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Abstract
In this paper, a class of sixth-order finite difference schemes for the Helmholtz
equation with inhomogeneous Robin boundary condition is derived. This scheme is
based on the sixth-order approximation for the Robin boundary condition by using
the Helmholtz equation and the Taylor expansion, by which the ghost points in the
scheme on the domain can be eliminated successfully. Some numerical examples are
shown to verify its correctness and robustness with respect to the wave number.
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1 Introduction
In this paper, we focus on the Helmholtz equation with inhomogeneous Robin boundary
condition on four boundaries

–�u – k2u = f , in Ω , (1)

iku +
∂u
∂n

= g, in ΓΩ , (2)

where u is the pressure field, k is the wave number, f is the body force, Ω := (0, 1) × (0, 1),
i =

√
–1, n is the unit out normal vector, g is a given function and ΓΩ = Γ b ∪Γ r ∪Γ t ∪Γ l

with Γ b := [0, 1] × {0}, Γ r := {1} × [0, 1], Γ t := [1, 0] × {1}, Γ l := {0} × [1, 0].
Equations (1)–(2) are a mathematical model describing the acoustic scattering that con-

trols the wave propagation and scattering phenomena occurring in many fields. When the
wave number k is large, the solution of the problem becomes highly oscillating and effi-
cient numerical methods are required in order to get high performance simulation results.
In this topic, various numerical methods were developed in the past decades, such as the
finite difference method (see, e.g., [1–16]), the finite element method (see, e.g., [17–25]),
the boundary element method (see, e.g., [26–30]), and other techniques (see, e.g., [17, 31–
33]). For the finite difference method, two common methods are considered in the litera-
ture, namely the parameter method and the high-order method. The parameter method
was studied in [9], the fourth-order finite difference schemes with the Dirichlet boundary
condition were considered in [3, 10] and with the Neumann boundary condition in [1,
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4], the sixth-order finite difference schemes with the Dirichlet boundary condition were
investigated in [3, 10] and with the Neumann boundary condition in [2]. For the problem
with Robin boundary condition, Turkel et al. [12] considered a sixth-order scheme for the
homogeneous case, i.e.,

∂u
∂x

+ iku = 0 at x = x0, (3)

based on a radiation boundary condition, which is usually imposed in the far-field when
the medium is constant. By differentiating (3) with respect to x several times, the high-
order scheme for this kind of boundary condition was derived in [12]. Further research can
be found in [14]. But in many cases, such as the Helmholtz equation after reduction from
the large cavity electromagnetic scattering, the inhomogeneous Robin boundary condi-
tion (2) is necessary (see [6, 34–36]). Obviously, the high-order scheme in this case cannot
be got following the process in [12] due to the existence of the function g . On the other
hand, the Robin boundary condition is only imposed on a single boundary in [12, 14]. If
two neighbor boundaries are imposed with this kind of boundary condition, there will be
a corner point which satisfies two different boundary conditions and it is difficult to deal
with when this two conditions are not compatible. Recently, the fourth-order scheme for
the Helmholtz equation with inhomogeneous Robin boundary condition on four bound-
aries was derived in [7]. But to the best of our knowledge, no sixth-order difference scheme
for this case was investigated.

In many cases, the body force f is equal to zero, then we simplify the Helmholtz equation
with an inhomogeneous Robin boundary condition as follows:

–�u – k2u = 0, in Ω , (4)

αu +
∂u
∂n

= g, in ΓΩ . (5)

In this paper, by applying the one-sided approximation of the derivative and Taylor expan-
sion carefully, we derive the sixth-order scheme for the inhomogeneous Robin boundary
condition (5), by which the ghost points in the scheme on the domain can be eliminated
successfully. The deduction here does not depend on the scheme on the domain. Then
some numerical experiments are shown to verify the correctness and the robustness of
the scheme with respect to the wave number, too.

2 Numerical scheme
Let 0 < h < 1 denote an uniform mesh size with h = 1

N–1 (N ∈ Z+, N > 1). Then, for any grid
point (xm, yn), we have xm = mh, m = 1, . . . , N , yn = nh, n = 1, . . . , N . Write um,n = u(xm, yn).
Due to the sixth-order schemes for the Helmholtz equation with Dirichlet and Neumann
boundary conditions having been investigated before, by applying the results in [2, 10], we
can get the scheme on the domain:

Ad · Ud
m,n = 0, m = 1, . . . , N , n = 1, . . . , N , (6)

where

Ad =
(
Ad

1 , Ad
2 , Ad

3 , Ad
4 , Ad

5 , Ad
6 , Ad

7 , Ad
8 , Ad

9
)
,



Zhang et al. Advances in Difference Equations        (2019) 2019:362 Page 3 of 15

Ud
m,n = (Um–1,n–1, Um,n–1, Um+1,n–1, Um–1,n, Um,n, Um+1,n, Um–1,n+1, Um,n+1, Um+1,n+1),

A0 := Ad
5 , A1 := Ad

2 = Ad
4 = Ad

6 = Ad
8 , A2 := Ad

1 = Ad
3 = Ad

7 = Ad
9 .

Um,n is the numerical solution of u(xm, yn), and A0 is the coefficient of the central point
Um,n, A1 is the coefficient of Um,n–1, Um–1,n, Um+1,n, Um,n+1, A2 is the coefficient of four cor-
ner points Um–1,n–1, Um+1,n–1, Um–1,n+1, Um+1,n+1. They may take different values at different
occurrences which will be specialized in Sect. 3.

