
He Advances in Difference Equations        (2019) 2019:357 
https://doi.org/10.1186/s13662-019-2301-3

R E S E A R C H Open Access

Some results for sums of products of
Chebyshev and Legendre polynomials
Yuan He1*

*Correspondence:
hyyhe@aliyun.com
1School of Mathematics and
Information Science, Neijiang
Normal University, Neijiang, People’s
Republic of China

Abstract
In this paper, we perform a further investigation of the Gegenbauer polynomials, the
Chebyshev polynomials of the first and second kinds and the Legendre polynomials.
By making use of some analytic and combinatorial methods, we establish some new
expressions for sums of products of arbitrary numbers of Chebyshev polynomials of
the first and second kinds and Legendre polynomials.
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1 Introduction
Gegenbauer [5] in 1874 introduced and studied the Gegenbauer polynomials, which are
usually defined for a real number λ > –1/2 with λ �= 0 by the generating function

1
(1 – 2xt + t2)λ

=
∞∑

n=0

Cλ
n (x)tn. (1.1)

It is easily seen from (1.1) that the Gegenbauer polynomials satisfy the recurrence rela-
tionship

nCλ
n (x) = 2x(λ + n – 1)Cλ

n–1(x) – (2λ + n – 2)Cλ
n–2(x) (n ≥ 2) (1.2)

with initial values Cλ
0 (x) = 1 and Cλ

1 (x) = 2λx. In particular, one can derive from Eq. (1.2)
the first few expressions for the Gegenbauer polynomials (see, e.g., [6, pp. 990–991]). More
precisely, these polynomials can be expressed as (see, e.g., [6, p. 991])

Cλ
n (x) =

Γ (n + 2λ)
Γ (n + 1)Γ (2λ) 2F1

(
–n, n + 2λ,λ +

1
2

;
1 – x

2

)
, (1.3)

where Γ (·) is the Gamma function and 2F1(a, b, c; x) is the Gauss hypergeometric function
given for complex numbers a, b, c with c �= 0, –1, –2, . . . by the infinite series (see, e.g., [1])

2F1(a, b, c; z) =
∞∑

n=0

a(n)b(n)

c(n)
zn

n!
.

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-019-2301-3
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-019-2301-3&domain=pdf
http://orcid.org/0000-0003-3392-2338
mailto:hyyhe@aliyun.com


He Advances in Difference Equations        (2019) 2019:357 Page 2 of 13

Here α(n) appearing in the above series is the rising factorial given for complex number α

and non-negative integer n by α(0) = 1 and α(n) = α(α + 1) · · · (α + n – 1) for positive integer
n. It is worth noticing that Eq. (1.3) defines the generalized functions Cλ

n (x), where the
subscript n is an arbitrary number.

It is also well known that the Gegenbauer polynomials and the Jacobi polynomials, can
be connected to the Legendre polynomials and the Chebyshev polynomials. For example,
the case λ = 1/2 and λ = 1 in (1.1) gives the Legendre polynomials Pn(x) and the Chebyshev
polynomials of the second kind Un(x), respectively. The Chebyshev polynomials of the first
kind Tn(x) can be expressed by the Gegenbauer polynomials, as follows (see, e.g., [1, 3]):

εnTn(x) = lim
λ→0

n + λ

λ
Cλ

n (x) (n ≥ 0), (1.4)

where εn := 2 – δn,0 is the Neumann factor and the Chebyshev polynomials of the first kind
are defined by the generating function

1 – xt
1 – 2xt + t2 =

∞∑

n=0

Tn(x)tn. (1.5)

In recent years, some authors have taken a lively interest in dealing with the expressions
for sums of products of arbitrary number of the Chebyshev polynomials and the Legendre
polynomials. For example, Zhang [21] used the generating function methods to study the
calculating problems of sums of products of arbitrary numbers of Chebyshev polynomi-
als of the first and second kinds and found that, for positive integer m and non-negative
integer n,

∑

k1+···+km=n+m
k1,...,km≥0

Tk1 (x) · · ·Tkm (x)

=
1

2m–1(m – 1)!

