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Abstract
For the nonlinear difference equations of the form

w(z + 1)w(z – 1) = h(z)wm(z),

where h(z) is a nonzero rational function andm = ±2,±1, 0, we show that its
transcendental meromorphic solution is mainly determined by its zeros, 1-value
points and poles except for some special cases. Examples for the sharpness of these
results are given.
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1 Introduction
For a given meromorphic function f (z), we use the standard notation of the Nevanlinna
theory (see e.g. [2, 4, 10]), such as T(r, f ), m(r, f ), N(r, f ),ρ(f ),λ(f ) and λ(1/f ). And we say
that a meromorphic function a(z) is a small function of f (z), if T(r, a) = o(T(r, f )) = S(r, f ).
Denote the set of all small functions of f (z) by Sf .

Let f (z) and g(z) be two meromorphic functions, a ∈ Sf ∩ Sg . We say f (z) and g(z) share
a IM (CM), if f (z) – a and g(z) – a have the same zeros ignoring multiplicities (counting
multiplicities). And we say f (z) and g(z) share ∞ IM (CM), if they have the same poles
ignoring multiplicities (counting multiplicities).

Our aim in the paper is to investigate the uniqueness of meromorphic solutions of non-
linear difference equations, which are given by Ronkainen in [8], in the form

w(z + 1)w(z – 1) = h(z)wm(z), (1.1)

where h(z) is a nonzero rational function and m = ±2,±1, 0. This idea is partly due to the
investigation of the uniqueness of meromorphic solutions of some differential equations
(see e.g. [1, 9, 12]), and partly due to some recent research on the uniqueness of mero-
morphic solutions of several kinds of difference equations (see e.g. [3, 6, 7]). One of these
results reads as follows.
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Theorem A ([3]) Let f (z) be a finite order transcendental meromorphic solution of the
equation

P1(z)f (z + 1) + P2(z)f (z) = P3(z),

where P1(z), P2(z), P3(z) are nonzero polynomials such that P1(z) + P2(z) �≡ 0. If a meromor-
phic function g(z) shares 0, 1,∞ CM with f (z), then one of the following cases holds:

(i) f (z) ≡ g(z);
(ii) f (z) + g(z) = f (z)g(z);

(iii) there exist a polynomial β(z) = a0z + b0 and a constant a0 satisfying ea0 �= eb0 , such
that

f (z) =
1 – eβ(z)

eβ(z)(ea0–b0 – 1)
, g(z) =

1 – eβ(z)

1 – eb0–a0
,

where a0 �= 0, b0 are constants.

Considering Theorem A and Eq. (1.1), we prove the following results.

Theorem 1.1 Let w(z) be a finite order transcendental meromorphic solution of Eq. (1.1),
where m = –2, –1, 0, 1. If a meromorphic function u(z) shares 0, 1,∞ CM with w(z), then
w(z) ≡ u(z).

Theorem 1.2 Let w(z) be a finite order transcendental meromorphic solution of Eq. (1.1),
where m = 2, and h(z) satisfies

lim
z→∞ h(z) �= 1. (1.2)

If a meromorphic function u(z) shares 0, 1,∞ CM with w(z), then w(z) ≡ u(z).

The following examples show that the numbers of shared values in Theorem 1.1 and
Theorem 1.2 cannot be reduced.

Example 1 In the following examples, wj(z) and uj(z) ≡ –wj(z) share 0,∞ CM (j =
1, . . . , 5):

(1) w1(z) = z tan(πz/2) satisfies the difference equation

w(z + 1)w(z – 1) = (z + 1)(z – 1)z2w–2(z);

(2) w2(z) = z tan2(πz/3) tan2(πz/3 – π/6) satisfies the difference equation

w(z + 1)w(z – 1) = (z + 1)(z – 1)zw–1(z);

(3) w3(z) = z tan(πz/4) satisfies the difference equation

w(z + 1)w(z – 1) = –(z + 1)(z – 1);
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(4) w4(z) = z tan(πz/6) tan(πz/6 – π/6) satisfies the difference equation

w(z + 1)w(z – 1) = –
(z + 1)(z – 1)

z
w(z);

(5) w5(z) = ez2
tan(πz) satisfies the difference equation

w(z + 1)w(z – 1) = e2w2(z).

