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Abstract
Under simple conditions on f and a, we show the existence of positive radial solutions
for the n-dimensional elliptic differential system

{
�u(x) +Λa(|x|)f(u(x)) = 0, R1 < |x| < R2,

u||x|=R1 = u||x|=R2 = 0.

Here � denotes the Laplace operator, f(x) = (f1(x), . . . , fi(x), . . . , fn(x))T ,
x = (x1, x2, . . . , xn)T ,u(x) = (u1(x), . . . ,ui(x), . . . ,un(x))T ,�u(x) =
(�u1(x), . . . ,�ui(x), . . . ,�un(x))T ,Λ = diag[λ1, . . . ,λi , . . . ,λn],a(|x|) =
diag[a1(|x|), . . . ,ai(|x|), . . . ,an(|x|)],R2 > R1 > 0,x ∈ Rn,n ≥ 2. The interest is that a(|x|) is
allowed to change sign on [R1,R2], which needs some new ingredients in the
arguments. An example is also given to illustrate the main results.

Keywords: Positive radial solutions; n-dimensional elliptic systems; Indefinite weight
function; n parameters

1 Introduction
In this paper, we analyze the existence and multiplicity of positive radial solutions for the
following n-dimensional elliptic differential system:

⎧⎨
⎩�u(x) + Λa(|x|)f (u(x)) = 0, R1 < |x| < R2,

u||x|=R1 = u||x|=R2 = 0,
(1.1)

where � denotes the Laplace operator, R2 > R1 > 0, x ∈ Rn, n ≥ 2, a(|x|) is allowed to
change sign on [R1, R2], and

x = (x1, x2, . . . , xn)T ,

u(x) =
(
u1(x), . . . , ui(x), . . . , un(x)

)T ,

�u(x) =
(
�u1(x), . . . ,�ui(x), . . . ,�un(x)

)T ,

Λ = diag[λ1, . . . ,λi, . . . ,λn],
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a
(|x|) = diag

[
a1
(|x|), . . . , ai

(|x|), . . . , an
(|x|)],

f(x) =
(
f1(x), . . . , fi(x), . . . , fn(x)

)T ,

where we understand fi(x) to mean fi(x1, x2, . . . , xn), i = 1, 2, . . . , n.
Therefore, system (1.1) means that (i = 1, 2, . . . , n)

⎧⎨
⎩�ui(x) + λiai(|x|)fi(u(x)) = 0, R1 < |x| < R2,

ui||x|=R1 = ui||x|=R2 = 0.
(1.2)

Let J = [0, 1],R+ = [0, +∞),R = (–∞, +∞),Rn
+ = R+ ×R+ × · · · ×R+︸ ︷︷ ︸

n

. By a positive ra-

dial solution u∗ of system (1.1) we understand a solution u∗ with u∗
i ≥ 0 (i = 1, 2, . . . , n) and

either u∗
i �≡ 0 (i = 1, 2, . . . , n). By the maximum principle, each nontrivial component of u∗

is thus positive in Ω = {x ∈ Rn : R1 < |x| < R2, R1, R2 > 0}. For x, y ∈ Rn, we define x ≤ y if
and only if xi ≤ yi, i = 1, 2, . . . , n.

The study of boundary value problems with positive solutions has attracted recently the
attention of different researchers and it is a topic of current interest; see [1–16], and the
references therein.

At the same time, we note that the existence and multiplicity of solutions to the elliptic
differential systems:

⎧⎨
⎩�u + k1(|x|)f (u, v) = 0,

�v + k2(|x|)g(u, v) = 0,
(1.3)

under different boundary conditions have been studied extensively in the past decades
(see [17–36]). Kawano and Kusano [17] gave sufficient conditions which guarantee the ex-
istence of entire solutions of (1.3) by means of the method of sub- and super-solutions. By
applying the linking theorem and with the assistance of the Nehari manifold, Benrhouma
[18] showed the existence of at least two solutions of (1.3) in the whole space Rn. Serrin
and Zou [37] gave an excellent survey on the existence results for problem (1.3).

However, there is almost no paper dealing with the n-dimensional elliptic differential
system with indefinite weight functions and parameters; for instance, see [38–41] and the
references therein. Dalmasso [38] investigated the existence and uniqueness of positive
solutions for the following elliptic system:

⎧⎪⎪⎨
⎪⎪⎩

�u + g(v) = 0 in Ω ,

�v + f (u) = 0 in Ω ,

u = v = 0 on Ω ,

where Ω ⊂ Rn (n ≥ 1) denotes a bounded domain of class C2,α ,α ∈ (0, 1]. Precup [39]
considered the existence, localization and multiplicity of positive radial solutions of the
elliptic differential system:

⎧⎨
⎩�u1 + f1(|x|)g1(u1, u2) = 0,

�u2 + f2(|x|)g2(u1, u2) = 0,
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in Ω := {x ∈Rn : |x| > r0} (n ≥ 3), under the conditions

u1 = u2 = 0 for |x| = r0 and u1, u2 → 0 as |x| → ∞.

Recently, in [40], Maniwa studied the uniqueness and existence of positive solutions for
the following elliptic differential system:

⎧⎨
⎩–�ui =

∏N
j=1 upij

j in Ω ,

ui = 0 on Ω , i = 1, 2, . . . , N ,

where pij (1 ≤ i, j ≤ N) are nonnegative constants and Ω ⊂Rn (n ≥ 1) denotes a bounded
domain of class C2,α ,α ∈ (0, 1).

To the best of our knowledge, in the literature there are no articles on multiple radial
positive solutions for the analogous of n-dimensional elliptic differential system with in-
definite weights and n parameters. More precisely, the study of Λ �≡ 1, and a changing sign
on [R1, R2] is still open for the elliptic systems. Specially, comparing with [17–39, 41, 42],
the main features of this paper are as follows.

(i) λi > 0 is available, not only λi ≡ 1, i = 1, 2, . . . , n.
(ii) a(|x|) being allowed to change sign on [R1, R2] is considered.

(iii) n-dimensional elliptic system is investigated.
In [40], the author considered n-dimensional elliptic system and obtained several ex-

cellent results of uniqueness and existence of positive solutions, but Maniwa only stud-
ied the case λi ≡ 1 and ai(|x|) ≡ 1 (i = 1, 2, . . . , n). On the other hand, in [43], Yao
pointed out that it is of particular mathematical interest when the weight function a(|x|)
is allowed to change sign on [R1, R2]. Therefore, the present work is new and signifi-
cant.

In this paper, we always suppose that the following conditions hold:
1. fi : Rn

+ →R+ is continuous and there exists 0 < ci ≤ 1 such that

fi(x) ≥ ciϕi(x), x ∈Rn
+,

where ϕi(x) = max{fi(y) : 0 ≤ y ≤ x}, i = 1, 2, . . . , n.
2. ai : [R1, R2] →R is continuous and there exists R1 < ζ < R2 such that

ai(r) ≥ 0, r ∈ [R1, ζ ]; ai(r) ≤ 0, r ∈ [ζ , R2], i = 1, 2, . . . , n.

Moreover, ai(r) (i = 1, 2, . . . , n) does not vanish identically on any subintervals of [R1, R2].
In Sect. 2 we list several preliminary results that will be used in the subsequent sections.

Section 3 is devoted to stating and proving the main results. Several special cases and an
example are also given in Sect. 4.