m∑

k=0

(
m
k

)
(–x)kU (m–1)

n+2m–1–k(x) (1.6)

and

∑

k1+···+km=n
k1,...,km≥0

Uk1 (x) · · ·Ukm (x) =
1

2m–1(m – 1)!
U (m–1)

n+m–1(x), (1.7)

where U (k)
n (x) denotes the kth derivative of Un(x) with respect to x. Kim et al. [11, 14] de-

veloped new methods to derive the Fourier expansions for sums of products of arbitrary
number of the Chebyshev polynomials of the first and second kinds, by virtue of which
they expressed the left sides of (1.6) and (1.7) as linear combinations of the Bernoulli poly-
nomials. More recently, Kim et al. [12] explored the expressions for sums of products of
arbitrary number of the Legendre polynomials, and one showed that, for positive integers
m, n,

∑

k1+···+k2m+1=n
k1,...,k2m+1≥0

Pk1 (x) · · ·Pk2m+1 (x)



He Advances in Difference Equations        (2019) 2019:357 Page 3 of 13

=
1

(2m – 1)!!

n∑

k=0

(2m + 2k – 3)!!
k!

�n+1–k,m+k–1 Bk(x), (1.8)

where (2n – 1)!! is the double factorial given for non-negative integer n by (–1)!! = 1 and
(2n – 1)!! = (2n – 1)(2n – 3) · · ·3 · 1 for positive integer n, �n,m is determined for positive
integer n and non-negative integer m by

�n,m =
1

2n+m(2m – 1)!!

[ n–1
2 ]∑

j=0

(–1)j
(

n + m
j

)(
2n + 2m – 2j

n + m

)
(n + m – 2j)m

with (α)n the falling factorial given for complex number α and non-negative integer n by
(α)0 = 1 and (α)n = α(α – 1) · · · (α – n + 1) for positive integer n, and Bn(x) is for the nth
Bernoulli polynomials. Shen and Chen [18] evaluated the left side of (1.8) in terms of a
recurrence sequence and the Legendre polynomials. Kim et al. [8] further evaluated the
left side of (1.8) in terms of the Gauss hypergeometric function and the Legendre polyno-
mials. Similar results can also be found in [8], where the left side of (1.8) is expressed as
linear combinations of Hermite polynomials, generalized Laguerre polynomials, Gegen-
bauer polynomials and Jacobi polynomials, respectively.

Motivated and inspired by the work of the above authors, we perform a further investi-
gation for the Gegenbauer polynomials, the Chebyshev polynomials of the first and sec-
ond kinds and the Legendre polynomials in this paper. By making use of some analytic
and combinatorial methods, we establish some new expressions for sums of products of
arbitrary numbers of Chebyshev polynomials of the first and second kinds and Legendre
polynomials.

2 The statement of results
We firstly give the following closed formula for the Gegenbauer polynomials.

Theorem 2.1 Let n be a non-negative integer. Then, for a real number λ > –1/2 with λ �= 0,

Cλ
n (x) =

n∑

k=0

(–1)n–k
(

λ + k – 1
k

)(
k

n – k

)
(2x)2k–n, (2.1)

where
(
α

k
)

is the general binomial coefficients given for complex number α and non-negative
integer k by

(
α

0

)
= 1,

(
α

k

)
=

α(α – 1)(α – 2) · · · (α – k + 1)
k!

(k ≥ 1).

Proof Since for complex number α,

(1 + t)α =
∞∑

n=0

(
α

n

)
tn, (2.2)

by (1.1) and (2.2) we have

∞∑

n=0

Cλ
n (x)tn =

(
1 – 2xt + t2)–λ =

∞∑

j=0

(
–λ

j

)(
–2xt + t2)j. (2.3)
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Observe that

(
–λ

j

)
= (–1)j

(
λ + j – 1

j

)
(j ≥ 0), (2.4)

and the binomial theorem means that, for non-negative integer j,

(
2xt – t2)j = tj

j∑

i=0

(
j
i

)
(2x)j–i(–t)i. (2.5)

It follows from (2.3), (2.4) and (2.5) that

∞∑

n=0

Cλ
n (x)tn =

∞∑

j=0

(
λ + j – 1

j

)
tj

j∑

i=0

(
j
i

)
(2x)j–i(–t)i

=
∞∑

j=0

(
λ + j – 1

j

)
tj

2j∑

i=j

(
j

i – j

)
(2x)2j–i(–t)i–j

=
∞∑

j=0

(
λ + j – 1

j

) 2j∑

i=j

(
j

i – j

)
(2x)2j–i(–1)i–jti. (2.6)

By changing the order of the summations on the right side of (2.6), we discover

∞∑

n=0

Cλ
n (x)tn =

∞∑

i=0

i∑

j=0

(
λ + j – 1

j

)(
j

i – j

)
(2x)2j–i(–1)i–jti. (2.7)

Thus, comparing the coefficients of tn in (2.7) gives the desired result. �

We next provide an alternative proof of Theorem 2.1.