Remark 1 We have tried hard but failed to find examples for the sharpness of the “CM”
shared condition in Theorem 1.1 and Theorem 1.2 until now.

The following example shows that the condition (1.2) in Theorem 1.2 is necessary.

Example 2 w(z) = ez and u(z) = e–z share 0, 1,∞ CM, and w(z) satisfies the difference equa-
tion

w(z + 1)w(z – 1) = w2(z).

Here h(z) ≡ 1 and w(z) �≡ u(z).

2 Some lemmas
From the results of Lan and Chen [5] and Zhang and Yang [11], we have the following.

Lemma 2.1 ([5, 11]) Let w(z) be a finite order transcendental meromorphic solution of
Eq. (1.1), where m = –2,±1, 0. Then λ(w – a) = λ(1/w) = ρ(w) ≥ 1, where a is an arbitrary
constant.

We need the following result.

Lemma 2.2 Let θ1 �= θ2 ∈ [–π ,π ) be two given real numbers. Then, for any given integer
k ≥ 1, there exist some θ3, θ4 ∈ [–π ,π ) such that

Re ei(θ1+kθ3) > 0 > Re ei(θ2+kθ3), Re ei(θ2+kθ4) > 0 > Re ei(θ1+kθ4).

Proof Since θ1 �= θ2 ∈ [–π ,π ), we have θ1 – θ2 �= 0, 2π , and hence –1 ≤ cos(θ1 – θ2) < 1. If
θ1 + θ2 ∈ (–2π , 0], we choose a point α = –(π + θ1 + θ2)/2k ∈ [–π ,π ), and we have

2 cos(θ1 + kα) cos(θ2 + kα) = cos(θ1 + θ2 + 2kα) + cos(θ1 – θ2)

= cos(–π ) + cos(θ1 – θ2) = –1 + cos(θ1 – θ2) < 0.

Without loss of generality, assume that cos(θ1 + kα) > 0, then cos(θ2 + kα) < 0, and we can
denote θ3 = α. What is more, if kα < 0, denote θ4 = α + π/k; if kα ≥ 0, denote θ4 = α – π/k,
then we have cos(θ2 + kθ4) > 0 > cos(θ1 + kθ4).

If θ1 + θ2 ∈ (0, 2π ), choose a point β = (π – θ1 – θ2)/2k ∈ (–π ,π ), then

2 cos(θ1 + kβ) cos(θ2 + kβ) = cos(π ) + cos(θ1 – θ2) = –1 + cos(θ1 – θ2) < 0.
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From the equation above, we can similarly obtain θ3 and θ4, which we need.
Finally, note that Re eiθ = cos θ , and we finish our proof. �

3 Proof of Theorem 1.1
Since w(z) and u(z) are meromorphic functions and share 0, 1,∞ CM, from the second
main theorem of Nevanlinna theory, we have

T(r, u) ≤ N(r, u) + N
(

r,
1
u

)
+ N

(
r,

1
u – 1

)
+ S(r, u)

≤ N(r, w) + N
(

r,
1
w

)
+ N

(
r,

1
w – 1

)
+ S(r, u)

≤ 3T(r, w) + S(r, u).

This indicates that ρ(u) ≤ ρ(w), and hence u(z) is also of finite order.
Now from the assumption that w(z) and u(z) share 0, 1,∞ CM again, we get

u
w

= ep(z), (3.1)

u – 1
w – 1

= eq(z), (3.2)

where p(z), q(z) are polynomials such that deg p(z) = l, deg q(z) = s.
We claim that ep(z) ≡ eq(z), then we get w(z) ≡ u(z), which follows from (3.1) and (3.2)

immediately.
Otherwise, ep(z) �≡ eq(z), then ep(z) �≡ 1 and eq(z) �≡ 1. Now (3.1) and (3.2) give

w(z) =
1 – eq(z)

ep(z) – eq(z) (3.3)

and

w(z) – 1 =
1 – ep(z)

ep(z) – eq(z) . (3.4)

From (3.3) and (3.4), we see that

N
(

r,
1
w

)
≤ N

(
r,

1
1 – eq

)
≤ T

(
r, 1 – eq) + O(1) ≤ T

(
r, eq) + O

and

N
(

r,
1

w – 1

)
≤ N

(
r,

1
1 – eq

)
≤ T

(
r, 1 – ep) + O(1) ≤ T

(
r, ep) + O(1).

