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Abstract
In this paper, a prey-predator model with Allee effect and Holling type-I functional
response is established, and its dynamical behaviors are studied in detail. The
existence, boundedness and stability of the model are qualitatively discussed. Hopf
bifurcation analysis is also taken into account. We further illustrate our theoretical
analysis by means of numerical simulation. Using computer simulation, we found the
position of each equilibrium point in the phase diagram that we drew. We found the
threshold for undergoing a Hopf bifurcation in the bifurcation diagram. One of the
interesting questions is which model with strong Allee effect is a bistable system.
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1 Introduction
Today, in order to comprehend the long-term behavior of a population, many researchers
conduct extensive research on the dynamics of interacting prey-predator models. Vari-
ous nonlinear ODE models are studied, and the interaction between predator and prey
is analyzed [1–24]. The classic predator-prey model is the Lotka–Volterra model, which
was independently proposed by Lotka in the United States in 1925 and Volterra in Italy in
1926. However, there are some specific classes among them, called the Gause type models
[1, 2]. The research of predator-prey model and infectious disease model has always been
a hot topic in biomathematics [1–9, 11–31]. In 1931, Allee discovered that the living state
of the cluster is conducive to the growth of the population, but the density is too high and
will inhibit the growth of the population and even become extinct due to resource com-
petition. For each population, there must be an independent optimal density for growth
and reproduction, the mechanism is called the Allee effect. There are also lots of people
doing research on the predator-prey model with Allee effect in prey growth [3, 8, 9, 12,
14, 22, 24].

We consider the predator-prey model with Allee effect and Holling type-I functional
response in predator growth [3] as follows:

dN
dT

= Ng(N) – p(N)P,

dP
dT

= cp(N) – q(P)P,
(1)
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where g(N) = r(1 – N
K )(N – L) and p(N) = aN , and the initial condition is N(0), P(0) > 0.

N is the prey population and P is the predator population, q(P) is the average loss rate of
predators, c is the conversion efficiency from prey to predator, K is the carrying capacity,
g(N) is the per capita prey growth rate, r is the intrinsic growth rate of prey, L is the Allee
effect threshold, p(N) is the prey dependent functional response, and a is the prey capture
rate by their predators. So we get

dN
dT

= Nr
(

1 –
N
K

)
(N – L) – aNP,

dP
dT

= c(aN)P – mP,
(2)

where a and m are all positive parameters. m is the intrinsic death rate of the predators.

2 Strong Allee effect
In order to reduce the number of parameters in the latter calculation, we can make model
(2) dimensionless as follows:

dx
dt

= x(1 – x)(x – β) – αxy,

dy
dt

= γ xy – δy,
(3)

where x = N
K , y = P, t = KrT , α = a

Kr , β = L
K , γ = ca

r and δ = m
Kr . It is easy to see 0 ≤ x ≤ 1.

The threshold of the Allee type is β and satisfies the conditions 0 < β < 1 for a strong Allee
effect [3].

3 Equilibria and existence
In order to find the equilibrium point of model (3), we consider the prey and predator
nullcline of this model (3), to get

x(1 – x)(x – β) – αxy = 0,

γ xy – δy = 0,

we easily see that model (3) exhibits four equilibrium points Es0 = (0, 0), Es1 = (β , 0), Es2 =

(1, 0), Es∗ = (x∗, y∗). Here x∗ = δ
γ

, y∗ =
(1– δ

γ )( δ
γ –β)

α
. For a positive equilibrium point, we have

β < δ
γ

< 1.

4 Boundedness of the model
Theorem 1 All the solutions of model which start in R2

+ are uniformly bounded.