The second proof of Theorem 2.1 Obviously, we obtain from (1.1)

n!Cλ
n (x) =

∂n

∂tn

(
1

(1 – 2xt + t2)λ

)∣∣∣∣
t=0

(n ≥ 0). (2.8)

Let F(u) = 1
uλ and G(t) = 1 – 2xt + t2 with u = G(t). The famous Faà di Bruno formula

implies that, for positive integer n, (see, e.g., [4, pp. 137–139]

F (n)(G(t)
)

=
n∑

k=1

F (k)(u)Bn,k
(
G(1)(t), G(2)(t), . . . , G(n–k+1)(t)

)
, (2.9)

where f (n)(x) denotes the nth derivative for the function f (x) with respect to x, and
Bn,k(x1, x2, . . . , xn–k+1) is for the partial Bell polynomials given for positive integers n, k with
n ≥ k by (see, e.g., [4, pp. 134–135])

Bn,k(x1, x2, . . . , xn–k+1) =
∑ n!

j1!j2!j3! · · ·
(

x1

1!

)j1(x2

2!

)j2(x3

3!

)j3
· · · .
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Note that the above summation takes place over non-negative integers j1, j2, j3, . . . such that

j1 + 2j2 + 3j3 + · · · = n and j1 + j2 + j3 + · · · = k.

Observe that, for positive integer k,

F (k)(u) = (–λ)(–λ – 1) · · · (–λ – k + 1)u–λ–k

= (–1)kk!
(

λ + k – 1
k

)
1

(1 – 2xt + t2)λ+k . (2.10)

It follows from (2.9) and (2.10) that, for positive integer n,

∂n

∂tn

(
1

(1 – 2xt + t2)λ

)∣∣∣∣
t=0

=
n∑

k=1

(–1)kk!
(

λ + k – 1
k

)
Bn,k(–2x, 2, 0, . . . , 0). (2.11)

It is easily seen from the definition of the partial Bell polynomials that

Bn,k(–2x, 2, 0, . . . , 0) =
n!

(2k – n)!(n – k)!
(–2x)2k–n. (2.12)

Thus, by applying (2.12) to (2.11), in the light of (2.8) and Cλ
0 (x) = 1, we complete the proof

of Theorem 2.1. �

There follows an expression for the Gegenbauer polynomials in terms of the Stirling
numbers of the first kind.

Corollary 2.2 Let n be a non-negative integer. Then, for a real number λ > –1/2 with λ �= 0,

Cλ
n (x) = (–1)n

[ n
2 ]∑

k=0

(2x)n–2k

k!(n – 2k)!

n–k∑

j=0

s(n – k, j)(–λ)j, (2.13)

where s(n, k) the Stirling numbers of the first kind given for non-negative integers n, k with
0 ≤ k ≤ n by the generating function (see, e.g., [4])

(ln(1 + t))k

k!
=

∞∑

n=k

s(n, k)
tn

n!
.

Proof It is clear from Theorem 2.1 that

Cλ
n (x) =

n∑

k=0

(–1)k
(

λ + n – k – 1
n – k

)(
n – k

k

)
(2x)n–2k

=
[ n

2 ]∑

k=0

(–1)k (2x)n–2k

k!(n – 2k)!
(λ + n – k – 1) · · · (λ + 1)λ. (2.14)
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Notice that the Stirling numbers of the first kind can be characterized by the identity (see,
e.g., [4, p. 213])

x(x – 1) · · · (x – n + 1) =
n∑

j=0

s(n, j)xj (n ≥ 0), (2.15)

where the left side of the above identity is equal to 1 when n = 0. By taking x = –λ in (2.15),
we have

(–1)nλ(λ + 1) · · · (λ + n – 1) =
n∑

j=0

s(n, j)(–λ)j (n ≥ 0). (2.16)

Thus, by replacing n by n – k in (2.16), with the help of (2.14), we get the desired result
immediately. �

We are now in the position to evaluate the sums of products of arbitrary number of
Chebyshev polynomials of the first and second kinds and Legendre polynomials in terms
of the Stirling numbers of the first kind.

