Ξ44 0
∗ ∗ ∗ ∗ Ξ55

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

< 0, (27)

⎡

⎢⎢
⎢
⎣

Υ11 Υ12 Υ13 Υ14

∗ –Gk 0 0
∗ ∗ Υ33 0
∗ ∗ ∗ Υ44

⎤

⎥⎥
⎥
⎦

< 0, (28)

where

Ξ11 = –Λ11 – Σ12 – Qk ,

Ξ12 =
[
Λ21 + AT

k Qk+1B1k Σ22 + AT
k Qk+1B2k

]
,

Ξ13 =
[

0 AT
k Qk+1 �2DT

1kQk+1

]
,

Ξ14 =
[
�2DT

2kQk+1 AT
2kQk+1 MT

k

]
,

Ξ22 =

[
–F̄ + BT

1kQk+1B1k + ᾱ(1 – ᾱ)BT
k Qk+1Bk Ω1

∗ Ω2

]

,

Ξ33 = diag
{

–γ 2Wϕ , –Qk+1, –Qk+1
}

,

Ξ35 =

⎡

⎢
⎣

CT
1kQk+1 CT

2kQk+1

0 0
0 0

⎤

⎥
⎦ ,

Ξ44 = diag{–Qk+1, –Qk+1, –I}, Ξ55 = diag{–Qk+1, –Qk+1},
Υ11 = –Gk+1 + �5tr(Gk)B1kY1BT

1k + �1tr(Gk)BkY1BT
k

+ �3tr(Gk)B2kY2BT
2k + �6tr(Gk)B̌kY2B̌T

k ,



Gao et al. Advances in Difference Equations        (2019) 2019:380 Page 14 of 23

Υ12 = �4AkGk ,

Υ13 =
[
�2D1kGk �2D2kGk

]
,

Υ14 =
[
A2kGk C1kV C2kV

]
,

Υ33 = diag{–Gk , –Gk},
Υ44 = diag{–Gk , –V , –V },
Ω1 = BT

1kQk+1B2k – ᾱ(1 – ᾱ)BT
k Qk+1B̌k ,

Ω2 = –H̄ + BT
2kQk+1B2k + ᾱ(1 – ᾱ)B̌T

k Qk+1B̌k ,

�1 =
√

ᾱ(1 – ᾱ)(1 + ε4), �2 =
√

λ̄(1 – λ̄),

�3 =
√

1 + ε–1
2 + ε–1

3 , �4 =
√

1 + ε1 + ε2,

�5 =
√

1 + ε–1
1 + ε3, �6 =

√
ᾱ(1 – ᾱ)

(
1 + ε–1

4
)
,

then both the H∞ performance requirement and the upper constraints of estimation error
covariance can be satisfied simultaneously.

Proof Under the initial conditions, according to the above analysis of H∞ performance
and estimation error covariance in Theorems 1–2, the inequality (27) implies (13) and
(28) yields (22). As such, both the H∞ performance requirement and variance constraint
are guaranteed, which ends the proof. �

Remark 4 So far, some sufficient conditions are given to ensure the desirable performance
requirements. To be specific, a sufficient condition is firstly established in Theorem 1 to
ensure that the output estimation error satisfies the specified H∞ performance index over
the finite horizon provided that the estimator gain is given. Secondly, the upper bound
constraint of the estimation error covariance matrix is guaranteed in Theorem 2. Subse-
quently, based on the above two theorems, a sufficient condition is presented in Theo-
rem 3 to ensure the specified H∞ performance and estimation error variance constraint
by solving some recursive matrix inequalities. Finally, the design problem of a discrete
time-varying state estimator is discussed in the next section, where the estimator gains
can be obtained at each sampling step by solving several recursive matrix inequalities.

4 Design of the estimator gain matrix
In this section, a sufficient criterion is proposed to deal with the design problem of discrete
time-varying state estimator, which can be solved by several recursive matrix inequalities.