Proof A function is defined by us that is χ = x + α
γ –δ+η

y. Therefore, the time derivative of
the above equation along the solution of model (3) is

dχ

dt
=

dx
dt

+
α

γ – δ + η

dy
dt

= –x3 + (1 + β)x2 – βx – αxy +
α

γ – δ + η
(γ xy – δy).
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Now for each η > 0 and 0 ≤ x ≤ 1, we have

dχ

dt
+ ηχ = –x3 + (1 + β)x2 – βx – αxy +

α

γ – δ + η
(γ xy – δy) + ηx +

ηα

γ – δ + η
y

= –x3 + (1 + β)x2 – βx + ηx – αxy +
αγ

γ – δ + η
xy –

αδ

γ – δ + η
y +

ηα

γ – δ + η
y

≤ –x3 + (1 + β)x2 – βx + ηx – αy +
αγ

γ – δ + η
y –

αδ

γ – δ + η
y +

ηα

γ – δ + η
y

≤ –x3 + (1 + β)x2 – βx + ηx

≤ (1 + β)x2 – βx + ηx

≤ 1 + η.

Hence we can find ω > 0 such that

dχ

dt
+ ηχ = ω.

In summary, we have dχ

dt ≤ –ηχ + ω, which implies that

χ (t) ≤ e–ηtχ (0) +
ω

η

(
1 – e–ηt) ≤ max

(
χ (0),

ω

η

)
.

Moreover, we have lim supχ (t) ≤ ω
η

< M as t → ∞, which is not related to the initial con-
ditions. �

5 Local stability analysis
In this section, we will analyze the local stability of model (3).

Theorem 2
(1) Es0 is locally asymptotically stable.
(2) If γ < δ

β
, then Es1 is the saddle point, otherwise it is the unstable node.

(3) When γ < δ, Es2 is locally asymptotically stable and is a saddle point otherwise.
(4) The positive equilibrium Es∗ is locally stable when β < 2δ–γ

γ
and is unstable node

otherwise.

Proof It can be concluded by calculating the Jacobian matrix of model (3) at Es0

Js0 =

[
–β 0
0 –δ

]
.

Also we can find that Es0 is locally asymptotically stable.
By evaluating the Jacobian matrix of model (3) at Es1, we find

Js1 =

[
β – β2 –αβ

0 γβ – δ

]
.

We find that the first eigenvalue λ1 = β – β2 is positive, then Es1 is unstable as a saddle
point if (β – β2)(γβ – δ) > 0, that is, if γ > δ

β
, and is a stable saddle point otherwise.
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We calculate the Jacobian matrix of model (3) at Es2; we have

Js2 =

[
β – 1 –α

0 γ – δ

]
.

We find that the first eigenvalue λ1 = β – 1 is negative because of β < 1, then Es2 is stable
if γ < δ, and Es2 is a saddle point when γ > δ.

We calculate the Jacobian matrix of model (3) at Es∗ is given by

Js∗ =

[
(2 + 2β)x∗ – 3x2∗ – β – αy∗ –αx∗

γ y∗ 0

]
.

We can easily know that the characteristic polynomial is

H(λ) = λ2 – Tλ + D.

Here T = (2 + 2β)x∗ – 3x2∗ – β – αy∗ and D = (1 – δ
γ

)( δ
γ

– β)δ.
Thus, we have the following conclusions.
(a) If T < 0 and β < 2δ–γ

γ
, then the positive equilibrium is locally asymptotically stable.

(b) If T > 0 and β > 2δ–γ

γ
, then the positive equilibrium is unstable. �

6 Bifurcation analysis
6.1 Hopf bifurcation
From Theorem 2, model (3) undergoes a bifurcation if β = 2δ–γ

γ
. The purpose of this sec-

tion is to prove that model (3) will produce a Hopf bifurcation if β = 2δ–γ

γ
.

First we choose β as the bifurcation parameter, and then analyze the conditions under
which a Hopf bifurcation occurs at Es∗ = (x∗, y∗). Denote

β0 =
2δ – γ

γ
,

when β = β0, we have T = (2 + 2β)x∗ – 3x2∗ – β – αy∗ = 0. Thus, the Jacobian matrix Js∗ has
a pair of imaginary eigenvalues λ = ±i

√
(1 – δ

γ
)( δ

γ
– β0)δ. Let λ = A(β)±B(β)i be the roots

of λ2 – Tλ + D = 0, then

A2 – B2 – AT + D = 0,

2AB – TB = 0

and

A =
T
2

,

B =
√

4D – T2

2
,

dA
dβ

|β=β0 =
δ

2γ
�= 0.
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By the Poincare–Andronov Hopf bifurcation theorem, we know that model (3) under-
goes a Hopf bifurcation at Es∗ = (x∗, y∗) when β = β0. However, the directionality of the
Hopf bifurcation also require us to further analyze the normal form of the model.

