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Abstract
In this paper, by introducing the fractional derivatives in the sense of Caputo, the
modified general mapping deformation method (MGMDM) and the modified
fractional variational iteration method (MFVIM) are applied to obtain some exact and
approximate solutions of the variable-coefficient fractional Schrödinger equation
(VFNLS) with time and space fractional derivatives. With the aid of symbolic
computation, a broad class of exact analytical solutions and their structure of the
VFNLS are investigated. Furthermore, the approximate iterative series showed that the
MFVIM is powerful, reliable and effective when compared with some traditional
decomposition method in searching for the approximate solutions of the complex
nonlinear partial differential equations with variable coefficients and fractional
derivatives.
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1 Introduction
In recent years, due to the wide applications of fractional differential equations (FDEs) in
nonlinear science [1], many phenomena can be described successfully by using FDEs such
as chaotic oscillations [2], electrochemistry [3], engineering [4] and so on [5]. Searching
for exact solutions of these FDEs plays an important and significant role in the study on
the dynamics of those phenomena. Many powerful methods have been proposed to handle
this subject, such as the Darboux transformation method [6], the split-step Fourier trans-
form method [7], the fractional characteristic method [8, 9]. But because of the complexity
of the nonlinear terms, most FDEs do not have exact analytic solutions, so approximate
and numerical methods must be used. Many efforts have been proposed for these prob-
lems, including the homotopy analysis method (HAM) [10], the homotopy perturbation
method (HPM) [11], the adomian decomposition method (ADM) [12].

The variational iteration method (VIM) and the fractional variational iteration method
(FVIM) were established in [13] and [14, 15] by He, respectively, and they were thoroughly
used by many researchers [16, 17]. Some new developments about the fractional derivative
and its application are available in Refs. [18–20]. After giving some modification, Hong
and Lu proposed the MFVIM for some complex nonlinear partial differential equations
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with fractional derivative [21]. The motivation of this paper is to construct some exact and
approximate solutions for the VFNLS by using the MGMDM and MFVIM.

We give some definitions and properties of the fractional calculus theory which are used
further in this paper [22–24].

Definition 1 The fractional derivative is defined as the following limit form:

f α = lim
h→0

�α[f (x) – f (0)]
hα

.

Definition 2 The Riemann–Liouville fractional integral operator of order α > 0 for a func-
tion f (x) is defined as

Jα
x f (x) =

1
Γ (α)

∫ x

0
(x – ξ )α–1f (ξ ) dξ , α > 0, x > 0, J0

x f (x) = f (x).

Also we have the following properties:

JαJβ f (x) = Jα+β f (x), JαJβ f (x) = Jβ Jαf (x), Jαxγ =
Γ (γ + 1)

Γ (α + γ + 1)
xα+γ .

Definition 3 For α > 0, x > 0, f (x) ∈ Cn
–1, the Caputo fractional derivative operator of order

α on the whole space is defined as

Dαf (x) = Jn–αDnf (x) =

⎧⎨
⎩

1
Γ (n–α)

∫ x
0 (x – ξ )n–α–1f (n)(ξ ) dξ , n – 1 < α < n, n ∈ N .

d(n)f (x)
dxn , α = n.

We have the following properties:

DαC = 0 (C is a constant), Dαxγ =

⎧⎨
⎩

Γ (γ +1)
Γ (γ –α+1) xγ –α , γ > α – 1,

0, γ ≤ α – 1.

JαDαf (x) = f (x) –
n–1∑
k=0

f (k)(0+)xk

k!
, n – 1 < α < n, DαJαf (x) = f (x).

Definition 4 The fractional derivative of compounded functions is defined as

dαf = Γ (1 + α)f .

Definition 5 The integral with respect to d(x)α is defined as the solution of the fractional
differential equation

dy = f (x)d(x)α , x ≥ 0, y(0) = 0.