2 Preliminaries
Looking for radial solutions, let us first introduce the radial coordinates form of system
(1.2); for details to see Precup [39] and Lee [44]. By the radial variable r = |x|, we can write
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(1.2) as⎧⎨
⎩u′′

i (r) + n–1
r u′

i(r) + λiai(r)fi(u(r)) = 0, R1 < r < R2,

ui(R1) = ui(R2) = 0,
(2.1)

where i = 1, 2, . . . , n.
Let

s(r) = –
∫ R2

r

dt
tn–1 . (2.2)

Then

s(R1) = –
∫ R2

R1

dt
tn–1 =: m

and s(R2) = 0.
Set vi(s) = ui(r(s)). Then taking the derivative of this equation with respect to r, and

together with (2.2), we get

u′
ir = v′

is × s′(r) = v′
is × 1

rn–1 ,

u′′
irr = v′′

iss × 1
r2n–2 + v′

is × (1 – n)r2–n.

For convenience, we write v′′
iss as v′′

i (s). Thus submitting u′
irr and u′′

ir into (2.1), we get
⎧⎨
⎩v′′

i (s) + λir2(n–1)(s)ai(r(s))fi(v(s)) = 0, m < s < 0,

vi(m) = vi(0) = 0,
(2.3)

where i = 1, 2, . . . , n, v = (v1, v2, . . . , vn)T .
Let t = m–s

m . Then s = m(1 – t). Set wi(t) = vi(s). Then similarly system (2.3) can be written
as ⎧⎨

⎩w′′
i (t) + λim2r2(n–1)(m(1 – t))ai(r(m(1 – t)))fi(w(t)) = 0, 0 < t < 1,

wi(1) = wi(0) = 0,
(2.4)

where i = 1, 2, . . . , n, w = (w1, w2, . . . , wn)T .
Letting hi(t) = m2r2(n–1)(m(1 – t))ai(r(m(1 – t))), then system (2.4) is equal to⎧⎨

⎩w′′
i (t) + λihi(t)fi(w) = 0, 0 < t < 1,

wi(1) = wi(0) = 0,
(2.5)

where i = 1, 2, . . . , n.
The following conditions will be assumed throughout this paper:
(H1) hi : J →R is continuous and there exists 0 < ξ < 1 such that

hi(t) ≥ 0, t ∈ [0, ξ ]; hi(t) ≤ 0, t ∈ [ξ , 1], i = 1, 2, . . . , n.

Moreover, h(t) does not vanish identically on any subintervals of J .
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(H2) fi : Rn
+ →R+ is continuous and there exists 0 < ci ≤ 1 such that

fi(w) ≥ ciϕi(w), i = 1, 2, . . . , n,

where ϕi(w) = max{fi(y), 0 ≤ yj ≤ wj, j = 1, 2, . . . , n}.
(H3) There exist 0 < θi < +∞, θi �= 1 and ki, li > 0 such that

ki

( n∑
i=1

wi

)θi

≤ fi(w) ≤ li

( n∑
i=1

wi

)θi

, w ∈Rn
+, i = 1, 2, . . . , n.

(H4) There exists 0 < σ < ξ such that

c2
i kiσ

θ2

∫ ξ

σ

G(t, s)h+
i (s) ds ≥ liξ

θ2

∫ 1

ξ

G(t, s)h–
i (s) ds, i = 1, 2, . . . , n.

We define

h+
i (t) = max

{
hi(t), 0

}
, h–

i (t) = – min
{

hi(t), 0
}

, i = 1, 2, . . . , n.

Then

hi(t) = h+
i (t) – h–

i (t), i = 1, 2, . . . , n.

Next we give some lemmas which we will need later.

Lemma 2.1 (See [39]) By (2.1)–(2.4), system (1.1) admitting positive radial solutions is
equal to system (2.4) having positive solutions.

Lemma 2.2 (Lemma 1 of [45]) Assume that (H1)–(H2) hold. Then system (2.5) has a solu-
tion w = (w1, . . . , wi, . . . , wn) given by

wi(t) = λi

∫ 1

0
G(t, s)hi(s)fi

(
w(s)

)
ds, t ∈ J , (2.6)

where

G(t, s) =

⎧⎨
⎩t(1 – s), 0 ≤ t ≤ s ≤ 1,

s(1 – t), 0 ≤ s ≤ t ≤ 1.
(2.7)

It is well known that C[0, 1] is a real Banach space with the norm given by ‖x‖∞ =
maxt∈J |x(t)|. Let X =

∏n
i=1 C[0, 1], and for any x = (x1, x2, . . . , xn)T ∈ X,

‖x‖ =
n∑

i=1

‖xi‖∞.

Then (X,‖ · ‖) is a real Banach space.
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Define a cone K in X by

K =
n∏

i=1

Ki,

where

Ki =
{

xi ∈ C+[0, 1] : xi(t) is concave on [0, ξ ], and convex on [ξ , 1]
}

, i = 1, 2, . . . , n,

C+[0, 1] =
{

x ∈ C[0, 1] : x(t) ≥ 0,∀t ∈ J and x(0) = x(1) = 0
}

.

We define some sets as follows:

Ki,r =
{

xi ∈ Ki|‖xi‖ < r
}

,

Ki,r,R =
{

xi ∈ Ki|r < ‖xi‖ < R
}

,

∂Ki,r =
{

xi ∈ Ki|‖xi‖ = r
}

,

where R > r > 0, i = 1, 2, . . . , n.

Lemma 2.3 (Proposition 2.1–2.2 of [16]) From (2.7), it is easy to verify that G(t, s) has
following properties:

(i) G(t, s) > 0,∀t, s ∈ (0, 1);
(ii) G(t, s) ≤ G(s, s),∀t, s ∈ J ;

(iii) G(t, s) ≥ σG(s, s),∀t ∈ [σ , 1 – σ ], s ∈ J , where σ is defined in (H4).

We define the map TΛ : Rn
+ → Rn

+ with components (Tλ1
1 , . . . , Tλi

i , . . . , Tλn
n ). Here, we

understand TΛw = (Tλ1
1 w, . . . , Tλi

i w, . . . , Tλn
n w), which

(
Tλi

i w
)
(t) = λi

∫ 1

0
G(t, s)hi(s)fi

(
w(s)

)
ds, t ∈ J , i = 1, 2, . . . , n. (2.8)

Cheng and Zhang [46] pointed out that the existence of a positive solutions of system
(2.5) is equivalent to the existence of nontrivial fixed points of Tλ in K .

Lemma 2.4 Assume (H1)–(H4) hold. Then TΛ : K → K is completely continuous.

Proof We show that TΛ(K) ⊂ K , that is, for w ∈ K , we show that Tλi
i ∈ Ki, i = 1, 2, . . . , n. By

(2.8), it is clear that (Tλi
i w)(0) = (Tλi

i w)(1) = 0 (i = 1, 2, . . . , n).
Define a function q : J → J as follows:

q(t) = min

{
t
ξ

,
1 – t
1 – ξ

}
.

Then minσ≤t≤ξ q(t) = σ
ξ

, maxξ≤t≤1 q(t) = 1.
For any w ∈ K , we prove that

∫ 1

0
G(t, s)hi(s)fi

(
w(s)

)
ds ≥

∫ σ

0
G(t, s)h+

i (s)fi
(
w(s)

)
ds.
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Since w ∈ K and wi(0) = wi(1) = 0, i = 1, 2, . . . , n, then we have

wi(t) – wi(0)
t – 0

≥ wi(ξ ) – wi(0)
ξ – 0

, t ∈ [0, ξ ] ⇒ wi(t) ≥ q(t)wi(ξ ), t ∈ [0, ξ ],

wi(t) – wi(1)
t – 1

≥ wi(ξ ) – wi(1)
ξ – 1

, t ∈ [ξ , 1] ⇒ wi(t) ≤ q(t)wi(ξ ), t ∈ [ξ , 1],

where i = 1, 2, . . . , n. Accordingly, we know that

w(t) ≥ q(t)w(ξ ), t ∈ [0, ξ ]; w(t) ≤ q(t)w(ξ ), t ∈ [ξ , 1].