Next, we derive the scheme at the interior point of the boundary. Without loss of gen-
erality, we only present the deduction in detail for the top boundary Γ t , which satisfies

αu +
∂u
∂y

= gt , (7)

where gt is a given function on the top boundary. By applying the Taylor formula, we have

um,n+1 – um,n–1

2h
=

(
∂u
∂y

)

m,n
+

h2

6

(
∂3u
∂y3

)

m,n
+

h4

120

(
∂5u
∂y5

)

m,n
+ O

(
h6). (8)

It is valid that

∂3u
∂y3 = –k2 ∂u

∂y
–

∂3u
∂x2∂y

,
∂5u
∂y5 = –k2 ∂3u

∂y3 –
∂5u

∂x2∂y3 . (9)

On the one hand, ∂3u
∂x2∂y can be written as

(
∂3u

∂x2∂y

)

m,n
= δ2

xδyum,n –
h2

12

(
∂5u

∂x4∂y
+ 2

∂5u
∂x2∂y3

)

m,n
+ O

(
h4), (10)

where δ2
x um,n = um–1,n–2um,n+um+1,n

h2 , δyum,n = um,n+1–um,n–1
2h . Using (4), we get

∂5u
∂x4∂y

+
∂5u

∂x2∂y3 = –k2 ∂3u
∂x2∂y

. (11)

Setting n = N , then combining (8) with (6), (9), (10) and (11), we can eliminate Um–1,N+1

and Um+1,N+1 as follows:

2
(

1
6

+
k2h2

180

)
A2(Um–1,N–1 + Um+1,N–1) +

[(
2
3

–
k2h2

90

)
A2 +

(
1
6

+
k2h2

180

)
A1

]
Um,N–1

+
(

1
6

+
k2h2

180

)
A1(Um–1,N + Um+1,N )

+
[(

–
2
3

+
k2h2

90

)
A2 +

(
1
6

+
k2h2

180

)
A1

]
Um,N+1

+
(

1
6

+
k2h2

180

)
A0Um,N + 2h

(
1 –

k2h2

6
+

k4h4

120

)
A2

(
∂u
∂y

)

m,N

+
h5A2

90

(
∂5u

∂x2∂y3

)

m,N
= 0. (12)
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But the ghost point Um,N+1 and ∂5u
∂x2∂y3 are left in the scheme which need to be dealt with.

By using the Taylor formula, (4) and (7) repeatedly, we obtain, after setting n = N ,

(
∂5u

∂x2∂y3

)

m,N
= –α

(
∂4u

∂x2∂y2

)

m,N
– k2

(
∂2gt

∂x2

)

m,N
–

(
∂4gt

∂x4

)

m,N
, (13)

(
∂3u
∂y3

)

m,N
= –k2

(
∂u
∂y

)

m,N
+ α

(
∂2u
∂x2

)

m,N
–

(
∂2gt

∂x2

)

m,N
, (14)

(
∂5u
∂y5

)

m,N
= k4

(
∂u
∂y

)

m,N
– αk2

(
∂2u
∂x2

)

m,N
+ α

(
∂4u

∂x2∂y2

)

m,N

+ 2k2
(

∂2gt

∂x2

)

m,N
+

(
∂4gt

∂x4

)

m,N
. (15)

According to (8), (14) and (15), we have

um+1,N = um–1,N + 2h
(

1 –
k2h2

6
+

k4h4

120

)(
∂u
∂y

)

m,N
+ 2hα

(
h2

6
–

k2h4

120

)(
∂2u
∂x2

)

m,N

+
h5α

60

(
∂4u

∂x2y2

)

m,N
– 2h

(
h2

6
–

2k2h4

120

)(
∂2gt

∂x2

)

m,N
. (16)

Since we need a sixth-order finite difference scheme, we need a fourth-order approxi-
mation to ∂2u

∂x2 in (16). Obviously, it is valid that

um+1,N + um–1,N = 2um,N + h2
(

∂2u
∂x2

)

m,N
+

h4

12

(
∂4u
∂x4

)

m,N
+ O

(
h6). (17)

By using (4), we have

(
∂4u
∂x4

)

m,N
= –

(
∂4u

∂x2∂y2

)

m,N
– k2

(
∂2u
∂x2

)

m,N
. (18)

Combining (17) and (18), we can obtain the fourth-order approximation to ∂2u
∂x2 and ap-

proximating ∂2u
∂x2 in (18) with the second-order central difference formula and ∂4u

∂x2∂y2 in
(13) and (18) with the second-order central difference formula in the x-direction and the
one-sided difference formula in the y-direction, namely

(
∂4u

∂x2∂y2

)

m,N
=

1
2h4

[
8(um+1,N–1 – 2um,N–1 + um–1,N–1) – (um+1,N–2 – 2um,N–2

+ um–1,N–2) – 7(um+1,N – 2um,N + um–1,N ) + 6h
((

∂u
∂y

)

m+1,N

– 2
(

∂u
∂y

)

m,N
+

(
∂u
∂y

)

m–1,N

)]
+ O

(
h2), (19)

then combining (8) with (6) and (9)–(19) yields the sixth-order scheme for the interior
point on the top boundary as follows:

At · Ut
m,N = Ct · Gt

m,N , m = 2, . . . , N – 1, (20)
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where