Thus, we have

λ(w) ≤ ρ
(
eq) = s, λ(w – 1) ≤ ρ

(
ep) = l. (3.5)

If s > l, then

N
(

r,
1

1 – ep

)
≤ T

(
r, ep) + O(1) = S

(
r, eq). (3.6)



Chen and Li Advances in Difference Equations        (2019) 2019:372 Page 5 of 9

From the second main theorem of Nevanlinna theory again, we have

T
(
r, eq) ≤ N

(
r, eq) + N

(
r,

1
eq

)
+ N

(
r,

1
eq – 1

)
+ S

(
r, eq)

= N
(

r,
1

eq – 1

)
+ S

(
r, eq),

which leads to

N
(

r,
1

eq – 1

)
= T

(
r, eq) + S

(
r, eq). (3.7)

Since the common zeros of 1 – ep–q and 1 – eq should be the zeros of 1 – ep, from (3.3),
(3.6) and (3.7), we can find that

N
(

r,
1
w

)
= N

(
r,

ep(1 – ep–q)
1 – eq

)

≥ N
(

r,
1

1 – eq

)
– N

(
r,

1
1 – ep

)
= T

(
r, eq) + S

(
r, eq),

and hence λ(w) ≥ ρ(eq) = s. Thus, from Lemma 2.1, we get λ(w – 1) = λ(w) ≥ s > l, which
contradicts the second conclusion in (3.5).

If s < l, then with a similar reasoning we can deduce a similar contradiction to the first
conclusion in (3.5). Therefore, we prove that s = l.

If deg(q(z) – p(z)) < l, then

N
(

r,
1

1 – ep–q

)
≤ T

(
r, ep–q) + O(1) = S

(
r, eq).

From this equation, (3.3) and (3.7), we see that

N
(

r,
1
w

)
≥ N

(
r,

1
1 – eq

)
– N

(
r,

1
1 – ep–q

)
= T

(
r, eq) + S

(
r, eq),

which implies that λ(w) ≥ ρ(eq) = s = l. Then from Lemma 2.1 and (3.3), we can deduce
the contradiction that

l ≤ λ(w) = λ(1/w) ≤ λ
(
1 – eq–p) = ρ

(
eq–p) < l.

Thus, deg(q(z) – p(z)) = l ≥ 1, and hence if we set

p(z) = alzl + al–1zl–1 + · · · + a0

and

q(z) = blzl + bl–1zl–1 + · · · + b0,

then albl �= 0 and al �= bl . Denote al = r1eiθ1 , bl = r2eiθ2 where θ1, θ2 ∈ [–π ,π ).
Next, we discuss four cases step by step and give the relative contradictions.
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Case 1: m = 0. From (1.1) and (3.3), we get

1 – eq(z+1)

ep(z+1) – eq(z+1)
1 – eq(z–1)

ep(z–1) – eq(z–1) = w(z + 1)w(z – 1) = h(z). (3.8)

Subcase 1.1: θ1 = θ2. Now |al| = r1 �= r2 = |bl|. If r1 < r2, then, for all z = reiθ3 such that
θ1 + lθ3 = 0, we have

alzl = r1rlei(θ1+lθ3) = r1rl < r2rl = r2rei(θ1+lθ3) = blzl. (3.9)

From (3.8) and (3.9), we get

lim
r→∞ h

(
reiθ3

)
= lim

r→∞
1 – eq(reiθ3 +1)

ep(reiθ3 +1) – eq(reiθ3 +1)