From the definition of ϕi (i = 1, 2, . . . , n), we also have

ϕi
(
w(t)

)≥ ϕi
(
q(t)w(ξ )

)
, t ∈ [0, ξ ],

ϕi
(
w(t)

)≤ ϕi
(
q(t)w(ξ )

)
, t ∈ [ξ , 1].

Then, for 0 ≤ t ≤ 1,

∫ 1

0
G(t, s)hi(s)fi

(
w(s)

)
ds –

∫ σ

0
G(t, s)h+

i (s)fi
(
w(s)

)
ds

=
∫ ξ

σ

G(t, s)h+
i (s)fi

(
w(s)

)
ds –

∫ 1

ξ

G(t, s)h–
i (s)fi

(
w(s)

)
ds

≥ ci

∫ ξ

σ

G(t, s)h+
i (s)ϕi

(
w(s)

)
ds –

∫ 1

ξ

G(t, s)h–
i (s)ϕi

(
w(s)

)
ds

≥ ci

∫ ξ

σ

G(t, s)h+
i (s)ϕi

(
q(s)w(ξ )

)
ds –

∫ 1

ξ

G(t, s)h–
i (s)ϕi

(
q(s)w(ξ )

)
ds

≥ ci

∫ ξ

σ

G(t, s)h+
i (s)fi

(
q(s)w(ξ )

)
ds –

1
ci

∫ 1

ξ

G(t, s)h–
i (s)fi

(
q(s)w(ξ )

)
ds

≥ ci

∫ ξ

σ

G(t, s)h+
i (s)ki

(
q(s)

n∑
i=1

wi(ξ )

)θi

ds

–
1
ci

∫ 1

ξ

G(t, s)h–
i (s)li

(
q(s)

n∑
i=1

wi(ξ )

)θi

ds

≥ ciki

(
σ

ξ

)θi
( n∑

i=1

wi(ξ )

)θi ∫ ξ

σ

G(t, s)h+
i (s) ds

–
1
ci

li

( n∑
i=1

wi(ξ )

)θi ∫ 1

ξ

G(t, s)h–
i (s) ds

≥
( n∑

i=1

wi(ξ )

)θi(
ciki

(
σ

ξ

)θi ∫ ξ

σ

G(t, s)h+
i (s) ds –

1
ci

li

∫ 1

ξ

G(t, s)h–
i (s) ds

)

≥ 0.

Thus Tλi
i w ≥ 0, i = 1, 2, . . . , n.
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By the above definitions and the properties of the Green’s function G(t, s), we have

(
Tλi

i w
)′′(t) = λih+

i (t)fi
(
w(t)

)≥ 0, t ∈ [0, ξ ],(
Tλi

i w
)′′(t) = –λih–

i (t)fi
(
w(t)

)≤ 0, t ∈ [0, ξ ],

where i = 1, 2, . . . , n. Thus, Tλi
i w ∈ Ki and Tλi

i (K) ⊂ Ki, i = 1, 2, . . . , n, that is, TΛ(K) ⊂ K .
Similar to the proof of Lemma 2.4 in [47], one can prove TΛ : K → K is completely

continuous. The proof of Lemma 2.5 is complete. �

The main proof is based on the well-known fixed point theorem of a cone expansion
and a compression of norm type.

Lemma 2.5 (Theorem 2.3.4 of [48]) (Fixed point theorem of cone expansion and compres-
sion of norm type). Let Ω1 and Ω2 be two bounded open sets in a real Banach space E such
that 0 ∈ Ω1 and Ω̄1 ⊂ Ω2. Let the operator T : P ∩ (Ω̄2\Ω1) → P be completely continuous,
where P is a cone in E. Suppose that one of the two conditions

(i) ‖Tx‖ ≤ ‖x‖,∀x ∈ P ∩ ∂Ω1 and ‖Tx‖ ≥ ‖x‖,∀x ∈ P ∩ ∂Ω2 and
(ii) ‖Tx‖ ≥ ‖x‖,∀x ∈ P ∩ ∂Ω1 and ‖Tx‖ ≤ ‖x‖,∀x ∈ P ∩ ∂Ω2

is satisfied. Then T has at least one fixed point in P ∩ (Ω̄2\Ω1).

3 Main results
Based on the lemmas mentioned above, we give the following theorems and their proofs.

Theorem 3.1 Assume that (H1)–(H4) hold. If θi > 1, i = 1, 2, . . . , n, then there exists λi,0 > 0
such that system (1.1) has at least two positive radial solutions for λi ∈ [λi,0, +∞).

Proof On one hand, since θi > 1, by (H3), we get

lim
max1≤j≤n wj→0

fi(w)∑n
i=1 wi

≤ lim
max1≤j≤n wj→0

li(
∑n

i=1 wi)θi∑n
i=1 wi

= 0,

where i = 1, 2, . . . , n.
Furthermore, there exists a r1 > 0 such that

fi(w) ≤ εi

n∑
i=1

wi, 0 < wi < r1,

where εi satisfies
∑n

i=1 maxt∈J (λiεi
∫ ξ

0 G(t, s)h+
i (s) ds) < 1, i = 1, 2, . . . , n.

Then, for any wi ∈ ∂Ki,r1 , we have

∥∥Tλi
i (w)

∥∥∞ = max
t∈J

∣∣∣∣λi

∫ 1

0
G(t, s)hi(s)fi

(
w(s)

)
ds
∣∣∣∣

= max
t∈J

∣∣∣∣λi

∫ ξ

0
G(t, s)h+

i (s)fi
(
w(s)

)
ds – λi

∫ 1

ξ

G(t, s)h–
i (s)fi

(
w(s)

)
ds
∣∣∣∣

≤ max
t∈J

∣∣∣∣λi

∫ ξ

0
G(t, s)h+

i (s)fi
(
w(s)

)
ds
∣∣∣∣
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≤ max
t∈J

∣∣∣∣∣λi

∫ ξ

0
G(t, s)h+

i (s)εi

n∑
i=1

wi(s) ds

∣∣∣∣∣
≤ max

t∈J
λi

∫ ξ

0
G(t, s)h+

i (s)εi

∣∣∣∣∣
n∑

i=1

wi(s)

∣∣∣∣∣ds

≤ max
t∈J

λiεi

∫ ξ

0
G(t, s)h+

i (s) ds

( n∑
i=1

‖wi‖∞

)

= max
t∈J

λiεi

∫ ξ

0
G(t, s)h+

i (s) ds‖w‖,

where i = 1, 2, . . . , n.
Thus, for wi ∈ ∂Ki,r1 , i = 1, 2, . . . , n, we have

∥∥TΛw
∥∥ =

n∑
i=1

∥∥Tλi
i w

∥∥∞

≤
n∑

i=1

max
t∈J

(
λiεi

∫ ξ

0
G(t, s)h+

i (s) ds
)

‖w‖

< ‖w‖. (3.1)

We denote δ(t) = min{ t
ξ

, ξ–t
ξ

}, t ∈ [0, ξ ]. If wi ∈ Ki, i = 1, 2, . . . , n, then from the concave on
[0, ξ ]. So

wi(t) ≥ δ(t)‖wi‖∞, t ∈ [0, ξ ], i = 1, 2, . . . , n.

It follows that wi(t) ≥ α‖wi‖∞, t ∈ [ σ
2 ,σ ], where α = min σ

2 ≤t≤σ δ(t), i = 1, 2, . . . , n. Thus we
have

wi(t) ≥ α‖wi‖, t ∈
[

σ

2
,σ
]

, i = 1, 2, . . . , n.