At =
(
At

1, At
2, At

3, At
4, At

5, At
6, At

7, At
8, At

9
)
,

Ut
m,N = (Um–1,N–1, Um,N–1, Um+1,N–1, Um–1,N , Um,N , Um+1,N , Um–1,N–2,

Um,N–2, Um+1,N–2),

Ct =
(
Ct

1, Ct
2, Ct

3, Ct
4
)
,

Gt
m,N =

(
gt

m,N ,
(

∂2gt

∂x2

)

m,N
,
(

∂4gt

∂x4

)

m,N
, gt

m–1,N + gt
m+1,N

)
,

At
1 = 2

(
1
6

+
k2h2

180

)
A2 +

4B̃
h4 , At

3 = At
1, At

2 = 2
(

1
6

+
k2h2

180

)
A1 –

8B̃
h4 ,

At
4 =

(
1
6

+
k2h2

180

)
A1 + 2hBα

(
1 +

k2h2

12

)(
1
6

–
k2h2

120

)
– (7 + 6hα)

B̃
2h4 , At

6 = At
4,

At
5 =

(
1
6

+
k2h2

180

)
A0 – 2hα(A2 + B)

(
1 –

k2h2

6
+

k4h4

120

)

– 4hBα

(
1 +

k2h2

12

)(
1
6

–
k2h2

120

)
+ (14 + 12hα)

B̃
2h4 ,

At
7 = –

B̃
2h4 , At

9 = At
7, At

8 =
B̃
h4 ,

Ct
1 =

6B̃
h3 – 2h(A2 + B)

(
1 –

k2h2

6
+

k4h4

120

)
,

Ct
2 = 2hB

(
h2

6
–

k2h4

120

)
+ k2h5

(
A2

90
–

B
60

)
,

Ct
3 = h5

(
A2

90
–

B
60

)
, Ct

4 = –
3B̃
h3 ,

B =
(

–
2
3

+
k2h2

90

)
A2 +

(
1
6

+
k2h2

180

)
A1,

B̃ =
Bh5α

6

(
1
6

–
k2h2

120

)
– h5α

(
A2

90
–

B
60

)
.

Setting m = 1 in (6) and following a similar process to that deriving (20), we can obtain
the sixth-order scheme for the interior point on the left boundary,

Al · Ul
1,n = Cl · Gl

1,n, n = 2, . . . , N – 1, (21)

where

Al = At , Cl = Ct ,

Ul
1,n = (U2,n–1, U2,n, U2,n+1, U1,n–1, U1,n, U1,n+1, U3,n–1, U3,n, U3,n+1),

Gl
1,n =

(
gl

1,n,
(

∂2gl

∂x2

)

1,n
,
(

∂4gl

∂x4

)

1,n
, gl

1,n–1 + gl
1,n+1

)
.
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By setting n = 1 and m = N in (6), respectively, and using the analogous deduction in
(20) and (21), we can deduce the following schemes on the bottom and right boundaries,
respectively:

Ab · Ub
m,1 = Cb · Gb

m,1, m = 2, . . . , N – 1, (22)

where

Ab = At , Cb = Ct ,

Ub
m,1 = (Um–1,2, Um,2, Um+1,2, Um–1,1, Um,1, Um+1,1, Um–1,3, Um,3, Um+1,3),

Gb
m,1 =

(
gb

m,1,
(

∂2gb

∂y2

)

m,1
,
(

∂4gb

∂y4

)

m,1
, gb

m–1,1 + gb
m+1,1

)
,

and

Ar · Ur
N ,n = Cr · Gr

N ,n, n = 2, . . . , N – 1, (23)

where

Ar = At , Cl = Ct ,

Ur
N ,n = (UN–1,n–1, UN–1,n, UN–1,n+1, UN ,n–1, UN ,n, UN ,n+1, UN–2,n–1, UN–2,n, UN–2,n+1),

Gr
N ,n =

(
gr

N ,n,
(

∂2gr

∂y2

)

N ,n
,
(

∂4gr

∂y4

)

N ,n
, gr

N ,n–1 + gr
N ,n+1

)
.

For the sixth-order scheme at four vertices of the domain, we take the upper right vertex
as an example for illustration. Using (4), (14), (15), (17), the right boundary condition αu +
∂u
∂x = gr at (xN , yN ), (xN , yN–1), (xN , yN–2) and the top boundary condition αu + ∂u

∂y = gt at
(xN , yN ), (xN–1, yN ), (xN–2, yN ), we have

uN ,N+1 + uN+1,N

= uN–1,N + uN ,N–1 + 2h
(

1 –
k2h2

6
+

k4h4

120

)(
∂u
∂x

+
∂u
∂y

)

N ,N

– 2k2hα

(
h2

6
–

k2h4

120

)
uN ,N +

h5α

30

(
∂4u

∂x2∂y2

)

N ,N

+
(

k2h5

30
–

h3

3

)(
∂2gt

∂x2 +
∂2gr

∂y2

)

N ,N
+

h5

60

(
∂4gt

∂x4 +
∂4gr

∂y4

)

N ,N
+ O

(
h6), (24)

uN–1,N+1 + uN+1,N–1

= 2uN–1,N–1 + 2h
(

1 –
k2h2

6
+

k4h4

120

)[(
∂u
∂x

)

N ,N–1
+

(
∂u
∂y

)

N–1,N

]

+ 2hα

(
h2

6
–

k2h4

120

)(
1 +

k2h2

12

)[(
∂2u
∂x2

)

N–1,N
+

(
∂2u
∂y2

)

N ,N–1

]

+
[

h3α

6

(
h2

6
–

k2h4

120

)
+

h5α

60

][(
∂4u

∂x2∂y2

)

N–1,N
+

(
∂4u

∂x2∂y2

)

N ,N–1

]
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+
(

k2h5

30
–

h3

3

)[(
∂2gt

∂x2

)

N–1,N
+

(
∂2gr

∂y2

)

N ,N–1

]

+
h5

60

[(
∂4gt

∂x4

)

N–1,N
+

(
∂4gr

∂y4

)