2 Exact solution and their structure of the GFNLS
Consider the following generalized time and space fractional nonlinear Schrödinger equa-
tion with variable coefficients:

i
∂αu
∂zα

+
1
2

a(z)
∂2βu
∂t2β

+ b(z)u|u|2 – ic(z)u = 0, z > 0, 0 < α,β ≤ 1, (1)
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where u = u(z, t), ∂uα

∂z = Dα
z u, ∂2β u

∂t2β = Dβ
t (Dβ

t u), when α = β = 1, this equation turns to the
famous nonlinear Schrödinger equations in an optical fiber [25–27]. Here u(z, t) is the
complex envelope of the electrical field, z is the normalized propagation distance along
the fiber, t is the retarded time and the subscripts denote partial derivatives, the real an-
alytic functions a(z) and b(z) are the slowly increasing dispersion coefficient and non-
linear coefficient, respectively, which represent the group velocity dispersion (GVD) and
the self-phase modulation (SPM), c(z) represents the heat-insulating amplification or loss.
The transmission of a soliton in the real communication system of an optical soliton is de-
scribed by Eq. (1) [9].

If we let t → x, z → t, Eq. (1) turns to the following form:

i
∂αu
∂tα

+
1
2

a(t)
∂2βu
∂x2β

+ b(t)u|u|2 – ic(t)u = 0, t > 0, 0 < α,β ≤ 1. (2)

We can give the complex variable transformation as follows:

u = A(t)ϕ(ξ )eiη, (3)

ξ =
k1xβ

Γ (1 + β)
+

1
Γ (α)

∫ t

0
(t – τ )α–1c1(τ ) dτ ,

η =
k2xβ

Γ (1 + β)
+

1
Γ (α)

∫ t

0
(t – τ )α–1c2(τ ) dτ ,

(4)

with the following consistency conditions:

A(t) = ke
α

Γ (1+α)
∫ t

0 τα–1c(τ ) dτ , c1(t) = –k1k2a(t), (5)

where k, k1, k2 are arbitrary nonzero constants.
Substituting (3), (4), (5) into (2), we obtain

k2
1a(t)ϕξξ (ξ ) –

[
2c2(t) + k2

2a(t)
]
ϕ(ξ ) + 2b(t)A2(t)ϕ3(ξ ) = 0, (6)

where ϕξξ (ξ ) = d2ϕ(ξ )
dξ2 , with the idea of the homogeneous balance principle, by balancing

the highest-order linear term ϕξξ (ξ ) and the nonlinear ϕ3(ξ ) in (6), we assume that Eq. (6)
has the following solutions:

ϕ = ϕ(ξ ) = A0 + A1F(ξ ) = A0 + A1F , (7)

F ′2 =
4∑

i=0

aiFi, (8)

where ai (i = 0, 1, 2, 3, 4) are constants to be determined. We write F = F(ξ ) and F ′ = dF(ξ )
dξ

.
Substituting (7) and (8) into (6), and setting the coefficients of Fi(ξ ), i = 0, 1, 2, . . . , to zero

yield an ODE with respect to the unknowns A0, A1, a0, a1, a2, a3, a4, k1, k2, a(t), b(t) and
c2(t). After solving the ODE by Mathematica software we could determine the following
solutions:
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Case 1

A0 = a1 = a3 = 0, A1 = const, c2(t) =
1
2
(
a2k2

1 – k2
2
)
a(t),

b(t) = –a4k2
1A–2

1 a(t)A–2(t).

By using the general mapping deformation method [28], we can obtain the following
solutions of the corresponding Eq. (2):

u1j = kA1e
α

Γ (1+α)
∫ t

0 τα–1c(τ ) dτ+i[ k2xβ

Γ (1+β) + 1
2Γ (α)

∫ t
0 (t–τ )α–1(a2k2

1 –k2
2 )a(τ ) dτ ]F1j (ξ1j ),

ξ1j =
k1xβ

Γ (1 + β)
–

k1k2

Γ (α)

∫ t

0
(t – τ )α–1a(τ ) dτ , j = 1, 2, 3, . . . .

We have the consistency conditions

b(t) = –a4k2
1A–2

1 a(t)A–2(t).