Since θi > 1, i = 1, 2, . . . , n, by (H3), we have

lim
min1≤j≤n wj→∞

fi(w)∑n
i=1 wi

≥ lim
min1≤j≤n wj→∞

ki(
∑n

i=1 wi)θi∑n
i=1 wi

= ∞,

where i = 1, 2, . . . , n.
Furthermore, there exists 0 < r1 < R′

1 such that

fi(w) ≥ ηi

n∑
i=1

wi, wi ≥ R′
1,

where ηi satisfies
∑n

i=1 maxt∈J (λiηiα
∫ σ

σ
2

G(t, s)h+
i (s) ds) ≥ 1, i = 1, 2, . . . , n.

Choose R1 ≥ R′
1

α
. Then, for any wi ∈ ∂Ki,R1 , i = 1, 2, . . . , n, we have min σ

2 ≤t≤σ wi(t) ≥
min σ

2 ≤t≤σ δ(t)‖wi‖∞ = αR1 ≥ R′
1 and fi(w(t)) ≥ ηi(

∑n
i=1 wi(t)), t ∈ [ σ

2 ,σ ], i = 1, 2, . . . , n.
Then, for wi ∈ ∂Ki,R1 , we have

∥∥Tλi
i w

∥∥∞ = max
t∈J

∣∣∣∣λi

∫ 1

0
G(t, s)hi(s)fi

(
w(s)

)
ds
∣∣∣∣
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≥ max
t∈J

∣∣∣∣λi

∫ σ

0
G(t, s)h+

i (s)fi
(
w(s)

)
ds
∣∣∣∣

≥ max
t∈J

∣∣∣∣∣λi

∫ σ

σ
2

G(t, s)h+
i (s)ηi

n∑
i=1

wi(s) ds

∣∣∣∣∣
≥ max

t∈J
λi

∫ σ

σ
2

G(t, s)h+
i (s)ηiα

n∑
i=1

‖wi‖∞ ds

= max
t∈J

λiηiα

∫ σ

σ
2

G(t, s)h+
i (s) ds‖w‖,

where i = 1, 2, . . . , n.
Thus, for wi ∈ ∂Ki,R1 , i = 1, 2, . . . , n, we have

∥∥TΛw
∥∥ =

n∑
i=1

∥∥Tλi
i w

∥∥∞

≥
n∑

i=1

max
t∈J

(
λiηiα

∫ σ

σ
2

G(t, s)h+
i (s) ds

)
‖w‖

≥ ‖w‖. (3.2)

In addition, choose a number 0 < r < r1. Noticing that fi(w) > 0 for all w > 0, we can
define

fi,r = min
{

fi(w) : αr ≤ wi ≤ r
}

, i = 1, 2, . . . , n.

Let λi,0 = r
maxt∈J

∫ σ
σ
2

G(t,s)h+
i (s)fi,r ds .

If wi ∈ ∂Ki,r , then ‖wi‖∞ = r and αr = min σ
2 ≤t≤σ δ(t)‖wi‖∞ ≤ wi(t) ≤ ‖wi‖∞ = r, t ∈

[ σ
2 ,σ ], i = 1, 2, . . . , n. It is clear that fi(w(t)) ≥ fi,r , t ∈ [ σ

2 ,σ ], i = 1, 2, . . . , n. Then, for wi ∈
∂Ki,r , we have

∥∥Tλi
i w

∥∥∞ = max
t∈J

∣∣∣∣λi

∫ 1

0
G(t, s)hi(s)fi

(
w(s)

)
ds
∣∣∣∣

≥ max
t∈J

∣∣∣∣λi

∫ σ

0
G(t, s)h+

i (s)fi
(
w(s)

)
ds
∣∣∣∣

≥ max
t∈J

λi

∫ σ

σ
2

G(t, s)h+
i (s)fi,r ds,

where i = 1, 2, . . . , n.
Thus, for wi ∈ ∂Ki,r , i = 1, 2, . . . , n, we have

∥∥TΛw
∥∥ =

n∑
i=1

∥∥Tλi
i w

∥∥∞

≥
n∑

i=1

max
t∈J

(
λi

∫ σ

σ
2

G(t, s)h+
i (s)fi,r ds

)

≥
n∑

i=1

max
t∈J

λi,0

(∫ σ

σ
2

G(t, s)h+
i (s)fi,r ds

)



Feng and Li Advances in Difference Equations        (2019) 2019:373 Page 11 of 24

= nr =
n∑

i=1

‖wi‖∞ = ‖w‖. (3.3)

Applying Lemma 2.5 to (3.1), (3.2) and (3.3) shows that TΛ admits at least two fixed
points w1, w2, where w1 ∈ KR1 \Kr1 and w2 ∈ Kr1 \Kr . Thus it follows from Lemma 2.1 that,
if θi > 1, i = 1, 2, . . . , n, there exists λi,0 > 0 such that system (1.1) has at least two positive
radial solutions for λi ∈ [λi,0, +∞). This finishes the proof of Theorem 3.1. �

Theorem 3.2 Assume that (H1)–(H4) hold. If 0 < θi < 1, i = 1, 2, . . . , n, then there exists
λ0

i > 0 such that system (1.1) admits at least two positive radial solutions for λi ∈ (0,λ0
i ], i =

1, 2, . . . , n.

Proof On one hand, since 0 < θi < 1, by (H3), we get

lim
max1≤j≤n wj→0

fi(w)∑n
i=1 wi

≥ lim
max1≤j≤n wj→0

ki(
∑n

i=1 wi)θi∑n
i=1 wi

= ∞,

where i = 1, 2, . . . , n.
Furthermore, there exists a r2 > 0 such that

fi(w) ≥ η1
i

n∑
i=1

wi, 0 < wi < r2,

where η1
i satisfies

∑n
i=1 maxt∈J λiη

1
i α

∫ σ
σ
2

G(t, s)h+
i (s) ds > 1, i = 1, 2, . . . , n. Thus min{fi(w) :

αr2 ≤ wi ≤ r2, i = 1, 2, . . . , n} ≥ η1
i
∑n

i=1 wi, i = 1, 2, . . . , n.
Then, for any wi ∈ ∂Ki,r2 , i = 1, 2, . . . , n, we have

∥∥Tλi
i w

∥∥∞ = max
t∈J

∣∣∣∣λi

∫ 1

0
G(t, s)hi(s)fi

(
w(s)

)
ds
∣∣∣∣

≥ max
t∈J

∣∣∣∣λi

∫ σ

0
G(t, s)hi(s)fi

(
w(s)

)
ds
∣∣∣∣

≥ max
t∈J

∣∣∣∣∣λi

∫ σ

σ
2

G(t, s)h+
i (s)η1

i

n∑
i=1

wi(s) ds

∣∣∣∣∣
≥ max

t∈J
λi

∫ σ

σ
2

G(t, s)h+
i (s)η1

i α

n∑
i=1

‖wi‖∞ ds

≥ max
t∈J

λiη
1
i α

∫ σ

σ
2

G(t, s)h+
i (s) ds‖w‖,

where i = 1, 2, . . . , n.
Thus, for wi ∈ ∂Ki,r2 , i = 1, 2, . . . , n, we have

∥∥TΛw
∥∥ =

n∑
i=1

∥∥Tλi
i w

∥∥∞

≥
n∑

i=1

max
t∈J

λiη
1
i α

∫ σ

σ
2

G(t, s)h+
i (s) ds‖w‖ > ‖w‖. (3.4)
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On the other hand, since 0 < θi < 1, by (H3), we have

lim
min1≤j≤n wj→∞

fi(w)∑n
i=1 wi

≤ lim
min1≤j≤n wj→∞

li(
∑n

i=1 wi)θi∑n
i=1 wi

= 0,

where i = 1, 2, . . . , n.
Furthermore, there exists 0 < r2 < R′

2 such that

fi(w) ≤ ε1
i

( n∑
i=1

wi

)
, wi ≥ R′

2,

where ε1
i satisfies

∑n
i=1 maxt∈J λi

∫ ξ

0 G(t, s)h+
i (s)ε1

i ds ≤ 1
2 , i = 1, 2, . . . , n.