N ,N–1

]
+ O

(
h6), (25)

uN–2,N+1 + uN+1,N–2

= uN–2,N–1 + uN–1,N–2 + 2h
(

1 –
k2h2

6
+

k4h4

120

)[(
∂u
∂x

)

N ,N–2
+

(
∂u
∂y

)

N–2,N

]

+ 2hα

(
h2

6
–

k2h4

120

)(
1 +

k2h2

12

)[(
∂2u
∂x2

)

N–2,N
+

(
∂2u
∂y2

)

N ,N–2

]

+
[

h3α

6

(
h2

6
–

k2h4

120

)
+

h5α

60

][(
∂4u

∂x2∂y2

)

N–2,N
+

(
∂4u

∂x2∂y2

)

N ,N–2

]

+
(

k2h5

30
–

h3

3

)[(
∂2gt

∂x2

)

N–2,N
+

(
∂2gr

∂y2

)

N ,N–2

]

+
h5

60

[(
∂4gt

∂x4

)

N–2,N
+

(
∂4gr

∂y4

)

N ,N–2

]
+ O

(
h6). (26)

Setting both m in the top boundary scheme and n in the right boundary scheme to N ,
adding the resulting formula, using (24)–(26) and following the process in (20), we can get
the scheme for the top right vertex as follows:

Atr · Utr
N ,N = Ctr · Gtr

N ,N , (27)

where

Atr =
(
Atr

1 , Atr
2 , Atr

3 , Atr
4 , Atr

5 , Atr
6 , Atr

7 , Atr
8 , Atr

9
)
,

Utr
N ,N = (UN–1,N–1, UN–1,N + UN ,N–1, UN ,N , UN–2,N–2, UN–1,N–2 + UN–2,N–1,

UN–2,N + UN ,N–2, UN–3,N–2 + UN–2,N–3, UN–3,N–1 + UN–1,N–3, UN–3,N + UN ,N–3),

Ctr =
(
Ctr

1 , Ctr
2 , Ctr

3 , Ctr
4 , Ctr

5 , Ctr
6 , Ctr

7 , Ctr
8 , Ctr

9 , Ctr
10, Ctr

11, Ctr
12

)
,

Gtr
N ,N =

(
gt

N ,N + gr
N ,N , gt

N–1,N + gr
N ,N–1, gt

N–2,N + gr
N ,N–2, gt

N–3,N + gr
N ,N–3,

(
∂2gt

∂x2

)

N–2,N
+

(
∂2gr

∂y2

)

N ,N–2
,
(

∂2gt

∂x2

)

N–1,N
+

(
∂2gr

∂y2

)

N ,N–1
,

(
∂2gt

∂x2 +
∂2gr

∂y2

)

N ,N
,
(

∂4gt

∂x4

)

N–2,N
+

(
∂4gr

∂y4

)

N ,N–2
,

(
∂4gt

∂x4

)

N–1,N
+

(
∂4gr

∂y4

)

N ,N–1
,
(

∂4gt

∂x4 +
∂4gr

∂y4

)

N ,N
,

(
∂gt

∂x
+

∂gr

∂y

)

N ,N
, gt

N+1,N + gr
N ,N+1

)
,

Atr
1 =

(
4 –

16
h4 s

)
At

1 +
8hα

15
At

4 –
4sB̃
h8 ,
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Atr
2 =

[
–2hpα –

4α

h

(
h2

6
–

k2h4

120

)(
1 +

k2h2

12

)
+

s
2h4 (22 + 12hα)

]
At

1 + At
2

+
[

2 –
hα

120
(56 + 48hα)

]
At

4 –
B̃

2h4

[
2α

h

(
h2

6
–

k2h4

120

)(
1 +

k2h2

12

)

–
s

2h4 (7 + 6hα)
]

,

Atr
3 =

[
4α

h

(
h2

6
–

k2h4

120

)(
1 +

k2h2

12

)
–

s
2h4 (14 + 12hα)

]
At

1

+
[

–4hpα – 2k2hα

(
h2

6
–

k2h4

120

)
+

hα

120
(
49 + 84hα + 36h2α2)

]
At

4 + 2At
5,

Atr
4 = –

sAt
1

h4 +
hαAt

4
120

–
B̃s
h8 , Atr

5 =
5sAt

1
h4 –

hαAt
4

15
–

B̃
2h4

(
1 –

17s
2h4

)
,

Atr
6 =

[
2α

h

(
h2

6
–

k2h4

120

)(
1 +

k2h2

12

)
–

s
2h4 (8 + 6hα)

]
At

1 +
hαAt

4
120

(7 + 6hα)

–
B̃

2h4

[
–2hpα –

4α

h

(
h2

6
–

k2h4

120

)(
1 +

k2h2

12

)
+

s
2h4 (14 + 12hα)

]
+

B̃
h4 ,

Atr
7 =

B̃s
4h8 , Atr

8 = –
2B̃s
h8 ,

Atr
9 = –

B̃
2h4

[
2α

h

(
h2

6
–

k2h4

120

)(
1 +

k2h2

12

)
–

s
2h4 (7 + 6hα)

]
,

Ctr
1 = –

3sAt
1

h3 –
[

2hp –
hα

120
(
42h + 18h2α

)
]