Set x = X + x∗ and y = Y + y∗, to (x∗, y∗) as origin of co-ordinates (X, Y ). We have the
following model:

dX
dt

= a11X + a12Y + F1(X, Y ),

dY
dt

= a21X + a22Y + F2(X, Y ),

where

a11 = (2 + 2β)x∗ – 3x2
∗ – β – αy∗, a12 = –αx∗, a21 = γ y∗, a22 = 0,

and

F1(X, Y ) = A1X2 + A2XY + A3Y 2 + B1X3 + B2X2Y + B3XY 2 + B4Y 3 + P1(X, Y ),

F2(X, Y ) = C1X2 + C2XY + C3Y 2 + D1X3 + D2X2Y + D3XY 2 + D4Y 3 + P2(X, Y ),

A1 = 1 + β – 3x∗, A2 = –
α

2
, A3 = 0,

B1 = –
1
2

, B2 = 0, B3 = 0, B4 = 0,

C1 = 0, C2 =
1
2
γ , C3 = 0,

D1 = 0, D2 = 0, D3 = 0, D4 = 0,

where P1(X, Y ), P2(X, Y ) are smooth functions of X and Y at least of order four.
Now, using the transformation u = X, v = – 1

B (a11X + a12Y ), we obtain

du
dt

= –Bv + G1(u, v),

dv
dt

= Bu + G2(u, v),

where

G1(u, v) = F1

(
u, –

1
a12

(a11u + Bv)
)

,

G2(u, v) = –
1
B

(
a11F1

(
u, –

1
a12

(a11u + Bv)
)

+ a12F2

(
u, –

1
a12

(a11u + Bv)
))

,

so

G1(u, v) = (1 + β – 3x∗)u2 –
[
αu

(
–

1
a12

(a11u + Bv)
)

–
1
2

u3
]

,

G2(u, v) = –
1
B

(
a11(1 + β – 3x∗)u2 –

[
αu

(
–

1
a12

(a11u + Bv)
)

–
1
2

u3
])

–
1
2
γ u(a11u + Bv),
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set

σ =
1

16

[
∂3G1

∂u3 +
∂3G1

∂u∂v2 +
∂3G2

∂u2∂v
+

∂3G2

∂v3

]

+
1

16B

[
∂2G1

∂u∂v

(
∂2G1

∂u2 +
∂2G1

∂v2

)
–

∂2G2

∂u∂v

(
∂2G2

∂u2 +
∂2G2

∂v2

)

–
∂2G1

∂u2
∂2G2

∂u2 +
∂2G1

∂v2
∂2G2

∂v2

]
,

where

∂3G1

∂u3 = –3,
∂3G1

∂u∂v2 = 0,
∂3G2

∂u2∂v
= 0,

∂3G2

∂v3 = 0,

∂2G1

∂u∂v
= –αB,

∂2G2

∂u∂v
= –αB –

1
2
γ B,

∂2G1

∂v2 = 0,
∂2G2

∂v2 = 0,

∂2G1

∂u2 = 2(1 + β – 3x∗) +
2a11α

a12
– 3u,

∂2G2

∂u2 = –
2
B

[
a11(1 + β – 3x∗)

]
+

2a11α

a12
– 3u – γ a11.

So

σ = –
3

16
+

1
16

– α

(
2(1 + β – 3x∗) +

2a11α

a12
– 3u

)

+
(

α +
1
2
γ

)(
–

2
B

[
a11(1 + β – 3x∗)

]
+

2a11α

a12
– 3u – γ a11

)

–
1

16B

(
2(1 + β – 3x∗) +

2a11α

a12
– 3u

)

×
(

–
2
B

[
a11(1 + β – 3x∗)

]
+

2a11α

a12
– 3u – γ a11

)
.