Let Mi = max{fi(w) : 0 ≤ wi ≤ R′
2, i = 1, 2, . . . , n}. It implies that

fi(w) ≤ ε1
i

( n∑
i=1

wi

)
+ Mi, x, y ≥ 0, i = 1, 2, . . . , n.

Choose R2 ≥ {R′
2, 2

n
∑n

i=1 maxt∈J λi
∫ ξ

0 G(t, s)h+
i (s)Mi ds}. If wi ∈ ∂Ki,R2 , then ‖wi‖∞ = R2

and 0 ≤ wi(t) ≤ R2, t ∈ J , i = 1, 2, . . . , n. It is easy to see that fi(w(t)) ≤ ε1
i (
∑n

i=1 wi(t))+Mi, t ∈
J , i = 1, 2, . . . , n. Then, for any wi ∈ ∂Ki,R2 , we have

∥∥Tλi
i w

∥∥∞ = max
t∈J

∣∣∣∣λi

∫ 1

0
G(t, s)hi(s)fi

(
w(s)

)
ds
∣∣∣∣

= max
t∈J

∣∣∣∣λi

∫ ξ

0
G(t, s)h+

i (s)fi
(
w(s)

)
ds – λi

∫ 1

ξ

G(t, s)h–
i (s)fi

(
w(s)

)
ds
∣∣∣∣

≤ max
t∈J

∣∣∣∣λi

∫ ξ

0
G(t, s)h+

i (s)fi
(
w(s)

)
ds
∣∣∣∣

≤ max
t∈J

∣∣∣∣∣λi

∫ ξ

0
G(t, s)h+

i (s)

[
ε1

i

n∑
i=1

wi(s) + Mi

]
ds

∣∣∣∣∣
≤ max

t∈J
λi

∫ ξ

0
G(t, s)h+

i (s)ε1
i

n∑
i=1

‖wi‖∞ ds + max
t∈J

λi

∫ ξ

0
G(t, s)h+

i (s)Mi ds,

where i = 1, 2, . . . , n.
Thus, for wi ∈ ∂Ki,R2 , i = 1, 2, . . . , n, we have

∥∥TΛw
∥∥ =

n∑
i=1

∥∥Tλi
i w

∥∥∞

≤
n∑

i=1

(
max

t∈J
λi

∫ ξ

0
G(t, s)h+

i (s)ε1
i

n∑
i=1

‖wi‖∞ ds

+ max
t∈J

λi

∫ ξ

0
G(t, s)h+

i (s)Mi ds

)

≤
n∑

i=1

max
t∈J

λi

∫ ξ

0
G(t, s)h+

i (s)ε1
i ds‖w‖ +

n∑
i=1

max
t∈J

λi

∫ ξ

0
G(t, s)h+

i (s)Mi ds
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≤ 1
2
‖w‖ +

n
2

R2

=
1
2
‖w‖ +

1
2
‖w‖

= ‖w‖. (3.5)

In addition, choose a number 0 < r′ < r1. Noticing that fi(w) > 0 for all wi > 0, we can
define

f r′
i = max

{
fi(w) : 0 < wj ≤ r′, j = 1, 2, . . . , n

}
,

where i = 1, 2, . . . , n.
Let λ0 = r′

maxt∈J
∫ ξ

0 G(t,s)h+
i (s)f r′

i ds
.

If wi ∈ ∂Kr′ , then ‖wi‖∞ = r′ and 0 ≤ wi(t) ≤ ‖wi‖∞ = r′, t ∈ J , i = 1, 2, . . . , n. It is clear that
fi(w(t)) ≤ f r′

i , t ∈ J , i = 1, 2, . . . , n. Then, for wi ∈ ∂Ki,r′ , we have

∥∥Tλi
i w

∥∥∞ = max
t∈J

∣∣∣∣λi

∫ 1

0
G(t, s)hi(s)fi

(
w(s)

)
ds
∣∣∣∣

= max
t∈J

∣∣∣∣λi

∫ ξ

0
G(t, s)h+

i (s)fi
(
w(s)

)
ds – λi

∫ 1

ξ

G(t, s)h–
i (s)fi

(
w(s)

)
ds
∣∣∣∣

≤ max
t∈J

∣∣∣∣λi

∫ ξ

0
G(t, s)h+

i (s)fi
(
w(s)

)
ds
∣∣∣∣

≤ max
t∈J

∣∣∣∣λi

∫ ξ

0
G(t, s)h+

i (s)f r′
i ds

∣∣∣∣
≤ max

t∈J
λ0

i

∫ ξ

0
G(t, s)h+

i (s)f r′
i ds,

where i = 1, 2, . . . , n.
Thus, for wi ∈ ∂Ki,r′ , i = 1, 2, . . . , n, we have

∥∥Tλw
∥∥ =

n∑
i=1

∥∥Tλi
i w

∥∥∞

≤
n∑

i=1

max
t∈J

λ0
i

∫ ξ

0
G(t, s)h+

i (s)f r′
i ds

= nr′ =
n∑

i=1

‖wi‖∞ = ‖w‖. (3.6)

Applying Lemma 2.5 to (3.4), (3.5) and (3.6) shows that TΛ admits at least two fixed
points w1, w2, where w1 ∈ KR2 \ Kr2 , w2 ∈ Kr2 \ Kr′ . Thus it follows from Lemma 2.1 that,
if 0 < θi < 1, i = 1, 2, . . . , n, there exists λ0

i > 0 such that system (1.1) has at least two positive
radial solutions for λi ∈ (0,λ0

i ]. The proof of Theorem 3.2 is completed. �

4 Some special cases and an example
In this part, we consider two special cases: Λ ≡ 1 of system (1.1) and the weight function
a(|x|) is positive on (R1, R2).
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4.1 Case of Λ ≡ 1
We consider Λ ≡ 1, that is, λi ≡ 1 (i = 1, 2, . . . , n). If Λ ≡ 1, system (1.1) translates into the
system (4.1):

⎧⎨
⎩�u(x) + a(|x|)f(u(x)) = 0, R1 < |x| < R2,

u||x|=R1 = u||x|=R2 = 0.
(4.1)

Similar to system (2.5), we transform system (4.1) into the system (4.2):

⎧⎨
⎩w′′

i (t) + hi(t)fi(w) = 0, 0 < t < 1,

wi(1) = wi(0) = 0.
(4.2)

We define the map T : Rn
+ → Rn

+ with components (T1, . . . , Ti, . . . , Tn). Here, we under-
stand Tw = (T1w, . . . , Tiw, . . . , Tnw), where

(Tiw)(t) =
∫ 1

0
G(t, s)hi(s)fi

(
w(s)

)
ds, i = 1, 2, . . . , n. (4.3)

As Cheng and Zhang [46] pointed out, the existence of a positive solution of system (4.1)
is equivalent to the existence of a nontrivial fixed point of T in K .

Lemma 4.1 Assume (H1)–(H4) hold. T : K → K is completely continuous.

Theorem 4.1 Assume (H1)–(H4) hold. System (4.1) has at least one positive radial solu-
tion.