At
4 – 2hp(A2 + B) +

6B̃
h3 ,

Ctr
2 =

(
–2hp +

6s
h3

)
At

1 –
2h2α

5
At

4 +
3B̃s
2h7 –

3B̃
h3 ,

Ctr
3 = –

3sAt
1

h3 +
h2αAt

4
20

+
B̃

2h4

(
2hp –

6s
h3

)
, Ctr

4 =
3B̃s
2h7 ,

Ctr
5 =

B̃
2h4

(
–

h3

3
+

k2h5

30

)
, Ctr

6 =
(

h3

3
–

k2h5

30

)
At

1,

Ctr
7 =

(
h3

3
–

k2h5

30

)
At

4 + 2hB
(

h2

6
–

k2h4

120

)
+ k2

(
h5A2

90
–

h5B
60

)
,

Ctr
8 =

hB̃
120

, Ctr
9 = –

h5At
1

60
, Ctr

10 = –
h5At

4
60

+
h5A2

90
–

h5B
60

,

Ctr
11 = –

3h3αAt
4

20
, Ctr

12 = –
3B̃
h3 ,

s =
h3α

6

(
h2

6
–

k2h4

120

)
+

h5α

60
, p = 1 –

k2h2

6
+

k4h4

120
,

and gt
N+1,N , gr

N ,N+1 only need to Taylor expand at (xN , yN ).
Similarly, we can derive the sixth-order scheme for the other vertices by the symmetry.

Setting both m in the top boundary scheme to 1 and n in the left boundary scheme to N ,
following the process in (27), we can get the scheme for the top left vertex as follows:

Atl · Utl
1,N = Ctl · Gtl

1,N , (28)
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where

Atl = Atr , Ctl = Ctr ,

Utl
1,N = (U2,N–1, U1,N–1 + U2,N , U1,N , U3,N–2, U2,N–2 + U3,N–1, U3,N + U1,N–2,

U4,N–2 + U3,N–3, U4,N–1 + U2,N–3, U4,N + U1,N–3),

Gtl
1,N =

(
gt

1,N + gl
1,N , gt

2,N + gl
1,N–1, gt

3,N + gl
1,N–2, gt

4,N + gl
1,N–3,

(
∂2gt

∂x2

)

3,N
+

(
∂2gl

∂y2

)

1,N–2
,
(

∂2gt

∂x2

)

2,N
+

(
∂2gl

∂y2

)

1,N–1
,
(

∂2gt

∂x2 +
∂2gl

∂y2

)

1,N
,

(
∂4gt

∂x4

)

3,N
+

(
∂4gl

∂y4

)

1,N–2
,
(

∂4gt

∂x4

)

2,N
+

(
∂4gl

∂y4

)

1,N–1
,
(

∂4gt

∂x4 +
∂4gl

∂y4

)

1,N
,

(
–

∂gt

∂x
+

∂gl

∂y

)

1,N
, gt

0,N + gl
1,N+1

)
,

and gt
0,N , gl

1,N+1 only need to Taylor expand at (x1, yN ).
Setting both m in the bottom boundary scheme to 1 and n in the left boundary scheme

to 1, following the process in (27), we can get the scheme for the bottom left vertex as
follows:

Abl · Ubl
1,1 = Cbl · Gbl

1,1, (29)

where

Abl = Atr , Cbl = Ctr ,

Ubl
1,1 = (U2,2, U1,2 + U2,1, U1,1, U3,3, U2,3 + U3,2, U3,1 + U1,3,

U4,3 + U3,4, U4,2 + U2,4, U4,1 + U1,4),

Gbl
1,1 =

(
gb

1,1 + gl
1,1, gb

2,1 + gl
1,2, gb

3,1 + gl
1,3, gb

4,1 + gl
1,4,

(
∂2gb

∂x2

)

3,1
+

(
∂2gl

∂y2

)

1,3
,
(

∂2gb

∂x2

)

2,1
+

(
∂2gl

∂y2

)

1,2
,
(

∂2gb

∂x2 +
∂2gl

∂y2

)

1,1
,

(
∂4gb

∂x4

)

3,1
+

(
∂4gl

∂y4

)

1,3
,
(

∂4gb

∂x4

)

2,1
+

(
∂4gl

∂y4

)

1,2
,
(

∂4gb

∂x4 +
∂4gl

∂y4

)

1,1
,

(
–

∂gb

∂x
–

∂gl

∂y

)

1,1
, gb

0,1 + gl
1,0

)
,

and gb
0,1, gl

1,0 only need to be Taylor expanded at (x1, y1).
Setting both m in the bottom boundary scheme to N and n in the left boundary scheme

to 1, following the process in (27), we can get the scheme for the bottom left vertex as
follows:

Abr · Ubr
N ,1 = Cbr · Gbl

N ,1, (30)
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where

Abr = Atr , Cbr = Ctr ,

Ubr
N ,1 = (UN–1,2, UN ,2 + UN–1,1, UN ,1, UN–2,3, UN–1,3 + UN–2,2, UN–2,1 + UN ,3,

UN–3,3 + UN–2,4, UN–3,2 + UN–1,4, UN–3,1 + UN ,4),

Gbr
N ,1 =

(
gb

N ,1 + gr
N ,1, gb

N–1,1 + gr
N ,2, gb

N–2,1 + gr
N ,3, gb

N–3,1 + gr
N ,4,

(
∂2gb

∂x2

)

N–2,1
+

(
∂2gr

∂y2

)

N ,3
,
(

∂2gb

∂x2

)

N–1,1
+

(
∂2gr

∂y2

)

N ,2
,
(

∂2gb

∂x2 +
∂2gr

∂y2

)

N ,1
,

(
∂4gb

∂x4

)

N–2,1
+

(
∂4gr

∂y4

)

N ,3
,
(

∂4gb

∂x4

)

N–1,1
+

(
∂4gr

∂y4

)

N ,2
,
(

∂4gb

∂x4 +
∂4gr

∂y4

)

N ,1
,

(
∂gb

∂x
–

∂gr

∂y

)

N ,1
, gb

N+1,1 + gr
N ,0

)
,

and gb
N+1,1, gr

N ,0 only need to be Taylor expanded at (xN , y1).