Corollary 2.3 Let m, n be non-negative integers with m ≥ 1. Then

∑

k1+···+km=n
k1,...,km≥0

Pk1 (x) · · ·Pkm (x)

= (–1)n
[ n

2 ]∑

k=0

(2x)n–2k

k!(n – 2k)!

n–k∑

j=0

s(n – k, j)(–m)j

2j (2.17)

and

∑

k1+···+km=n
k1,...,km≥0

Uk1 (x) · · ·Ukm (x)

= (–1)n
[ n

2 ]∑

k=0

(2x)n–2k

k!(n – 2k)!

n–k∑

j=0

s(n – k, j)(–m)j. (2.18)

Proof We know from the definitions of the Legendre polynomials and the Chebyshev
polynomials of the second kind that

( ∞∑

n=0

Pn(x)tn

)m

=
1

(1 – 2xt + t2) m
2

=
∞∑

n=0

C
m
2

n (x)tn

and

( ∞∑

n=0

Un(x)tn

)m

=
1

(1 – 2xt + t2)m =
∞∑

n=0

Cm
n (x)tn.
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If we apply the Cauchy product and compare the coefficients of tn in the above two iden-
tities, we obtain

∑

k1+···+km=n
k1,...,km≥0

Pk1 (x) · · ·Pkm (x) = C
m
2

n (x) (2.19)

and

∑

k1+···+km=n
k1,...,km≥0

Uk1 (x) · · ·Ukm (x) = Cm
n (x). (2.20)

Hence, by taking λ = m/2 and m in Corollary 2.2, in view of (2.19) and (2.20), we complete
the proof of Corollary 2.3. �

Corollary 2.4 Let m, n be positive integers with n ≥ m. Then

∑

k1+···+km=n
k1,...,km≥0

Tk1 (x) · · ·Tkm (x)

= (–1)n
m∑

k=0

(
m
k

)
xk

[ n–k
2 ]∑

j=0

(2x)n–k–2j

j!(n – k – 2j)!

×
n–k–j∑

l=0

s(n – k – j, l)(–m)l. (2.21)

Proof It is clear from (1.5) and the binomial theorem that

( ∞∑

n=0

Tn(x)tn

)m

=
(1 – xt)m

(1 – 2xt + t2)m

=
m∑

k=0

(
m
k

)
(–x)k

∞∑

n=0

Cm
n (x)tn+k . (2.22)

Comparing the coefficients of tn in the above identity gives

∑

k1+···+km=n
k1,...,km≥0

Tk1 (x) · · ·Tkm (x) =
m∑

k=0

(
m
k

)
(–x)kCm

n–k(x). (2.23)

Thus, by applying Corollary 2.2 to (2.23), we get the desired result. �

For some related results about sums of products of the Chebyshev polynomials, see [2, 7,
9, 10, 13, 15–17, 19, 20]. Based on the work of Shen and Chen [18], and Kim et al. [8], who
evaluated the left side of (1.8) in terms of the Legendre polynomials, we next give other
expressions for the sums of products of arbitrary numbers of Chebyshev polynomials of
the first and second kinds and Legendre polynomials. To do this, we present the following
results.
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Theorem 2.5 Let n be a positive integer. Then, for a real number m > –1 with m �= 0,

C
m
2

n (x) =
n∑

k=1

(
k(m + 1)

n
– 1

)
Pk(x)C

m
2

n–k(x), (2.24)

and, for a real number λ > –1/2 with λ �= 0,

Cλ
n (x) =

n∑

k=1

(
k(λ + 1)

n
– 1

)
Uk(x)Cλ

n–k(x). (2.25)

Proof Let f (t) be a function of t. Then, for positive integer n,

∂n

∂tn

(
1

(f (t))λ+1

)
=

∂n–1

∂tn–1

{
∂

∂t

(
1

(f (t))λ+1

)}

=
∂n–1

∂tn–1

{
λ + 1

(f (t))λ
∂

∂t

(
1

f (t)

)}
,

which together with the Leibniz rule yields

∂n

∂tn

(
1

(f (t))λ+1

)

= (λ + 1)
n–1∑

k=0

(
n – 1

k

)
∂k+1

∂tk+1

(
1

f (t)

)
∂n–1–k

∂tn–1–k

(
1

(f (t))λ

)

= (λ + 1)
n∑

k=1

(
n – 1
k – 1

)
∂k

∂tk

(
1

f (t)

)
∂n–k

∂tn–k

(
1

(f (t))λ

)
. (2.26)

On the other hand, for positive integer n,

∂n

∂tn

(
1

(f (t))λ+1

)
=

n∑

k=0

(
n
k

)
∂k

∂tk

(
1

f (t)

)
∂n–k

∂tn–k

(
1

(f (t))λ

)
. (2.27)