Theorem 4 Given the disturbance attenuation level γ > 0, the scalars ᾱ ∈ [0, 1] and λ̄ ∈
[0, 1], the positive-definite matrices Wϕ > 0 and Wφ =

[ Wφ1 Wφ2
W T

φ2 Wφ4

]
> 0 and a set of pre-defined

variance upper bound matrices {Ψk}0≤k≤N+1, under the initial conditions

⎧
⎨

⎩

[ L0–γ 2Wφ1 Wφ2
W T

φ2 Z0–γ 2Wφ4

] ≤ 0,

E
{

e0eT
0
}

= G2,0 ≤ Ψ0,
(29)
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if there exist series of positive-definite matrices {Lk}1≤k≤N+1, {Zk}1≤k≤N+1, {G1k}1≤k≤N+1

and {G2k}1≤k≤N+1, positive scalars {ε1,k}0≤k≤N+1 and {ε2,k}0≤k≤N+1, matrices {Kk}0≤k≤N+1

and {G3k}1≤k≤N+1 with appropriate dimensions satisfying the following recursive matrix
inequalities:

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎢
⎣

Θ11 Θ12 Θ13 Θ14 0 0
∗ Θ22 0 0 0 WT

k
∗ ∗ Θ33 0 Θ35 YT

k
∗ ∗ ∗ Θ44 0 0
∗ ∗ ∗ ∗ Θ55 0
∗ ∗ ∗ ∗ ∗ –ε1,kI

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎥
⎦

< 0, (30)

⎡

⎢
⎢⎢
⎢⎢⎢
⎣

Π11 Π12 Π13 Π14 0
∗ Π22 0 0 X T

k
∗ ∗ Π33 0 0
∗ ∗ ∗ Π44 0
∗ ∗ ∗ ∗ –ε2,kI

⎤

⎥
⎥⎥
⎥⎥⎥
⎦

< 0, (31)

G2,k+1 – Ψk+1 ≤ 0, (32)

where

Θ11 =

[
–Γ1Λ1 – Γ3Σ1 + ε1,kNkNT

k – Lk 0
0 –Γ2Λ1 – Γ4Σ1 – Zk

]

,

Θ12 =

[
ᾱAT

k Lk+1B1k + Γ1Λ2 0 (1 – ᾱ)AT
k Lk+1B2k + Γ3Σ2 0

0 Ω5 0 Ω6

]

,

Θ13 =

[
0 AT

k Lk+1 0 0 –�2DT
k KT

k Zk+1

0 0 Ω7 0 0

]

,

Θ14 =

[
0 –�2DT

k K̄T
k Zk+1 0 0 0

0 0 0 –λ̄DT
k K̄T

k Zk+1 MT
k

]

,

Θ22 =

⎡

⎢
⎢⎢
⎣

Ω8 0 –ᾱ(1 – ᾱ)BT
1kZk+1B2k 0

∗ –Γ2 + ᾱ2BT
1kZk+1B1k 0 Ω3

∗ ∗ Ω9 0
∗ ∗ ∗ Ω4

⎤

⎥
⎥⎥
⎦

,

Θ33 = diag
{

–γ 2Wϕ , –Lk+1, –Zk+1, –Lk+1, –Zk+1
}

,

Θ35 =

⎡

⎢⎢⎢
⎢⎢
⎢
⎣

CT
k Lk+1 CT

k Zk+1 0 0
0 –KT

k Zk+1 0 –K̄T
k Zk+1

0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎥
⎥⎥
⎥
⎦

,

Θ44 = diag{–Lk+1, –Zk+1, –Lk+1, –Zk+1, –I},
Θ55 = diag{–Lk+1, –Zk+1, –Lk+1, –Zk+1},
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Π11 =

[
Ω10 Ω11

∗ Ω12

]