If σ < 0, the equilibrium Es∗ is destabilized through a Hopf bifurcation that is supercritical
and a Hopf bifurcation that is subcritical otherwise [10].

7 Weak Allee effect
Next, we start to study a model with weak Allee effect and Holling type-I functional re-
sponse in predator growth. For simplicity, we rewrite the dimensionless model in [3] in
the following form:

dx
dt

= x(1 – x)(x + β) – αxy,

dy
dt

= γ xy – δy.
(4)
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8 Equilibria and existence
In order to find the equilibrium points of model (4), which follow from

x(1 – x)(x + β) – αxy = 0,

γ xy – δy = 0,

we easily see that model (4) exhibits three equilibrium points, Ew0 = (0, 0), Ew2 = (1, 0),

Ew∗ = (x̄∗, ȳ∗). Here, x̄∗ = δ
γ

, ȳ∗ =
(1– δ

γ )( δ
γ +β)

α
. For a positive equilibrium point, we have δ

γ
< 1.

9 Stability analysis
In this section, we will analyze the stability of model (4).

9.1 Local stability
Theorem 3

(1) Ew0 is a saddle point.
(2) Ew2 is stable for γ < δ, Ew2 is a saddle point for γ > δ.
(3) Positive equilibrium Ew∗ is locally asymptotically stable when β > 1 – 2x̄∗, Ew∗ is an

unstable node when β < 1 – 2x̄∗.

Proof It can be concluded by calculating the Jacobian matrix of model (4) at Ew0 that

Jw0 =

[
β 0
0 –δ

]
.

Hence Ew0 is always a saddle point.
It can be concluded by calculating the Jacobian matrix of model (4) at Ew2 that

Jw2 =

[
–β – 1 –α

0 γ – δ

]
.

We can find that the first eigenvalue λ1 = –β – 1 is negative, hence Ew2 is stable if γ < δ,
and Ew2 is a saddle point when γ > δ.

We calculate the Jacobian matrix of model (4) at Ew∗ that is given by

Jw∗ =

[
(2 – 2β)x̄∗ – 3x̄2∗ + β – αȳ∗ –αx̄∗

γ ȳ∗ 0

]
.

The characteristic polynomial is

H(λ) = λ2 – T̄λ + D̄,

where T̄ = (2 – 2β)x̄∗ – 3x̄2∗ + β – αȳ∗ and D̄ = (1 – δ
γ

)( δ
γ

+ β)δ.
Thus, we have the following conclusions.
(a) If T̄ < 0 and β > 1 – 2x̄∗, we can find that Ew∗ is locally asymptotically stable.
(b) If T̄ > 0 and β < 1 – 2x̄∗, we can find that Ew∗ is unstable. �
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9.2 Global stability
Here we first prove that Ew2 = (1, 0) is globally stable when ( α+γ

α
)2 – 4δ

α
< 0.

Consider the Lyapunov function:

V (x, y) =
1
2

(x – 1)2 + y.

The derivative of V along the solution of model (4) is

V̇ = (x – 1)
[
x(1 – x)(x + β) – αxy

]
+ γ xy – δy

= –x(1 – x)2(x + β) – (x – 1)αxy + γ xy – δy

≤ –(x – 1)αxy + γ xy – δy

= –αx2y + αxy + γ xy – δy

= –y
(
αx2 – αx – γ x + δ

)

= –αy
[(

x2 –
(

α + γ

α

)
x +

δ

α

)]
.

If x2 – ( α+γ

α
)x + δ

α
> 0, then V̇ < 0. So, � = ( α+γ

α
)2 – 4δ

α
< 0.

Next, we prove that Ew∗ = (x̄∗, ȳ∗) is globally stable for model (4). Here, we will prove the
global stability of Ew∗ = (x̄∗, ȳ∗) based on the fact that Ew∗ = (x̄∗, ȳ∗) is locally asymptotically
stable by using Th. 2 in [11]. In order to use this theorem better, we can rewrite model (4)
as follows:

dx
dt

= xg(x) – αyp(x),

dy
dt

= γ yp(x) – δy.