Here F1j is an arbitrary solution of the equation F ′2
1j

= a0j + a2j F2
1j

+ a4j F4
1j

,we can obtain
the 52 classes of exact solutions F1j from Ref. [29]; for example, if we let a01 = 1 – m2,
a21 = 2m2 – 1, a41 = –m2, F11 = cnξ , we have

u11 = kA1e
α

Γ (1+α)
∫ t

0 τα–1c(τ ) dτ+i[ k2xβ

Γ (1+β) + 1
2Γ (α)

∫ t
0 (t–τ )α–1((2m2–1)k2

1 –k2
2 )a(τ ) dτ ]cn(ξ1j ),

with the consistency conditions b(t) = m2k2
1A–2

1 a(t)A–2(t), A(t) = ke
α

Γ (1+α)
∫ t

0 τα–1c(τ ) dτ , if we
let a02 = 1, a22 = –1 – m2, a42 = m2, F12 = snξ , we have

u12 = kA1e
α

Γ (1+α)
∫ t

0 τα–1c(τ ) dτ+i[ k2xβ

Γ (1+β) + 1
2Γ (α)

∫ t
0 (t–τ )α–1((–m2–1)k2

1 –k2
2 )a(τ ) dτ ]sn(ξ1j ),

with the consistency conditions b(t) = –m2k2
1A–2

1 a(t)A–2(t), if we let a03 = m2 – 1, a23 =
2 – m2, a43 = –1, F13 = dnξ , we derive

u13 = kA1e
α

Γ (1+α)
∫ t

0 τα–1c(τ ) dτ+i[ k2xβ

Γ (1+β) + 1
2Γ (α)

∫ t
0 (t–τ )α–1((2–m2)k2

1 –k2
2 )a(τ ) dτ ]dn(ξ1j ),

with the consistency conditions b(t) = k2
1A–2

1 a(t)A–2(t). And so on.

Remark 1 Let us take

α = β = 1, kA1 = c3

√
–k2m2

k4(2m2 – 1)
,

k2 = c2, k1 = c1

√
k2

(2m2 – 1)
, a(t) → β(t), b(t) → δ(t),

c(t) → α(t), t → z, x → t.
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We find that u11 turns to the solutions u31 in Ref. [25],

u11.1 = c3

√
–k2m2

k4(2m2 – 1)
e
∫ z

0 α(τ ) dτ+i[c2t+ 1
2

∫ z
0 (c2

1k2–c2
2)β(τ ) dτ ]

× cn
[

c1

√
k2

2m2 – 1
(t – c2)

∫ z

0
β(τ ) dτ

]
.

Let us take

α = β = 1, m = 1, kA1 = cR, k2 = C1,

k1 =
√

RC2, a(t) → β(t), b(t) → δ(t), c(t) → α(t),

t → z, t → x.

We find that u11 has degenerated to the famous bright-soliton solutions u31 in Ref. [26].

u11.2 = cRe
∫ z

0 α(τ ) dτ+i[C1t+ 1
2

∫ z
0 (C2

2 R–C2
1 )β(τ ) dτ ] sec h

{√
R
[

C2t – C1C2

∫ z

0
β(τ ) dτ

]}
.

Let us take

α = β = 1, m = 1, k =
√

–
c2

2c4
, k2 = A3, k1 =

√
2c2

–m2 – 1
A2,

a(t) → β(t), b(t) → α(t),

c(t) → γ (t), t → z, t → x.

We find that u12 has degenerated to the famous dark-soliton solutions

u12.1 = A1

√
–

c2

2c4
e
∫ z

0 γ (τ ) dτ+i[A3t+
2A2

2c2–A2
3

2
∫ z

0 β(τ ) dτ ]

× tanh

[
A2

√
–c2

(
t – A3

∫ z

0
β(τ ) dτ

)]
, c2 < 0, c4 > 0.

Case 2

A0 = const, A1 =
4a4A0

a3
, 8a1a2

4 = 4a2a3a4 – a3
3, a3a4 �= 0,

c2(t) =
(

a1a4k2
1

a3
–

a2
3k2

1
16a4

–
k2

2
2

)
a(t), b(t) = –

a2
3k2

1
16a4A2

0
a(t)A–2(t).

We acquire the following exact solutions of Eq. (2) by using Appendix B in Ref. [28]:

u2j = kA0

(
1 +

4a4

a3

)
e

α
Γ (1+α)

∫ t
0 τα–1c(τ ) dτ+i[ k2xβ

Γ (1+β) + 1
Γ (α)

∫ t
0 (t–τ )α–1(

a1a4k2
1

a3
–

a2
3k2

1
16a4

–
k2
2
2 )a(τ ) dτ ]

× F2j

[
k1xβ

Γ (1 + β)
–

k1k2

Γ (α)

∫ t

0
(t – τ )α–1a(τ ) dτ

]
,

j = 1, 2, 3, . . . , 9.
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If we let a04 = 1, a14 = –4, a24 = 8 – 4m2, a34 = 4 – 4m2, a44 = 8m2 – 8, F4 = cnξ

cnξ±snξdnξ
, we

get the general Jacobi elliptic functions solution.