,

Π12 =

[
�4AkG1k �4AkGT

3k
�4(Ak – λ̄KkDk)G3k �4(Ak – λ̄KkDk)G2k

]

,

Π13 =

[
0 0 0 0

–�2KkDkG1k –�2KkDkGT
3k –�2K̄kDkG1k –�2K̄kDkGT

3k

]

,

Π14 =

[
0 0 CkV1 0 0 0

–λ̄K̄kDkG3k –λ̄K̄kDkG2k CkV1 –KkV2 0 –K̄kV2

]

,

Π22 =

[
–G1k –GT

3k
∗ –G2k

]

,

Π33 = diag{Π22,Π22},

Π44 = diag{Π22, –V1, –V2, –V1, –V2},

Ω3 = ᾱ(1 – ᾱ)BT
1kZk+1B2k ,

Ω4 = –Γ4 + (1 – ᾱ)2BT
2kZk+1B2k ,

Ω5 = ᾱ
(
AT

k – λ̄DT
k KT

k
)
Zk+1B1k + Γ2Λ2,

Ω6 = (1 – ᾱ)
(
AT

k – λ̄DT
k KT

k
)
Zk+1B2k + Γ4Σ2,

Ω7 = AT
k Zk+1 – λ̄DT

k KT
k Zk+1,

Ω8 = –Γ1 + ᾱBT
1kLk+1B1k + ᾱ(1 – ᾱ)BT

1kZk+1B1k ,

Ω9 = –Γ3 + (1 – ᾱ)BT
2kLk+1B2k + ᾱ(1 – ᾱ)BT

2kZk+1B2k ,

Ω10 = –G1,k+1 + ᾱ2�5tr(Gk)B1kY1BT
1k + �1tr(Gk)B1kY1BT

1k + (1 – ᾱ)2�3

× tr(Gk)B2kY2BT
2k + �6tr(Gk)B2kY2BT

2k + ε2,kHT
k Hk ,

Ω11 = –GT
3,k+1 + �1tr(Gk)B1kY1BT

1k + �6tr(Gk)B2kY2BT
2k + ε2,kHT

k Hk ,

Ω12 = –G2,k+1 + ᾱ2�5tr(Gk)B1kY1BT
1k + �1tr(Gk)B1kY1BT

1k + (1 – ᾱ)2�3

× tr(Gk)B2kY2BT
2k + �6tr(Gk)B2kY2BT

2k + ε2,kHT
k Hk ,

Wk =
[
ᾱHT

k Lk+1B1k ᾱHT
k Zk+1B1k (1 – ᾱ)HT

k Lk+1B2k (1 – ᾱ)HT
k Zk+1B2k

]
,

Yk =
[
0 HT

k Lk+1 HT
k Zk+1 0 0

]
,

N T
k =

[
Nk 0

]
,

Xk =
[
�4NkG1k �4NkGT

3k

]
,

FT
k =

[
HT

k HT
k

]
,

then we can conclude that the estimator design problem is solvable.
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Proof Firstly, the matrices Qk and Gk are decomposed as follows:

Qk =

[
Lk 0
∗ Zk

]

, Gk =

[
G1k GT

3k
∗ G2k

]

.

Secondly, in order to deal with parameter uncertainty, we rewrite (27) as follows:

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

Ξ11 Ξ 0
12 Ξ 0

13 Ξ14 0
∗ Ξ22 0 0 0
∗ ∗ Ξ33 0 Ξ35

∗ ∗ ∗ Ξ44 0
∗ ∗ ∗ ∗ Ξ55

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

+ N̄kFkH̄k + H̄T
k FT

k N̄T
k < 0,

where

Ξ 0
12 =

[
ᾱAT

k Lk+1B1k + Γ1Λ2 0 (1 – ᾱ)AT
k Lk+1B2k + Γ3Σ2 0

0 Ω5 0 Ω6

]

,

Ξ 0
13 =

[
0 AT

k Lk+1 0 0 –�2DT
k KT

k Zk+1

0 0 Ω7 0 0

]

,

N̄T
k =

[
N T

k 0 0 0 0
]

,

H̄k =
[
0 Wk Yk 0 0

]
.