It follows from (2.26) and (2.27) that, for positive integer n,

(λ + 1)
n∑

k=1

(
n – 1
k – 1

)
∂k

∂tk

(
1

f (t)

)
∂n–k

∂tn–k

(
1

(f (t))λ

)

=
n∑

k=0

(
n
k

)
∂k

∂tk

(
1

f (t)

)
∂n–k

∂tn–k

(
1

(f (t))λ

)
,

which means

1
f (t)

∂n

∂tn

(
1

(f (t))λ

)

= (λ + 1)
n∑

k=1

(
n – 1
k – 1

)
∂k

∂tk

(
1

f (t)

)
∂n–k

∂tn–k

(
1

(f (t))λ

)

–
n∑

k=1

(
n
k

)
∂k

∂tk

(
1

f (t)

)
∂n–k

∂tn–k

(
1

(f (t))λ

)
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=
n∑

k=1

(
n
k

)(
k(λ + 1)

n
– 1

)
∂k

∂tk

(
1

f (t)

)
∂n–k

∂tn–k

(
1

(f (t))λ

)
. (2.28)

If we take λ = m and f (t) =
√

1 – 2xt + t2 in (2.28) then, for positive integer n,

∂n

∂tn

(
1

(1 – 2xt + t2) m
2

)∣∣∣∣
t=0

=
n∑

k=1

(
n
k

)(
k(m + 1)

n
– 1

)
∂k

∂tk

(
1√

1 – 2xt + t2

)∣∣∣∣
t=0

× ∂n–k

∂tn–k

(
1

(1 – 2xt + t2) m
2

)∣∣∣∣
t=0

, (2.29)

and if we take f (t) = 1 – 2xt + t2 in (2.28) then, for positive integer n,

∂n

∂tn

(
1

(1 – 2xt + t2)λ

)∣∣∣∣
t=0

=
n∑

k=1

(
n
k

)(
k(λ + 1)

n
– 1

)
∂k

∂tk

(
1

1 – 2xt + t2

)∣∣∣∣
t=0

× ∂n–k

∂tn–k

(
1

(1 – 2xt + t2)λ

)∣∣∣∣
t=0

. (2.30)

Thus, applying (2.8) to (2.29) and (2.30) gives (2.24) and (2.25), respectively. �

Corollary 2.6 Let m, n be positive integers. Then

∑

k1+···+km=n
k1,...,km≥0

Pk1 (x) · · ·Pkm (x)

=
n∑

k=1

(
(m + 1)(n + 1 – k)

n
– 1

)
Pn+1–k(x)

×
k–1∑

j=0

(–1)k–1–j
(m

2 + j – 1
j

)(
j

k – 1 – j

)
(2x)2j+1–k (2.31)

and

∑

k1+···+km=n
k1,...,km≥0

Uk1 (x) · · ·Ukm (x)

=
n∑

k=1

(
(m + 1)(n + 1 – k)

n
– 1

)
Un+1–k(x)

×
k–1∑

j=0

(–1)k–1–j
(

m + j – 1
j

)(
j

k – 1 – j

)
(2x)2j+1–k . (2.32)

Proof By applying Theorem 2.5 to the right sides of (2.19) and (2.20), we discover

∑

k1+···+km=n
k1,...,km≥0

Pk1 (x) · · ·Pkm (x) =
n∑

k=1

(
k(m + 1)

n
– 1

)
Pk(x)C

m
2

n–k(x)
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and

∑

k1+···+km=n
k1,...,km≥0

Uk1 (x) · · ·Ukm (x) =
n∑

k=1

(
k(m + 1)

n
– 1

)
Uk(x)Cm

n–k(x),

and it follows from Theorem 2.1 that

∑

k1+···+km=n
k1,...,km≥0

Pk1 (x) · · ·Pkm (x)

=
n∑

k=1

(
k(m + 1)

n
– 1

)
Pk(x)

×
n–k∑

j=0

(–1)n–k–j
(m

2 + j – 1
j

)(
j

n – k – j

)
(2x)2j–(n–k) (2.33)

and

∑

k1+···+km=n
k1,...,km≥0

Uk1 (x) · · ·Ukm (x)

=
n∑

k=1

(
k(m + 1)

n
– 1

)
Uk(x)

×
n–k∑

j=0

(–1)n–k–j
(

m + j – 1
j

)(
j

n – k – j

)
(2x)2j–(n–k). (2.34)