Here g(x) = (1 – x)(x + β) and p(x) = x. Here g(x) and p(x) satisfy the following three con-
ditions:

1. g ∈ C([0,∞),R) ∩ C1((0,∞),R), g(0) = (1 – 0)(0 + β) > 0, g(1) = 0 and (x – 1)g(x) < 0
for x ∈ [0, 1) ∪ (1,∞).

2. p ∈ C([0,∞),R) ∩ C1((0,∞),R), p(0) = 0 and p′(x) = 1 > 0 for all x ≥ 0.
3. The positive equilibrium point Ew∗ = (x̄∗, ȳ∗) is calculated by γ p(x̄∗) – δ = 0 and

x̄∗g(x̄∗) – αȳ∗p(x̄∗) = 0, 0 < x̄∗ < 1, ȳ∗ > 0 and further d
dx ( xg(x)

p(x) ) = –(1 – x)(x + β) < 0,
for all x̄∗ < x < 1.

Here we explain the conditions. In fact, we can proceed from calculating from the local
stability of Ew∗ . So we can find the prey nullcline y = (1–x)(x+β)

α
≡ r(x) is continuous curve,

we say x = x1 is a local maximum point at the points (0, β

α
) and (1, 0) such that 0 < x1 < 1.

Note that r(x) = xg(x)
p(x) . We can find that the condition for satisfying local asymptotic stability

of E∗ is that x = x̄∗ on the right side of x = x1 and should intersect the prey nullcline, hence
0 < x̄∗ < x < 1 holds. Hypothesis x1 is the local maximum of y = r(x), we know that Ew∗ is
locally asymptotically stable, so that d

dx r(x) < 0 for 0 < x∗ ≤ x ≤ 1. Obviously, the above
inequalities are still satisfied that r(x) = xg(x)

p(x) .
Next, we apply Th. 2 in [11] to prove that Ew∗ is globally stable under the assumption of

local asymptotic stability.
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Theorem 4 The following condition holds: d
dx ( f (x)–f (x̄∗)

p(x)–p(x̄∗) ) < 0 for 0 ≤ x ≤ 1 and Ew∗ is locally

asymptotically stable. Ew∗ is globally asymptotically stable where f (x) = d
dx (xg(x))– p′(x)xg(x)

p(x) .

Proof For model (4), we can see that the definition of f (x) is

f (x) = (1 – x)(x – β) + x(1 – x) – x(x + β) –
x(1 – x)(x – β)

x
= x(1 – x) – x(x + β).

Hence we can calculate

d
dx

(
f (x) – f (x̄∗)
p(x) – p(x̄∗)

)

=
(

x(1 – x) – x(x + β) – x̄∗(1 – x̄∗) + x̄∗(x̄∗ + β)
x – x̄∗

)′

=
1 – β – 4x

x – x̄∗
–

x – βx – 2x2 – (x̄∗ – βx̄∗ – 2x̄2∗)
(x – x̄∗)2

=
x – βx – 4x2 – (x̄∗ – βx̄∗ – 4xx̄∗) – x + βx + 2x2 + (x̄∗ – βx̄∗ – 2x̄2∗)

(x – x̄∗)2

=
–2x2 + 4xx̄∗ – 2x̄2∗

(x – x̄∗)2 .

We find –2x2 + 4xx̄∗ – 2x̄2∗ < 0 for any x > 0. �

10 Hopf bifurcation
Theorem 5 By selecting β as the bifurcation parameter, model (4) undergoes a Hopf bi-
furcation that occurs at Ew∗ = (x̄∗, ȳ∗) if β = 1 – 2x̄∗.