Proof We denote

M =

[ n∑
i=1

∫ σ

0
σG(s, s)h+

i (s) ds

]–1

, N =

[ n∑
i=1

∫ ξ

0
G(s, s)h+

i (s) ds

]–1

.

Let θi > 1 (i = 1, 2, . . . , n). On the one hand, since θi > 1 (i = 1, 2, . . . , n), by (H3), we have

lim
min1≤j≤n wj→0

fi(w)∑n
i=1 wi

≤ lim
min1≤j≤n wj→0

li(
∑n

i=1 wi)θi∑n
i=1 wi

= 0.

Furthermore, there exists a r1 > 0 such that

fi(w) ≤ N
n∑

i=1

wi, 0 < wi < r1, i = 1, 2, . . . , n.

If wi ∈ ∂Ki,r , then ‖wi‖∞ = r1 and 0 ≤ wi(t) ≤ ‖wi‖∞ = r1, t ∈ J , i = 1, 2, . . . , n. This im-
plies that fi(w(t)) ≤ N

∑n
i=1 wi(t) ≤ Nnr1, t ∈ J , i = 1, 2, . . . , n. Then, for any wi ∈ ∂Ki,r1 (i =

1, 2, . . . , n), we have

‖Tw‖ =
n∑

i=1

‖Tiw‖∞ =
n∑

i=1

max
t∈J

∣∣∣∣
∫ 1

0
G(t, s)hi(s)fi

(
w(s)

)
ds
∣∣∣∣
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=
n∑

i=1

max
t∈J

∣∣∣∣
∫ ξ

0
G(t, s)h+

i (s)fi
(
w(s)

)
ds –

∫ 1

ξ

G(t, s)h–
i (s)fi

(
w(s)

)
ds
∣∣∣∣

≤
n∑

i=1

max
t∈J

∣∣∣∣
∫ ξ

0
G(t, s)h+

i (s)fi
(
w(s)

)
ds
∣∣∣∣

≤
n∑

i=1

∣∣∣∣
∫ ξ

0
G(s, s)h+

i (s)fi
(
w(s)

)
ds
∣∣∣∣

≤
n∑

i=1

∫ ξ

0
G(s, s)h+

i (s)Nnr1 ds

= nr1 = ‖w‖.

Consequently,

‖Tw‖ ≤ ‖w‖, ∀w ∈ ∂Kr1 . (4.4)

On the other hand, if wi ∈ Ki, i = 1, 2, . . . , n, then from the concavity on [0, ξ ],

wi(t) ≥ δ(t)‖wi‖∞, t ∈ [0, ξ ], i = 1, 2, . . . , n.

It follows that wi(t) ≥ α‖wi‖∞, t ∈ [ σ
2 ,σ ], where α = min σ

2 ≤t≤σ δ(t), i = 1, 2, . . . , n. Thus we
have

wi(t) ≥ α‖wi‖, t ∈
[

σ

2
,σ
]

, i = 1, 2, . . . , n.

Since θi > 1, i = 1, 2, . . . , n, by (H3), we have

lim
min1≤j≤n wj→∞

fi(w)∑n
i=1 wi

≥ lim
min1≤j≤n wj→∞

ki(
∑n

i=1 wi)θi∑n
i=1 wi

= ∞.

Furthermore, there exists 0 < r1 < R′
1 < +∞ such that

fi(w) ≥ M
∑n

i=1 wi

α
, wi ≥ R′

1, i = 1, 2, . . . , n.

Choose R1 ≥ R′
1

α
. Then, for any wi ∈ ∂Ki,R1 , i = 1, 2, . . . , n, we have min σ

2 ≤t≤σ wi(t) ≥
min σ

2 ≤t≤σ δ(t)‖wi‖∞ = αR1 ≥ R′
1 and fi(w(t)) ≥ MnR1, t ∈ [ σ

2 ,σ ], i = 1, 2, . . . , n. Then, for
wi ∈ ∂Ki,R1 , we have

‖Tw‖ =
n∑

i=1

‖Tiw‖∞ =
n∑

i=1

max
t∈J

∣∣∣∣
∫ 1

0
G(t, s)hi(s)fi

(
w(s)

)
ds
∣∣∣∣

≥
n∑

i=1

max
t∈[σ ,1–σ ]

∣∣∣∣
∫ σ

0
G(t, s)h+

i (s)fi
(
w(s)

)
ds
∣∣∣∣

≥
n∑

i=1

∫ σ

0
σG(s, s)h+

i (s)fi
(
w(s)

)
ds
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≥
n∑

i=1

∫ σ

σ
2

σG(s, s)h+
i (s)MnR1 ds = nR1 = ‖w‖.

Consequently,

‖Tw‖ ≥ ‖w‖, ∀w ∈ ∂KR1 . (4.5)

Summing up we can show that T has at least one fixed point w1, where w1 ∈ KR1 \ Kr1

by applying Lemma 2.5 to (4.4) and (4.5). According to Lemma 2.1, if θi > 1, i = 1, 2, . . . , n,
system (4.1) has at least one positive solution.

If 0 < θi < 1 (i = 1, 2, . . . , n), the proof is similar. We omit it.
The proof of Theorem 4.1 is completed. �

If min1≤i≤n
li
ki

is sufficiency large, we have the following theorem.

Theorem 4.2 Assume that (H1)–(H4) hold and there exist two positive numbers A1, B1

such that one of the following conditions is satisfied:
(i) 0 < θi < 1, A1 < B1 and

max
{

fi(w) : 0 ≤ wj ≤ A1, j = 1, 2, . . . , n
}

< A1M,

min
{

fi(w) : αB1 ≤ wj ≤ B1, j = 1, 2, . . . , n
}

> B1N .

(ii) 1 < θi < +∞, A1 > B1 and

min
{

fi(w) : αB1 ≤ wj ≤ B1, j = 1, 2, . . . , n
}

> B1N ,

max
{

fi(w) : 0 ≤ wj ≤ A1, j = 1, 2, . . . , n
}

< A1M.

Then system (4.1) has at least three positive radial solutions.

Proof It is enough to prove the case (i).
We have the following claim.

Claim 4.1 If there exist two different positive numbers A, B such that

max
{

fi(w) : 0 ≤ wj ≤ A, j = 1, 2, . . . , n
}≤ AM,

min
{

fi(w) : αB ≤ wj ≤ B, j = 1, 2, . . . , n
}≥ BN ,

then the operator T has one fixed point w∗ ∈ K and min{nA, nB} ≤ ‖w∗‖ ≤ max{nA, nB}.

The proof of Claim 4.1 is similar to the proof of Theorem 4.1.
Now, limmax1≤j≤n wj→0

fi(w)∑n
j=1 wj

= +∞ and limmin1≤j≤n wj→+∞ fi(w)∑n
j=1 wj

= 0, i = 1, 2, . . . , n. By the
proof of Theorem 4.1, we assert that there exist positive numbers A2, B2 such that B2 <
A1 < B1 < A2 and

min
{

fi(w) : αB2 ≤ wj ≤ B2, j = 1, 2, . . . , n
}

> B2N ,

max
{

fi(w) : 0 ≤ wj ≤ A2j = 1, 2, . . . , n
}

< A2M,
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where i = 1, 2, . . . , n.
On the other hand, letting ψi(w) = min{fi(y) : αw ≤ y ≤ w} (i = 1, 2, . . . , n), then ϕi,ψi :

Rn
+ → R+ (i = 1, 2, . . . , n) are continuous. Since M < N ,ψi(B2) > B2N ,ϕi(A2) < A2M, we

assert that there exist

B2 < A′
1 < A1 < A′′

1 < B′
1 < B1 < B′′

1 < A2

such that

max
{

fi(w) : 0 ≤ wj ≤ A′
1, j = 1, 2, . . . , n

}
= ϕi

(
A′

1
)