Thus, by replacing k by n + 1 – k in the right sides of (2.33) and (2.34), we get the desired
results. �

Corollary 2.7 Let m, n be positive integers with n ≥ m + 1. Then

∑

k1+···+km=n
k1,...,km≥0

Tk1 (x) · · ·Tkm (x)

=
n∑

k=1

(
(m + 1)(n + 1 – k)

n
– 1

)
Tn+1–k(x)

m∑

j=0

(
m
j

)
(–x)j

×
k–1–j∑

l=0

(–1)k–1–j–l
(

m + l – 1
l

)(
l

k – 1 – j – l

)
(2x)2l+j+1–k (2.35)

and

∑

k1+···+km=n
k1,...,km≥0

Tk1 (x) · · ·Tkm (x)

=
m∑

k=0

(
m
k

)
(–x)k

n–k∑

j=1

(
(m + 1)(n + 1 – k – j)

n – k
– 1

)
Un+1–k–j(x)
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×
j–1∑

l=0

(–1)j–1–l
(

m + l – 1
l

)(
l

j – 1 – l

)
(2x)2l+1–j. (2.36)

Proof By taking λ = m and

f (t) =
1 – 2xt + t2

1 – xt

in (2.28), we obtain

∂n

∂tn

(
(1 – xt)m

(1 – 2xt + t2)m

)∣∣∣∣
t=0

=
n∑

k=1

(
n
k

)(
k(m + 1)

n
– 1

)
∂k

∂tk

(
1 – xt

1 – 2xt + t2

)∣∣∣∣
t=0

× ∂n–k

∂tn–k

(
(1 – xt)m

(1 – 2xt + t2)m

)∣∣∣∣
t=0

. (2.37)

It is obvious from (2.22) and (2.23) that

∂n

∂tn

(
(1 – xt)m

(1 – 2xt + t2)m

)∣∣∣∣
t=0

= n!
∑

k1+···+km=n
k1,...,km≥0

Tk1 (x) · · ·Tkm (x)

= n!
m∑

k=0

(
m
k

)
(–x)kCm

n–k(x). (2.38)

It follows from (2.37), (2.38) and Theorem 2.1 that

∑

k1+···+km=n
k1,...,km≥0

Tk1 (x) · · ·Tkm (x)

=
n∑

k=1

(
k(m + 1)

n
– 1

)
Tk(x)

m∑

j=0

(
m
j

)
(–x)jCm

n–k–j(x)

=
n∑

k=1

(
(m + 1)(n + 1 – k)

n
– 1

)
Tn+1–k(x)

×
m∑

j=0

(
m
j

)
(–x)jCm

k–1–j(x)

=
n∑

k=1

(
(m + 1)(n + 1 – k)

n
– 1

)
Tn+1–k(x)

m∑

j=0

(
m
j

)
(–x)j

×
k–1–j∑

l=0

(–1)k–1–j–l
(

m + l – 1
l

)(
l

k – 1 – j – l

)
(2x)2l+j+1–k .

Similarly, from (2.25), (2.38) and Theorem 2.1, we have

∑

k1+···+km=n
k1,...,km≥0

Tk1 (x) · · ·Tkm (x)
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=
m∑

k=0

(
m
k

)
(–x)k

n–k∑

j=1

(
j(m + 1)

n – k
– 1

)
Uj(x)Cm

n–k–j(x)

=
m∑

k=0

(
m
k

)
(–x)k

n–k∑

j=1

(
(m + 1)(n + 1 – k – j)

n – k
– 1

)
Un+1–k–j(x)Cm

j–1(x)

=
m∑

k=0

(
m
k

)
(–x)k

n–k∑

j=1

(
(m + 1)(n + 1 – k – j)

n – k
– 1

)
Un+1–k–j(x)

×
j–1∑

l=0

(–1)j–1–l
(

m + l – 1
l

)(
l

j – 1 – l

)
(2x)2l+1–j.

This completes the proof of Corollary 2.7. �

3 Conclusions
In this paper, we establish some new expressions for sums of products of arbitrary num-
bers of Chebyshev polynomials of the first and second kinds and Legendre polynomials
by making use of some analytic and combinatorial methods. The methods presented here
may be applied to other families of special polynomials, for example, one could consider
the Fibonacci and Lucas polynomials and their generalizations instead. In addition, one
can derive some analogous expressions for sums of products of arbitrary number of the
Catalan numbers, the central Delannoy numbers and the Schröder numbers, having de-
veloped the methods showed in this paper.
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