Subsequently, it follows from Lemma 2 that

⎡

⎢⎢⎢
⎢⎢
⎢
⎣

Ξ11 Ξ 0
12 Ξ 0

13 Ξ14 0
∗ Ξ22 0 0 0
∗ ∗ Ξ33 0 Ξ35

∗ ∗ ∗ Ξ44 0
∗ ∗ ∗ ∗ Ξ55

⎤

⎥⎥⎥
⎥⎥
⎥
⎦

+ ε1,kN̄kN̄T
k + ε–1

1,kH̄T
k H̄k < 0.

Similarly, (28) can be rewritten as

⎡

⎢
⎢⎢
⎣

–Gk+1 Υ 0
12 Υ13 Υ14

∗ –Gk 0 0
∗ ∗ Υ33 0
∗ ∗ ∗ Υ44

⎤

⎥
⎥⎥
⎦

+ ÑkFkH̃k + H̃T
k FT

k ÑT
k < 0,

where

Υ 0
12 =

[
�4AkG1k �4AkGT

3k
�4(Ak – λ̄KkDk)G3k �4(Ak – λ̄KkDk)G2k

]

,

ÑT
k =

[
FT

k 0 0 0
]

,

H̃k =
[
0 Xk 0 0

]
.
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Then it follows from Lemma 2 that

⎡

⎢⎢⎢
⎣

–Gk+1 Υ 0
12 Υ13 Υ14

∗ –Gk 0 0
∗ ∗ Υ33 0
∗ ∗ ∗ Υ44

⎤

⎥⎥⎥
⎦

+ ε2,kÑkÑT
k + ε–1

2,kH̃T
k H̃k < 0.

Now, it should be noted that (30) implies (27). Similarly, we can see that (31) leads to (28).
As such, both the estimation error covariance constraint and H∞ performance require-
ment of system (7) are ensured. The proof of Theorem 4 is complete. �

Remark 5 Up to now, we have discussed the variance-constrained resilient H∞ state es-
timation problem for a class of time-varying RNNs with randomly varying nonlinearities
and missing measurements. By applying the recursive matrix inequality technique, some
criteria have been established to guarantee the prescribed H∞ performance and the esti-
mation error covariance constraints for the addressed estimation problem of time-varying
neural networks within the finite-horizon framework. It should be noticed that the pro-
posed estimation approach has the following three advantages: (i) the disturbance effects
can be effectively attenuated by the H∞ performance index over finite horizon; (ii) the
prescribed upper bound of the estimation error covariance can be guaranteed by veri-
fying certain matrix inequalities; and (iii) the newly designed state estimation approach
can be applied to the online calculations and implementations for solving the estimation
problems of time-varying RNNs, which constitutes another appealing feature.

Remark 6 In fact, almost all existing estimation schemes can be applied to time-invariant
NNs only, but we have made one of the first attempts to discuss the characteristics of the
time-varying RNNs and address two combined performance indices to meet the practi-
cal requirements, which are the essential superiority of the proposed result. For example,
compared with the non-fragile/resilient state estimation method in [10], our estimation
scheme has the advantage to reveal the whole impacts from missing measurements and
randomly varying nonlinearities onto the estimation algorithm performance, which can
present a new treatment way. In contrast to the results in [11, 12], the superiority deal-
ing with the time-varying characteristics can be observed from our new state estimation
scheme.