Proof If T̄ = (2–2β)x̄∗ –3x̄2∗ +β –αȳ∗ = 0 and det Jw∗ > 0, then use the implicit function the-
orem we have learned; when the stability of the equilibrium point Ew∗ = (x̄∗, ȳ∗) changes,
Hopf bifurcation occurs, thereby generating a periodic orbit. Using these two conditions,
the critical value of the Hopf bifurcation parameter is found to be β = 1 – 2x̄∗. Obviously
given the condition by [4],

(i) T̄ = (2 – 2β)x̄∗ – 3x̄2∗ + β – αȳ∗ = 0,
(ii) det J∗ > 0, and

(iii) dT̄
dβ

|β=β0 = – δ
γ

�= 0 at β = β0 model (4) undergoes a Hopf bifurcation around
Ew∗ = (x̄∗, ȳ∗). �

11 Simulations tests
In this section, we numerically simulate the above theoretical derivation by MATLAB.

11.1 Strong Allee effect
The ODE model (3) has four parameters: α, β , γ , δ. We choose the parameters

α = 0.5, β = 0.2, γ = 0.355, δ = 0.2, (5)

α = 0.5, β = 0.2, γ = 0.36, δ = 0.4, (6)

α = 0.5, β = 0.2, γ = 0.29, δ = 0.2. (7)
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Figure 1 Es0 = (0, 0) is stable, Es1 = (0.2, 0) is a saddle point and Es2 = (1, 0) is a saddle point

Figure 2 Es2 = (1, 0) is stable

According to Fig. 1, we can find Es0 = (0, 0) that it is asymptotically stable. If γ < δ then
γ = 0.36 < δ = 0.4, Es2 = (1, 0) is asymptotically stable as shown in Fig. 2. If β < 2δ–γ

γ
then

0.2 < 2∗0.2–0.29
0.29 ≈ 0.379, Es∗ = (x∗, y∗) = (0.689, 0.303) is asymptotically stable as shown in

Fig. 3 we also find the saddle point Es1 = (0.2, 0) like Fig. 1. Moreover, we find that there
may be two stable equilibrium points; this is what we call a bistable system as shown in
Fig. 4.

According to Fig. 5, we find that bifurcation occurs at approximately r = 0.3, that is, a
Hopf bifurcation. As we have demonstrated in the article, when β = 0.3, model (3) under-
goes a Hopf bifurcation.
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Figure 3 Es∗ = (x∗ , y∗) = (0.689, 0.303) is stable

Figure 4 Bistable system

11.2 Weak Allee effect
The ODE model (4) has four parameters: α, β , γ , δ. We choose the parameters

α = 0.5, β = 0.2, γ = 0.36, δ = 0.4, (8)

α = 0.5, β = 0.2, γ = 0.36, δ = 0.2, (9)

α = 0.5, β = 0.2, γ = 0.36, δ = 0.2. (10)

According to Fig. 6, we can find Ew0 = (0, 0) to be a saddle point. If γ < δ then γ = 0.36 <
δ = 0.4, Ew2 = (1, 0) is asymptotically stable as shown in Fig. 7. If β > 1 – 2x∗ then 0.2 >
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Figure 5 Bifurcation diagram

Figure 6 Ew0 = (0, 0) is a saddle point, Ew2 = (1, 0) is a saddle point and Ew∗ = (x̄∗ , ȳ∗) = (0.556, 0.671) is stable

1 – 2 ∗ 0.556 = –0.112, Ew∗ = (x̄∗, ȳ∗) = (0.556, 0.671) is asymptotically stable as shown in
Fig. 8.

According to Fig. 9, we find that bifurcation occurs at approximately r = –0.112, that
is, Hopf bifurcation. As we have demonstrated in the article, when β = –0.112, model (4)
undergoes Hopf bifurcation.

12 Conclusions
In this paper, a prey-predator model with Allee effect in prey growth, a Holling type-I func-
tional response in predator growth is given. The prey-predator model with strong Allee
effect is analyzed, and the four equilibrium points and the conditions for each equilibrium
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Figure 7 Ew2 = (1, 0) is stable