< A′
1M,

max
{

fi(w) : 0 ≤ wj ≤ A′′
1, j = 1, 2, . . . , n

}
= ϕi

(
A′′

1
)

< A′′
1M,

min
{

fi(w) : αB′
1 ≤ wj ≤ B′

1, j = 1, 2, . . . , n
}

= ψi
(
B′

1
)

> B′
1N ,

min
{

fi(w) : αB′′
1 ≤ wj ≤ B′′

1, j = 1, 2, . . . , n
}

= ψi
(
B′′

1
)

> B′′
1N ,

where

A2 = (A2, . . . , A2, . . . , A2︸ ︷︷ ︸
n

)T , B2 = (B2, . . . , B2, . . . , B2︸ ︷︷ ︸
n

)T ,

A′
1 =

(
A′

1, . . . , A′
1, . . . , A′

1︸ ︷︷ ︸
n

)T , A′′
1 =

(
A′′

1, . . . , A′′
1, . . . , A′′

1︸ ︷︷ ︸
n

)T ,

B′
1 =

(
B′

1, . . . , B′
1, . . . , B′

1︸ ︷︷ ︸
n

)T , B′′
1 =

(
B′′

1, . . . , B′′
1, . . . , B′′

1︸ ︷︷ ︸
n

)T .

By using Claim 4.1 for (B2, A′
1), (A′′

1, B′
1), (B′′

1, A2), respectively, we see that the operator T
has three fixed points w1, w2, w3 ∈ K satisfying

nB2 ≤ ‖w1‖ ≤ nA′
1 < nA′′

1 ≤ ‖w2‖ ≤ nB′
1 < nB′′

1 ≤ ‖w3‖ ≤ nA2.

By Lemma 2.1 and Lemma 2.5 we know that system (4.1) has at least three positive radial
solutions. The proof of Theorem 4.1 is completed. �

4.2 Case of definite weight function
We consider the multiplicity of elliptic system (1.1) with definite function. By a series of
transformations, (1.1) is transformed to (2.4). Assume the following conditions through-
out:

(A1) Λ = (λ1, . . . ,λi, . . . ,λn) > 0 is a parameter vector;
(A2) hi ∈ L1[0, 1] and there exists ηi > 0 such that hi(t) ≥ ηi a.e. on J .
(A3) fi : Rn

+ →R+ is continuous with fi(w) > 0 for w > 0;
where i = 1, 2, . . . , n.

Lemma 4.2 Let G(t, s) be given as (2.6) and 0 < ρ < 1
2 . Then we have

G(t, s) ≥ ρG(s, s), t ∈ Jρ , s ∈ J ,

where Jρ = [ρ, 1 – ρ].
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Proof For t ∈ Jρ and s ∈ J , we have

G(t, s)
G(s, s)

=
t(1 – s)
s(1 – s)

=
t
s

≥ ρ, t ≤ s,

G(t, s)
G(s, s)

=
s(1 – t)
s(1 – s)

=
1 – t
1 – s

≥ ρ, s ≤ t.

Then the proof is complete. �

We define a cone K in X by

K =
n∏

i=1

Ki,

where

Ki =
{

xi ∈ C+[0, 1] : xi ≥ 0 for J , min
t∈Jρ

xi(t) ≥ ρ‖xi‖∞
}

, i = 1, 2, . . . , n. (4.6)

Definition The map β is said to be a nonnegative continuous concave function on a cone
K of a real Banach space E if β : K → K is continuous and

β
(
tx + (1 – t)y

)≥ tβ(x) + (1 – t)β(y)

for all x, y ∈ K and t ∈ J .

Let K be a cone in a Banach space X. For positive numbers 0 < c < d, we define the convex
set K(β , c, d) by

K(β , c, d) =
{

x : x ∈ K , c ≤ β(x),‖x‖ ≤ d
}

.

In this part, β(x) =
∑n

i=1 βi(xi), and we understand K(β , c, d) = (K1(β1, c, d), K2(β2, c, d), . . . ,
Kn(βn, c, d)), where Ki(βi, c, d) = {xi : xi ∈ Ki, c ≤ βi(xi),‖xi‖∞ ≤ d}, i = 1, 2, . . . , n.

We define the map TΛ : K → X with components (Tλ1
1 , Tλ2

2 , . . . , Tλn
n )T . Hence, we un-

derstand TΛw = (Tλ1
1 w, Tλ2

2 w, . . . , Tλn
n w)T , which

(
Tλi

i w
)
(t) = λi

∫ 1

0
G(t, s)hi(s)fi

(
w(s)

)
ds, t ∈ J , i = 1, 2, . . . , n. (4.7)

As Cheng and Zhang [46] pointed out, w is a positive radial solution of system (1.1) if
and only if w ∈ K is a positive point of TΛ.

Lemma 4.3 Suppose that (A1)–(A3) hold. Then TΛ : K → K is completely continuous.

Proof We just prove Tλi
i : K → Ki is completely continuous. For all w ∈ K , Tλi

i w ≥ 0 on J
and

∥∥Tλi
i w

∥∥∞ = max
t∈J

∣∣∣∣λi

∫ 1

0
G(t, s)hi(s)fi

(
x(s)

)
ds
∣∣∣∣
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≤ max
t∈J

∣∣∣∣λi

∫ 1

0
G(s, s)hi(s)fi

(
x(s)

)
ds
∣∣∣∣.

From Lemma 4.2, we have

min
t∈Jρ

Tλi
i w(t) = min

t∈Jρ
λi

∫ 1

0
G(t, s)hi(s)fi

(
w(s)

)
ds

≥ min
t∈Jρ

λi

∫ 1

0
ρG(s, s)hi(s)fi

(
w(s)

)
ds

≥ min
t∈J

λi

∫ 1

0
ρG(s, s)hi(s)fi

(
w(s)

)
ds

≥ ∥∥Tλi
i w

∥∥∞.

Thus, we have Tλi
i (K) ⊂ Ki, therefore TΛ(K) ⊂ K .

Finally, from the standard process, it follows that Tλi
i : K → Ki is completely continuous,

that is, TΛ : K → K is completely continuous. �

Lemma 4.4 (Leggett–Williams fixed point theorem) Let K be a cone in a real Banach
space E, A : Ka → Ka be completely continuous and β be a nonnegative continuous concave
functional on K with β(x) ≤ ‖x‖ for all x ∈ Ka. Suppose there exist 0 < d < a < b ≤ c such
that

(i) {x ∈ K(β , a, b) : β(x) > a} �= ∅ and β(Ax) > a for x ∈ K(β , a, b);
(ii) ‖Ax‖ < d for ‖x‖ ≤ d;

(iii) β(Ax) > a for x ∈ K(β , a, c) with ‖Ax‖ > b.
Then A has at least three positive solutions x1, x2, x3 satisfying

‖x1‖ < d, a < β(x2), ‖x3‖ > d, β(x3) < a.

Next, we begin by introducing the notation

f 0
i = lim sup

‖w‖→0+

fi(w)
‖x‖ , f ∞

i = lim sup
‖w‖→+∞

fi(w)
‖x‖ ,

fi,0 = lim inf
‖w‖→0+

fi(w)
‖x‖ , fi,∞ = lim inf‖w‖→+∞

fi(w)
‖x‖ ,

f ∗
i (l) = min

{
fi(w), 0 ≤ ‖w‖ ≤ l

}
, f ∗∗

i (l) = max
{

fi(w), 0 ≤ ‖w‖ ≤ l
}

,

Ni =
1
6
λiρηi, Di = λi

∫ 1

0
G(s, s)hi(s) ds,

where i = 1, 2, . . . , n.