5 An illustrative example
In this section, we give a simulation to illustrate the feasibility of proposed estimation
approach under variance constraint. The parameters of time-varying RNNs (1) are given
as follows:

Ak =

[
–0.5 0

0 –0.1 sin(2k)

]

, B1k =

[
– sin(2k) 0.5

–0.2 0.5

]

, Γ1 =

[
0.9 0
0 0.9

]

,

B2k =

[
–0.27 sin(k) 0.2

–0.1 –0.14

]

, Ck =
[
–0.1 –0.3 sin(2k)

]T
, Γ2 =

[
1 0
0 1

]

,

Dk =
[
–0.55 sin(k) 1.5

]
, K̄k =

[
–0.27 sin(2k) 0.15

]T
, Γ3 =

[
1.1 0
0 1.1

]

,
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Table 1 The values of estimator gain Kk

k Kk

1 K1 = [–0.1701 0.1102]T

2 K2 = [–0.1481 0.2838]T

3 K3 = [–0.2438 0.1024]T

...
...

Γ4 =

[
1.3 0
0 1.3

]

, Hk =
[

0.1 0.15
]T

, Nk =
[
0.2 0.1

]
, Fk = sin(0.6k),

Mk =
[

–0.01 –0.12 sin(k)
]

, λ̄ = 0.34, ᾱ = 0.1, ρ = 0.5,

ε1 = 0.5, ε2 = 0.3, ε3 = 0.2, ε4 = 0.1.

Moreover, the activation functions can be taken as

f (xk) = g(xk) =

[
tanh(x1,k)

tanh(0.8x2,k)

]

with xk = [x1,k x2,k]T being the neuron state vector of neural network. It is easy to ob-
tain Λ0 = diag{0.1, 0.1}, Λ1 = diag{0.2, 0.2}, Λ2 = diag{0.9, 0.9}, Σ0 = diag{0.2, 0.2}, Σ1 =
diag{0.3, 0.3} and Σ2 = diag{0.5, 0.5}. Let the disturbance attenuation level be γ = 0.9 and
N = 94, weighted matrices as Wϕ(1) = Wϕ(2) = 1, upper bound matrices as {Ψk}1≤k≤N =
diag{0.3, 0.3}, and covariances as V1 = V2 = 1. Choose the parameters’ initial matrices sat-
isfying (29). Then the matrix inequalities (30)–(32) in Theorem 4 can be solved, and Kk is
designed as in Table 1.

Suppose the initial states as x0 = [–1.5 0.3]T and x̂0 = [–1.2 0.3]T . Based on the state
estimation method in Theorem 4, the simulation results can be shown in Figs. 1–4. Fig-
ures 1–2 plot the output zk and its estimation ẑk , respectively. Figure 3 depicts the output
estimation error z̃k . The error variance upper bound and actual error variance are plotted
in Fig. 4, which indeed illustrates that the actual error variance below the error variance
upper bound. From the simulations, we can conclude that the newly presented variance-
constrained resilient H∞ estimation algorithm is efficient.

6 Conclusions
In this paper, we have discussed the variance-constrained resilient H∞ state estimation
problem for a class of time-varying neural networks with randomly varying nonlinearities
and missing measurements. Two random variables that obey Bernoulli distribution have
been adopted to describe the phenomena of randomly varying nonlinearities and miss-
ing measurements. A new variance-constrained H∞ state estimation method has been
designed based on the available information. By applying the recursive matrix inequal-
ity technique, some criteria have been established to guarantee the prescribed H∞ per-
formance and the estimation error covariance constraints for the addressed estimation
problem of the time-varying neural networks. In addition, the gain matrix of state esti-
mator has been obtained by testing the feasibility of the concerned recursive matrix in-
equalities. Finally, the validity of the proposed estimation method has been verified by a
simulation example. Our future research topics include the state estimation problems for
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Figure 1 The controlled output z1,k and its estimation

Figure 2 The controlled output z2,k and its estimation

time-varying RNNs with the finite-time criterion as in [36] and the inaccuracy occurrence
probability as mentioned in [49].
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Figure 3 The output estimation errors

Figure 4 The upper bound of error variance and actual error variance
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