1 – eq(reiθ3 –1)

ep(reiθ3 –1) – eq(reiθ3 –1)

= lim
r→∞

1 – er2rl(1+o(1))

er1rl(1+o(1)) – er2rl(1+o(1))

1 – er2rl(1+o(1))

er1rl(1+o(1)) – er2rl(1+o(1))
= 1. (3.10)

As h(z) is a rational function, for all θ ∈ [–π ,π ), we can get from (3.10)

lim
r→∞ h

(
reiθ ) = 1. (3.11)

However, for the θ4 such that θ1 + lθ4 = –π , we can deduce that

lim
r→∞ h

(
reiθ4

)
= lim

r→∞
1 – eq(reiθ4 +1)

ep(reiθ4 +1) – eq(reiθ4 +1)

1 – eq(reiθ4 –1)

ep(reiθ4 –1) – eq(reiθ4 –1)

= lim
r→∞

1 – e–r1rl(1+o(1))

e–r2rl(1+o(1)) – e–r1rl(1+o(1))

1 – e–r1rl(1+o(1))

e–r2rl(1+o(1)) – e–r1rl(1+o(1))
= ∞,

a contradiction to (3.11).
If r1 > r2, we can easily get a similar contradiction.
Subcase 1.2: θ1 �= θ2. By Lemma 2.2, there exist some θ5, θ6 ∈ [–π ,π ) such that

Re ei(θ1+kθ5) > 0 > Re ei(θ2+kθ5), Re ei(θ2+kθ6) > 0 > Re ei(θ1+kθ6).

This means that, for j = 0, 1, 2, and r3 = r1 Re ei(θ1+lθ5), r4 = r2 Re ei(θ2+lθ6), we have

p
(
reiθ5 + j

)
= er3rl(1+o(1)), q

(
reiθ5 + j

)
= o(1) (3.12)

and

q
(
reiθ6 + j

)
= er4rl(1+o(1)), p

(
reiθ6 + j

)
= o(1), (3.13)

as r → ∞.
We can get from (3.12) and (3.13)

lim
r→∞ h

(
reiθ5

)
= lim

r→∞
1 – eq(reiθ5 +1)

ep(reiθ5 +1) – eq(reiθ5 +1)

1 – eq(reiθ5 –1)

ep(reiθ5 –1) – eq(reiθ5 –1)
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= lim
r→∞

1 – o(1)
er3rl(1+o(1)) – o(1)

1 – o(1)
er3rl(1+o(1)) – o(1)

= 0 (3.14)

and

lim
r→∞ h

(
reiθ6

)
= lim

r→∞
1 – eq(reiθ6 +1)

ep(reiθ6 +1) – eq(reiθ6 +1)

1 – eq(reiθ6 –1)

ep(reiθ6 –1) – eq(reiθ6 –1)

= lim
r→∞

1 – er4rl(1+o(1))

o(1) – er4rl(1+o(1))

1 – er4rl(1+o(1))

o(1) – er4rl(1+o(1))
= 1, (3.15)

respectively. Since h(z) is a rational function, we can get a contradiction from (3.14) and
(3.15).

Case 2: m = 1. Now (1.1) is of the form

w(z + 1)w(z – 1) = h(z)w(z),

which gives

w(z + 3)w(z) = h(z + 2)h(z + 1). (3.16)

From this and (3.3), we get

1 – eq(z+3)

ep(z+3) – eq(z+1)
1 – eq(z)

ep(z+3) – eq(z) = w(z + 3)w(z) = h(z + 2)h(z + 1).

Notice that h(z + 2)h(z + 1) is still a rational function. With (3.16), we can deduce some
similar contradictions as in Case 1 again.