3 Numerical results
In this section, we present some numerical experiments to verify the correctness and ro-
bustness of the scheme derived above. In all our results, the errors are measured in l∞-
norm.

Setting α = ik in (4) and the exact solution u(x, y) = ei(k1x+k2y) , the function g(x, y) on the
boundary can be easily determined by (5) as follows:

g(x, y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

i(k – k2)eik1x, (x, y) ∈ Γ b,

i(k + k1)ei(k1+k2y), (x, y) ∈ Γ r ,

i(k + k2)ei(k1x+k2), (x, y) ∈ Γ t ,

i(k – k1)eik2y, (x, y) ∈ Γ l,

(31)

where k1 = k cos θ and k2 = k sin θ are the wave numbers in the x and y directions, respec-
tively, and θ is the propagation direction. Firstly, taking the sixth-order scheme EB (scheme
(111) in [3]) on the domain for example, combining with the sixth-order scheme derived
above for the inhomogeneous Robin boundary condition, we show the convergence or-
der in Fig. 1, which is consistent with the theoretical prediction. Next, to illustrate the
correctness and robustness of the high-order scheme derived above, we compare it with
some well-known ones in the literature. Let k = 10, θ = π

4 , N = 20, 40, 80, 160, respectively,
we show the error in Tables 1–3, which is good agreement with the theoretical precon-
dition. Here, we use SFD as a standard for the standard second-order scheme (5) in [10],
5PT as a standard for the classical 5-point finite difference scheme (102) in [3], RD5 as a
standard for the second-order reduced dispersion 5-point scheme (108) in [3], GFEM as a
standard for the Galerkin finite element method (99) in [3], GLSFEM as a standard for the
stabilized finite element method (105) in [3], ACFS and CFS as a standard for two compact
fourth-order finite difference schemes (2.5) and (2.10) in [4], EBm (m = 4, 6) as a standard
for the schemes (10) and (14) in [10], HO as a standard for the high-order scheme (24) in
[1], QSFEM as a standard for the quasi-stabilized finite element method in Sect. 4.3.2 of



Zhang et al. Advances in Difference Equations        (2019) 2019:362 Page 11 of 15

Figure 1 Convergence orders

Table 1 Errors of different second-order schemes (k = 10)

N 20 40 80 160

SFD 7.03e–002 1.72e–002 4.28e–003 1.07e–003
5PT 5.22e–002 1.60e–002 4.20e–003 1.06e–003
GFEM 8.93e–002 2.07e–002 5.07e–003 1.26e–003
GLSFEM 3.38e–002 1.03e–002 2.71e–003 6.86e–004
RD5 6.26e–002 1.35e–002 3.24e–003 8.02e–004
QOFDT2 3.35e–001 8.83e–002 2.23e–002 5.58e–003

Table 2 Errors of different fourth-order schemes (k = 10)

N 20 40 80 160

ACFS 1.18e–003 7.23e–005 4.50e–006 2.81e–007
CFS 1.19e–003 7.36e–005 4.60e–006 2.87e–007
EB 2.02e–003 1.22e–004 7.58e–006 4.73e–007
EB4 2.46e–003 1.29e–004 7.69e–006 4.75e–007
HO 1.19e–003 7.36e–005 4.60e–006 2.87e–007
QOFDT4 1.65e–002 1.08e–003 6.89e–005 4.31e–006
T2QOFD 1.60e–002 1.00e–003 6.30e–005 3.94e–006

Table 3 Errors of different sixth-order schemes (k = 10)

N 20 40 80 160

EB 5.47e–006 8.36e–008 1.30e–009 2.00e–011
EB6 4.44e–005 2.03e–007 1.31e–009 1.94e–011
FLAME 4.64e–005 2.33e–007 1.67e–009 1.97e–011
HO (Γ = 0) 1.85e–005 2.83e–007 4.38e–009 6.85e–011
QSFEM 4.62e–005 2.29e–007 1.62e–009 1.93e–011
QOFD 4.62e–005 2.29e–007 1.62e–009 1.93e–011
QOFDT6 8.52e–004 1.41e–005 2.24e–007 3.50e–009
T4QOFD 7.78e–004 1.28e–005 2.03e–007 3.17e–009
T6QOFD 4.23e–005 2.13e–007 1.57e–009 1.93e–011

[3], FLAME as a standard for the flexible approximation scheme in Sect. 4.3.3 of [3], and
QOFD as a standard for the quasi-optimal finite difference scheme in Sect. 4.3.4 of [3], and
TmQOFD and QOFDTm (m = 2, 4, 6) as a standard for alternative schemes in Sect. 4.4 of
[3].

Then we use the SFD scheme in [10] in the second-order scheme, the CFS scheme in
[4] in the fourth-order scheme, the EB scheme in [10] in the sixth-order scheme and the
parameter scheme in [9]. Setting θ = π

4 , and k = 100, 200, 500 and N = 100, 200, 400, 800,
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Table 4 Errors of different schemes (k = 100)

N 100 200 400 800

Second-order scheme in [10] 3.03e–000 9.52e–001 2.38e–001 5.91e–002
Fourth-order scheme in [4] 6.33e–002 4.22e–003 2.65e–004 1.65e–005
Sixth-order scheme in [10] 2.21e–003 3.13e–005 4.74e–007 7.37e–009
Parameter scheme in [9] 1.40e–001 3.39e–002 8.60e–003 2.16e–003

Table 5 Errors of different schemes (k = 200)