Figure 8 Ew∗ = (x̄∗ , ȳ∗) = (0.556, 0.671) is stable

point are obtained. We analyze the Hopf bifurcation occurring at Es∗ = (x∗, y∗) by choos-
ing β as the bifurcation parameter, obtain the conditions for generating a Hopf bifurcation
and further calculation of the Hopf bifurcation. If σ < 0, the equilibrium Es∗ is destabilized
through a Hopf bifurcation that is supercritical and the Hopf bifurcation is subcritical
otherwise. The prey-predator model with weak Allee effect is also analyzed and we ob-
tain stability conditions for three equilibrium points, the global stability of Ew2 = (1, 0) and
Ew∗ = (x̄∗, ȳ∗) is proved. We also analyze the Hopf bifurcation occurring at Ew∗ = (x̄∗, ȳ∗) by
choosing β as the bifurcation parameter, the conditions for generating a Hopf bifurcation
are obtained. Finally, using computer simulations we draw the position of each equilib-
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Figure 9 Bifurcation diagram

rium point in the phase diagram, and we draw the bifurcation diagram under the strong
and weak Allee effect. It is worth noting that there are some differences between the spe-
cial case of bistability and the Allee effect as regards strength and weakness. If the posi-
tive equilibrium point of the model is stable, model (3) with strong Allee effect must be a
bistable system. However, in the case of the weak Allee effect, the model is not necessarily
a bistable system because the axial equilibrium point is unstable under certain conditions.

Funding
This work was supported by the National Natural Science Foundation of China (31560127), the Fundamental Research
Funds for the Central Universities (31920180116, 31920180044, 31920170072), the Program for Yong Talent of State Ethnic
Affairs Commission of China (No. [2014]121), Gansu Provincial First-class Discipline Program of Northwest Minzu
University (No. 11080305) and Central Universities Fundamental Research Funds for the Graduate Students of Northwest
Minzu University (Yxm2019109).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and significantly in this paper. All authors read and approved the final manuscript.

Author details
1School of Mathematics and Computer Science, Northwest Minzu University, Lanzhou, People’s Republic of China.
2Experimental Center, Northwest Minzu University, Lanzhou, People’s Republic of China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 16 December 2018 Accepted: 22 August 2019

References
1. Caughley, G., Lawton, J.H.: Plant-herbivore systems. In: May, R.M. (ed.) Theoretical Ecology, pp. 132–166. Sinauer,

Sunderland (1981)
2. Freedman, H.I.: Deterministic Mathematical Models in Population Ecology. Dekker, New York (1980)
3. Banerjee, M., Takeuchi, Y.: Maturation delay for the predators can enhance stable coexistence for a class of

prey-predator models. J. Theor. Biol. 412, 154–171 (2017)
4. Gupta, R.P., Chandra, P.: Bifurcation analysis of modified Leslie–Gower predator-prey model with Michaelis–Menten

type prey harvesting. J. Math. Anal. Appl. 398, 278–295 (2013)
5. Haque, M.: Ratio-dependent predator-prey models of interacting populations. Bull. Math. Biol. 71(2), 430–452 (2009)



Ye et al. Advances in Difference Equations        (2019) 2019:369 Page 15 of 15

6. Hu, D., Cao, H.: Stability and bifurcation analysis in a predator-prey system with Michaelis–Menten type predator
harvesting. Nonlinear Anal., Real World Appl. 33, 58–82 (2017)

7. Kar, T.K.: Modelling and analysis of a harvested prey-predator system incorporating a prey refuge. J. Comput. Appl.
Math. 185(1), 19–33 (2006)

8. Allee, W.C.: Animal Aggregations: A Study in General Sociology. University of Chicago Press, Chicago (1931)
9. Manna, D., Maiti, A., Samanta, G.P.: A Michaelis–Menten type food chain model with strong Allee effect on the prey.

Appl. Math. Comput. 311, 390–409 (2017)
10. Perko, L.: Diffrential Equations and Dynamical Systems, 3rd edn. Texts in Applied Mathematics, vol. 7. Springer, New

York (2001)
11. Cheng, K.S., Hsu, S.B., Lin, S.S.: Some results on global stability of a predator-prey system. J. Math. Biol. 12, 115–126

(1981)
12. Cai, Y., Zhao, C., Wang, W., Wang, J.: Dynamics of a Leslie–Gower predator-prey model with additive Allee effect. Appl.