Case 3: m = –1. From (1.1) and (3.3), we get

1 – eq(z+1)

ep(z+1) – eq(z+1)
1 – eq(z–1)

ep(z–1) – eq(z–1)
1 – eq(z)

ep(z) – eq(z) = w(z + 1)w(z – 1)w(z) = h(z). (3.17)

With (3.17), we can also deduce some similar contradictions as in the Case 1.
Case 4: m = –2. From (1.1) and (3.3), we get

1 – eq(z+1)

ep(z+1) – eq(z+1)
1 – eq(z–1)

ep(z–1) – eq(z–1)

(
1 – eq(z)

ep(z) – eq(z)

)2

= w(z + 1)w(z – 1)w2(z) = h(z),

which enables us to get some similar contradictions as in Case 1. This finishes our proof.

4 Proof of Theorem 1.2
Obviously, we can use (3.1)–(3.3) for this case directly. Moreover, we may begin our proof
with assuming that ep(z) �≡ eq(z), then ep(z) �≡ 1 and eq(z) �≡ 1. Now (3.3) also holds. Thus, we
can get from (1.1) and (3.3)

1 – eq(z+1)

ep(z+1) – eq(z+1)
1 – eq(z–1)

ep(z–1) – eq(z–1)

(
ep(z) – eq(z)

1 – eq(z)

)2

= h(z), (4.1)

where p(z) and q(z) are polynomials such that

p(z) = alzl + al–1zl–1 + · · · + a0
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and

q(z) = bszs + bs–1zs–1 + · · · + b0,

where albs �= 0. Denote al = r1eiθ1 , bs = r2eiθ2 where θ1, θ2 ∈ [–π ,π ).
If l > s, it is easy to find that there exists some ray θ = θ3 such that θ1 + lθ3 = 0, for z =

reiθ3 and j = –1, 0, 1,

p
(
reiθ3 + j

)
= r1rl(1 + o(1)

)
, q

(
reiθ3+j) = o

(
rl),

as r → ∞. Then we can get

lim
r→∞ h

(
reiθ3

)
= lim

r→∞
1 – eq(reiθ3 +1)

ep(reiθ3 +1) – eq(reiθ3 +1)

1 – eq(reiθ3 –1)

ep(reiθ3 –1) – eq(reiθ3 –1)

(
ep(reiθ3 ) – eq(reiθ3 )

1 – eq(reiθ3 )

)2

= lim
r→∞

1 – eo(rl)

er1rl(1+o(1)) – eo(rl)

1 – eo(rl)

er1rl(1+o(1)) – eo(rl)

(
er1rl(1+o(1)) – eo(rl)

1 – eo(rl)

)2

= 1,

a contradiction to (1.2). Thus, l ≤ s. However, with a similar reasoning above, we see that
l < s is also impossible. This indicates that l = s.

Next, we complete our proof by driving some contradictions for two cases.
Case 1: θ1 = θ2. If r1 > r2, then, for all z = reiθ4 such that θ1 + lθ4 = 0, we have

alzl = r1rlei(θ1+lθ4) = r1rl > blzl = r2rei(θ1+lθ4) = r2rl. (4.2)

From (4.1) and (4.2), we can prove that

lim
r→∞ h

(
reiθ4

)
= 1, (4.3)

which is also a contradiction to (1.2).
Similarly, we can prove that r1 < r2 is impossible. Thus, r1 = r2. Since ep(z) �≡ eq(z), now

for j = 0, 1, 2 and the θ4 given before, we have

eq(reiθ4 +j) = er1rl(1+o(1), ep(reiθ4 +j) – eq(reiθ4 +j) = er1rl(1 + o(1)
)
.

This and (4.1) yield the same limit (4.3), a contradiction to (1.2).
Case 2: θ1 �= θ2. By Lemma 2.2, there exists some θ5 ∈ [–π ,π ) such that

Re ei(θ1+lθ5) > 0 > Re ei(θ2+lθ5).

This means that, for j = 0, 1, 2, and r3 = r1 Re ei(θ1+lθ5), as r → ∞, we have

p
(
reiθ5 + j

)
= er3rl(1+o(1)), q

(
reiθ5 + j

)
= o(1). (4.4)

It is easy to deduce from (4.1) and (4.4) that

lim
r→∞ h

(
reiθ5

)
= 1,

a contradiction to (1.2).
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