N 100 200 400 800

Second-order scheme in [10] 3.51e–000 2.88e–000 1.84e–000 4.87e–001
Fourth-order scheme in [4] 1.32e–000 1.23e–001 8.15e–003 5.12e–004
Sixth-order scheme in [10] 6.19e–001 4.63e–003 6.29e–005 9.50e–007
Parameter scheme in [9] 3.79e–000 1.44e–001 3.42e–002 8.99e–003

Table 6 Errors of different schemes (k = 500)

N 100 200 400 800

Second-order scheme in [10] 1.00e–000 3.66e–000 3.13e–000 2.79e–000
Fourth-order scheme in [4] 1.00e–000 3.00e–000 7.24e–001 4.91e–002
Sixth-order scheme in [10] 1.50e–000 3.07e–000 5.25e–002 6.27e–004
Parameter scheme in [9] 8.13e–000 4.00e–000 6.86e–000 5.53e–002

Figure 2 Development of the relative error with
respect to k

respectively, we show the error generated by different schemes in Tables 4–6. And letting
kh = 0.6, we collect the relationship between the relative error and the wave number k in
Fig. 2. As is well known, the relative error increases as the wave number increases. But
compared with the second- and fourth-order schemes and the parameter one, the sixth-
order method investigated here can achieve the best computational accuracy in all tested
cases.

Finally, we consider a practical model which is reduced from the large cavity electromag-
netic scattering and has been investigated in [6, 34–36]. In this problem, Ω := (0, 1)×(0, 1

4 ),
ΓΩ = Γ b ∪ Γ r ∪ Γ t ∪ Γ l with Γ b := [0, 1] × {0}, Γ r := {1} × [0, 1

4 ], Γ t := [1, 0] × { 1
4 },

Γ l := {0} × [ 1
4 , 0], f = 0, u = 0 on Γ b ∪ Γ r ∪ Γ l , ∂u

∂y + iku = gt on Γ t , which is the
lowest-order approximation of the radiation boundary condition (see [6, 18]). Setting
gt = –2ik cos θeik sin θx and θ = π

4 (see [6, 36]), we show that the real part, the image part
and magnitude of the solution with k = 128π , N = 512 in Figs. 3–4, which is consistent
with that illustrated in [6, 36]. The results confirm the correctness of the scheme deduced
above again.
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Figure 3 Real and image parts of the solution at the line y = 1/4 with k = 128π , N = 512

Figure 4 Real part (left) and magnitude (right) of the solution with k = 128π , N = 512

4 Conclusions
In this work, we derived a class of sixth-order finite difference scheme with inhomoge-
neous Robin boundary condition for solving the Helmholtz equation. We show some nu-
merical examples to illustrate the efficiency and the correctness of the scheme. In all tests,
compared with the second-order, fourth-order and parameter schemes, the sixth-order
scheme has higher accuracy.

Acknowledgements
The authors would like to thank the editor and reviewer for their valuable comments and suggestions.

Funding
This work is supported by the Natural Science Foundation of China (No. 91630205), Chongqing Research Program of Basic
Research and Frontier Technology (No. cstc2017jcyjAX 0231), Project No. 2019CDXYST0016 supported by the
Fundamental Research Funds for the Central Universities, Project No. 201805032 supported by Chongqing University
Graduate Key Courses, Shihezi university high-level personnel launch scientific research projects (RCSX 201733).

Availability of data and materials
The datasets used or analyzed during the current study are available from the corresponding author on request.

Competing interests
The authors declare that no competing interests exist.

Authors’ contributions
YZ derived the scheme and implements the numerical examples; KW proposed the problem and supervised the
deduction of the scheme and simulation of the numerical examples; RG suggested some details. All authors read and
approved the final manuscript.



Zhang et al. Advances in Difference Equations        (2019) 2019:362 Page 14 of 15

Author details
1College of Mathematics and Statistics, Chongqing University, Chongqing, P.R. China. 2College of Sciences, Shihezi
University, Xinjiang, P.R. China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 8 June 2019 Accepted: 19 August 2019

References
1. Singer, I., Turkel, E.: High-order finite difference methods for the Helmholtz equation. Comput. Methods Appl. Mech.

Eng. 163, 343–358 (1998)
2. Nabavi, M., Siddiqui, M.H.K., Dargahi, J.: A new 9-point sixth-order accurate compact finite-difference method for the

Helmholtz equation. J. Sound Vib. 307, 972–982 (2007)
3. Fernandes, D.T., Loula, A.F.D.: Quasi optimal finite difference method for Helmholtz problem on unstructured grids.

Int. J. Numer. Methods Eng. 82, 1244–1281 (2010)
4. Fu, Y.: Compact fourth-order finite difference schemes for Helmholtz equation with high wave numbers. J. Comput.

Math. 26, 98–111 (2008)
5. Wang, K., Wong, Y.S., Deng, J.: Efficient and accurate numerical solutions for Helmholtz equation in polar and

spherical coordinates. Commun. Comput. Phys. 17, 779–807 (2015)
6. Wang, K., Wong, Y.S.: Is pollution effect of finite difference schemes avoidable for multi-dimensional Helmholtz

equations with high wave numbers? Commun. Comput. Phys. 21, 490–514 (2017)
7. Wang, K., Zhang, Y., Guo, R.: Finite difference methods for the Helmholtz equation: a brief view. Math. Numer. Sin. 40,

171–190 (2018)
8. Britt, S., Tsynkov, S., Turkel, E.: A compact fourth order scheme for the Helmholtz equation in polar coordinates. J. Sci.