Math. Model. 39, 2092–2106 (2015)
13. Ghosh, J., Sahoo, B., Poria, S.: Prey-predator dynamics with prey refuge providing additional food to predator. Chaos

Solitons Fractals 96, 110–119 (2017)
14. Sen, M., Banerjee, M.: Rich global dynamics in a prey-predator model with Allee effect and density dependent death

rate of predator. Int. J. Bifurc. Chaos 25(03), 1530007 (2015)
15. Li, Y.: Hopf bifurcations in general systems of Brusselator type. Nonlinear Anal., Real World Appl. 28, 32–47 (2016)
16. Yang, R., Zhang, C.: The effect of prey refuge and time delay on a diffusive predator-prey system with hyperbolic

mortality. Complexity 21(S1), 446–459 (2016)
17. Ma, Z., Liu, J., Li, J.: Stability analysis for differential infectivity epidemic models. Nonlinear Anal., Real World Appl. 4(5),

841–856 (2003)
18. Li, X., Jiang, W., Shi, J.: Hopf bifurcation and Turing instability in the reaction-diffusion Holling–Tanner predator-prey

model. IMA J. Appl. Math. 78(2), 287–306 (2013)
19. Wei, J.: Bifurcation analysis in a kind of fourth-order delay differential equation. Discrete Dyn. Nat. Soc. 2009(2),

332–337 (2014)
20. Sambath, M., Balachandran, K., Suvinthra, M.: Stability and Hopf bifurcation of a diffusive predator-prey model with

hyperbolic mortality. Complexity 21(S1), 34–43 (2016)
21. Ma, Z., Wang, S., Wang, T., et al.: Stability analysis of prey-predator system with Holling type functional response and

prey refuge. Adv. Differ. Equ. 2017(1), 243 (2017)
22. Wang, J., Shi, J., Wei, J.: Predator-prey system with strong Allee effect in prey. J. Math. Biol. 62(3), 291–331 (2011)
23. Rao, F., Castillo-Chavez, C., Kang, Y.: Dynamics of a diffusion reaction prey-predator model with delay in prey: effects

of delay and spatial components. J. Math. Anal. Appl. 461(2), 1177–1214 (2018)
24. Feng, P., Kang, Y.: Dynamics of a modified Leslie–Gower model with double Allee effects. Nonlinear Dyn. 80(1–2),

1051–1062 (2015)
25. Cai, Y., Gui, Z., Zhang, X., et al.: Bifurcations and pattern formation in a predator-prey model. Int. J. Bifurc. Chaos 28(11),

1850140 (2018)
26. Zhang, H., Cai, Y., Fu, S., et al.: Impact of the fear effect in a prey-predator model incorporating a prey refuge. Appl.

Math. Comput. 356, 328–337 (2019)
27. Yang, B., Cai, Y., Wang, K., et al.: Global threshold dynamics of a stochastic epidemic model incorporating media

coverage. Adv. Differ. Equ. 2018(1), 462 (2018)
28. Cai, Y., Wang, K., Wang, W.: Global transmission dynamics of a Zika virus model. Appl. Math. Lett. 92, 190–195 (2019)
29. Huang, S., Tian, Q.: Marcinkiewicz estimates for solution to fractional elliptic Laplacian equation. Comput. Math. Appl.

78(5), 1732–1738 (2019)
30. Wang, J., Cai, Y., Fu, S., et al.: The effect of the fear factor on the dynamics of a predator-prey model incorporating the

prey refuge. Chaos 29(8), 243 (2019)
31. Ye, Y., Liu, H., Wei, Y., et al.: Dynamic study of a predator-prey model with weak Allee effect and delay. Adv. Math. Phys.

2019, 7296461 (2019)


	Dynamic study of a predator-prey model with Allee effect and Holling type-I functional response
	Abstract
	Keywords

	Introduction
	Strong Allee effect
	Equilibria and existence
	Boundedness of the model
	Local stability analysis
	Bifurcation analysis
	Hopf bifurcation

	Weak Allee effect
	Equilibria and existence
	Stability analysis
	Local stability
	Global stability

	Hopf bifurcation
	Simulations tests
	Strong Allee effect
	Weak Allee effect

	Conclusions
	Funding
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