Theorem 4.3 Assume (A1)–(A3) hold. For λi > 0 there exist constants 0 < M < C < C
ρ

< L
such that

(A4) f ∞
i < 1

Ni
,

(A5) fi(w) < M
Di

, t ∈ Jρ ,ρM ≤ ‖wi‖∞ ≤ M, and fi(w) > C
Ni

, t ∈ Jρ , C ≤ ‖wi‖∞ ≤ C
ρ

,
where i = 1, 2, . . . , n.
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Then system (1.1) has at least three positive solutions w1, w2, w3 satisfying

‖w1‖ < nM, nC < β(w2), ‖w3‖ > nM, β(w3) < nC.

Proof Let β(w) =
∑n

i=1 βi(wi),βi(wi) = mint∈Jρ wi(t). It is clear that β(w) is a nonnegative
continuous concave functional on the cone K satisfying β(w) ≤ ‖w‖ for all w ∈ K .

By (A4) there exist 0 < ε < 1
Ni

such that

fi(w) ≤ ε‖wi‖∞, ‖wi‖∞ > r.

By the definition of f ∗∗
i , we have

0 ≤ fi(w) ≤ ε‖wi‖∞ + f ∗∗
i , ‖wi‖∞ > 0.

Let L > max{ f ∗∗
maxt∈J λi

∫ 1
0 G(t,s)h+

i (s)εi ds
}. Then, for w ∈ KnL,

∥∥TΛw
∥∥ =

n∑
i=1

∥∥Tλ
i w

∥∥∞ =
n∑

i=1

max
t∈J

∣∣∣∣λi

∫ 1

0
G(t, s)hi(s)fi

(
w(s)

)
ds
∣∣∣∣

≤
n∑

i=1

max
t∈J

∣∣∣∣λi

∫ 1

0
G(t, s)h+

i (s)fi
(
w(s)

)
ds
∣∣∣∣

≤
n∑

i=1

max
t∈J

λi

∫ 1

0
G(t, s)h+

i (s)
(
εiw(s) + f ∗∗

i
)

ds

≤
n∑

i=1

max
t∈J

λi

∫ 1

0
G(t, s)h+

i (s)
(
εi‖w‖ + f ∗∗

i
)

ds

=
n∑

i=1

max
t∈J

λi

∫ 1

0
G(t, s)h+

i (s)
(
εiL + f ∗∗

i
)

ds

< nL,

which implies that TΛw ∈ KnL. Hence, we have shown that the map TΛ : KnL → KnL is
completely continuous.

Next, we verify that {x : x ∈ K(β , nC, nC
ρ

),β(x) > nC} �= ∅ and β(TΛx) > nC for all x ∈
K(β , nC, nC

ρ
).

Take w0 = (w0
1(t), w0

2(t), . . . , w0
n(t)), w0

i = C
ρ

, i = 1, 2, . . . , n, for t ∈ J . Then

w0 =
{

w : w ∈ K
(

β , nC,
nC
ρ

)
,β(w) > nC

}
,

which shows that

{
w : w ∈ K

(
β , nC,

nC
ρ

)
,β(w) > nC

}
�= ∅.
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For all w ∈ K(β , nC, nC
ρ

), that is, wi ∈ Ki(βi, C, C
ρ

), we have ‖wi‖∞ ≤ C
ρ

, and from the
definition of Ki, we know that mint∈Jρ wi(t) ≥ ρ‖wi‖∞. Thus we have

β
(
TΛw

)
=

n∑
i=1

βi
(
Tλi

i w
)

=
n∑

i=1

min
t∈Jρ

Tλi
i w(t)

=
n∑

i=1

min
t∈Jρ

λi

∫ 1

0
G(t, s)hi(s)fi

(
w(s)

)
ds

≥
n∑

i=1

min
t∈Jρ

λi

(
ρ

∫ 1

0
G(s, s)ηifi

(
w(s)

)
ds
)

>
n∑

i=1

1
6
λiρηi

C
Ni

= nC.

This implies that condition (i) of Lemma 4.4 holds.
For wi ∈ Ki,M , we have

∥∥TΛw
∥∥ =

n∑
i=1

∥∥Tλi
i w

∥∥∞

=
n∑

i=1

max
t∈J

λi

∫ 1

0
G(t, s)hi(s)fi

(
w(s)

)
ds

≤
n∑

i=1

max
t∈J

λi

∫ 1

0
G(s, s)hi(s)fi

(
w(s)

)
ds

<
n∑

i=1

λi

∫ 1

0
G(s, s)hi(s)

M
Di

ds

= nM.

This implies that condition (ii) of Lemma 4.4 holds.
Finally, we assert that if wi ∈ Ki(βi, C, L) and ‖Tλi

i w‖∞ > C
ρ

, then β(TΛw) > nC.
Suppose that wi ∈ Ki(βi, C, L) and ‖Tλi

i w‖∞ > C
ρ

. Then

β
(
TΛw

)
=

n∑
i=1

βi
(
Tλi

i w
)

=
n∑

i=1

min
t∈Jρ

Tλi
i w(t)

=
n∑

i=1

min
t∈Jρ

λi

∫ 1

0
G(t, s)hi(s)fi

(
w(s)

)
ds

≥
n∑

i=1

ρ
∥∥Tλi

i w
∥∥∞ > nC.

This implies that condition (iii) of Lemma 4.4 holds.
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To sum up, the hypotheses of Lemma 4.4 hold. Therefore, an application of Lemma 4.4
implies that system (1.1) has at least three positive radial solutions w1, w2, w3 satisfying

‖w1‖ < nM, nC < β(w2), ‖w3‖ > nM, β(w3) < nC.

The proof is finished. �

4.3 An example
Example 4.1 We consider the example (n = 2)

⎧⎨
⎩�u(x) + Λa(|x|)f(u(x)) = 0, R1 < |x| < R2,

u||x|=R1 = u||x|=R2 = 0.
(4.8)

By appropriate transformations, (4.8) can be written

⎧⎪⎪⎨
⎪⎪⎩

w′′
1(t) + λ1h1(t)f1(w) = 0, 0 < t < 1,

w′′
2(t) + λ2h2(t)f2(w) = 0, 0 < t < 1,

w1(1) = w1(0) = w2(1) = w2(0) = 0.

Let

h1(t) =

⎧⎨
⎩

1
2 – t, t ∈ [0, 1

2 ),

t – 1
2 , t ∈ [ 1

2 , 1],
h2(t) =

⎧⎨
⎩

1
4 – t2, t ∈ [0, 1

2 ),

t2 – 1
4 , t ∈ [ 1

2 , 1],

f1(w) = w2
1, f2(w) = w3

2, w = (w1, w2)T .

It is clear that ξ = 1
2 ,σ = 1

3 , c1 = c2 = 1, k1 = k2 = 1, l1 = l2 = 2, δ(t) = min{ t
ξ

, ξ–t
ξ

} = min{2t, 1 –
2t}, t ∈ [0, ξ ],α = min σ

2 ≤t≤σ δ(t) = 1
3 . Let r = 1

5 . Then

f1,r = min
{

f1(w) : αr ≤ wj ≤ r, j = 1, 2, . . . , n
}

=
1

225
,

f2,r = min
{

f1(w) : αr ≤ wj ≤ r, j = 1, 2, . . . , n
}

=
1

3375
.

From the above, let λ1,0 = 311,040
13 ,λ2,0 = 209,952,000

437 . By Theorem 3.1, system (4.8) has at least
two positive radial solutions for λi ∈ [λi,0, +∞), i = 1, 2.
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