Comput. 45, 26–47 (2010)
9. Chen, Z., Cheng, D., Feng, W., Wu, T.: An optimal 9-point finite difference scheme for the Helmholtz equation with

PML. Int. J. Numer. Anal. Model. 10, 389–410 (2013)
10. Singer, I., Turkel, E.: Sixth-order accurate finite difference schemes for the Helmholtz equation. J. Comput. Acoust. 14,

339–351 (2006)
11. Guo, R., Wang, K., Xu, L.: Efficient finite difference methods for acoustic scattering from circular cylindrical obstacle.

Int. J. Numer. Anal. Model. 13, 986–1002 (2016)
12. Turkel, E., Gordon, D., Gordon, R., Tsynkov, S.: Compact 2D and 3D sixth order schemes for the Helmholtz equation

with variable wave number. J. Comput. Phys. 232, 272–287 (2013)
13. Wu, T., Xu, R.: An optimal compact sixth-order finite difference scheme for the Helmholtz equation. Comput. Math.

Appl. 75, 2520–2537 (2018)
14. Sutmann, G.: Compact finite difference schemes of sixth order for the Helmholtz equation. J. Comput. Appl. Math.

203, 15–31 (2007)
15. Tsukerman, I.: A class of difference schemes with flexible local approximation. J. Comput. Phys. 211, 669–699 (2006)
16. Wang, K., Wong, Y.S., Huang, J.: Analysis of pollution-free approaches for multi-dimensional Helmholtz equations. Int.

J. Numer. Anal. Model. 16, 412–435 (2019)
17. Chen, W., Liu, Y., Xu, X.: A robust domain decomposition method for the Helmholtz equation with high wave number.

Modél. Math. Anal. Numér. 50, 921–944 (2016)
18. Ihlenburg, F.: Finite Element Analysis of Acoustic Scattering. Springer, New York (1998)
19. Zhang, Q., Babuska, I., Banerjee, U.: Robustness in Stable Generalized Finite Element Methods (SGFEM) applied to

Poisson problems with crack singularities. Comput. Methods Appl. Mech. Eng. 311, 476–502 (2016)
20. Babuska, I., Sauter, S.A.: Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high

wave numbers? SIAM J. Numer. Anal. 34, 2392–2423 (1997)
21. Chen, H., Wu, H., Xu, X.: Multilevel preconditioner with stable coarse grid corrections for the Helmholtz equation.

J. Sci. Comput. 37, 221–244 (2015)
22. Feng, X., Wu, H.: hp-discontinuous Galerkin methods for the Helmholtz equation with large wave number. Math.

Comput. 80, 1997–2024 (2011)
23. Babuska, I., Ihlenburg, F., Paik, E.T., Sauter, S.A.: A generalized finite element method for solving the Helmholtz

equation in two dimensions with minimal pollution. Comput. Methods Appl. Mech. Eng. 128, 325–359 (1995)
24. Thompson, L.L., Pinsky, P.M.: A Galerkin least-squares finite element method for the two-dimensional Helmholtz

equation. Int. J. Numer. Methods Eng. 38, 371–397 (1995)
25. Wang, J., Zhang, Z.: A hybridizable weak Galerkin method for the Helmholtz equation with large wave number: hp

analysis. Int. J. Numer. Anal. Model. 14, 744–761 (2017)
26. Ma, J., Zhu, J., Li, M.: The Galerkin boundary element method for exterior problems of 2-d Helmholtz equation with

arbitrary wavenumber. Eng. Anal. Bound. Elem. 34, 1058–1063 (2010)
27. Hsiao, G., Xu, L.: A system of boundary integral equations for the transmission problem in acoustics. Appl. Numer.

Math. 61, 1017–1029 (2011)
28. Hsiao, G., Nigam, N., Pasciak, J.E., Xu, L., Yin, T.: Error analysis of the DtN-FEM for the scattering problem in acoustics via

Fourier analysis. J. Comput. Appl. Math. 235, 4949–4965 (2011)
29. Li, H., Ma, Y.: Mechanical quadrature method and splitting extrapolation for solving Dirichlet boundary integral

equation of Helmholtz on polygons. J. Appl. Math. 2014, Article ID 812505 (2014)
30. Cheng, P., Huang, J., Wang, Z.: Mechanical quadrature methods and extrapolation for solving nonlinear boundary

Helmholtz integral equation. Appl. Math. Mech. 32, 1505–1514 (2011)
31. Ying, L.: Directional preconditioner for 2D high frequency obstacle scattering. Multiscale Model. Simul. 13, 829–846

(2015)



Zhang et al. Advances in Difference Equations        (2019) 2019:362 Page 15 of 15

32. Chen, D., Huang, T., Li, L.: Comparison of algebraic multigrid preconditioners for solving Helmholtz equations. J. Appl.
Math. 2012, Article ID 367909 (2012)

33. Huang, Z., Huang, T.: A constraint preconditioner for solving symmetric positive definite systems and application to
the Helmholtz equations and Poisson equations. Math. Model. Anal. 15, 299–311 (2010)

34. Bao, G., Sun, W.: A fast algorithm for the electromagnetic scattering from a large cavity. SIAM J. Sci. Comput. 27,
553–574 (2005)

35. Du, K., Li, B., Sun, W.: A numerical study on the stability of a class of Helmholtz problems. J. Comput. Phys. 287, 46–59
(2015)

36. Zhao, M., Qiao, Z., Tang, T.: A fast high order method for electromagnetic scattering by large open cavities. J. Comput.
Math. 29, 287–304 (2011)


	Sixth-order ﬁnite difference scheme for the Helmholtz equation with inhomogeneous Robin boundary condition
	Abstract
	Keywords

	Introduction
	Numerical scheme
	Numerical results
	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