u24 = –7kA0e
α

Γ (1+α)
∫ t

0 τα–1c(τ ) dτ+i[ k2xβ

Γ (1+β) + 1
Γ (α)

∫ t
0 (t–τ )α–1(8k2

1 –
(m2–1)k2

1
8 –

k2
2
2 )a(τ ) dτ ] cnξ

cnξ ± snξdnξ
,

ξ =
k1xβ

Γ (1 + β)
–

k1k2

Γ (α)

∫ t

0
(t – τ )α–1a(τ ) dτ .

We have the consistency conditions b(t) = – (m2–1)k2
1

8A2
0

a(t)A–2(t).

If we let a07 = 1
4 , a17 = 1, a27 = 2 – m2, a37 = 2 – 2m2, a47 = 1 – m2, F7 = snξ

1–snξ+cnξ
, we have

u27 = 3kA0e
α

Γ (1+α)
∫ t

0 τα–1c(τ ) dτ+i[ k2xβ

Γ (1+β) + 1
Γ (α)

∫ t
0 (t–τ )α–1(

k2
1
2 –

(1–m2)k2
1

4 –
k2
2
2 )a(τ ) dτ ]

×
(

sn
[

k1xβ

Γ (1 + β)
–

k1k2

Γ (α)

∫ t

0
(t – τ )α–1a(τ ) dτ

])

/(
1 – sn

[
k1xβ

Γ (1 + β)
–

k1k2

Γ (α)

∫ t

0
(t – τ )α–1a(τ ) dτ

]

+ cn
[

k1xβ

Γ (1 + β)
–

k1k2

Γ (α)

∫ t

0
(t – τ )α–1a(τ ) dτ

])
,

with the consistency conditions b(t) = – (1–m2)k2
1

4A2
0

a(t)A–2(t). And so on.

Remark 2 The solutions u1j and u2j are new exact solutions for Eq. (2) to the best of our
knowledge. When the modulus of these Jacobi elliptic functions solutions has degenerated
to 1 or 0, we can obtain the corresponding solitary-like solutions and triangular-like func-
tions solutions. Some structure of these solutions of Eq. (1) are simulated in Fig. 1–Fig. 4

3 The MFVIM and approximate solutions for the VFNLS
According to the idea of FVIM [17, 20] and MFVIM [21], we can build a correction func-
tional for Eq. (2) as follows:

un+1 = un + Jα
t

{
λ(t, x)

[
i
∂αun

∂tα
+

1
2

a(t)
∂2β ũn

∂x2β
+ b(t)ũn|ũn|2 – ic(t)ũn

]}
. (9)

Figure 1 (a) The evolution plot of the exact doubly periodic solutions u12 with the parameters
k = k1 = k2 = A1 = 1, a(t) = 1, c(t) = 0,m = 0.2, α = β = 1. (b) α = 0.5, β = 0.5
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Figure 2 (a) The evolution plot of the bell-shaped solitary wave solutions u11 with the parameters when
k = k1 = k2 = A1 = 1, a(t) = 1, c(t) = 0,m = 1, α = β = 1. (b) α = 0.5, β = 0.5

Figure 3 (a) The evolution plot of the triangular functions solutions of u24 with the parameters
k = k1 = k2 = A1 = 1, a(t) = 1, c(t) = 1,m = 0, α = β = 1. (b) α = 0.7, β = 0.92

Figure 4 (a) The evolution plot of the Jacobi elliptic functions solutions u27 with the parameters
k = k1 = k2 = A1 = 1, a(t) = 1, c(t) = 1,m = 0.1, α = β = 1. (b) α = 0.1, β = 0.1

Here u0 = u(x, 0) = f (x), λ(t, x) is a general Lagrange multiplier, which can be identified op-
timally with the variational theory. The function ũn is a restricted variation, which means
δũn = 0. Therefore, we first determine the Lagrange multiplier λ(t, x) that will be identi-
fied optimally via integration by parts. The successive approximations un+1, n ≥ 0, of the
solution u(x, t) will be readily obtained upon using the obtained λ(t, x) and any selective
function u0. The initial values are usually used for choosing the zeroth approximation u0.
Consequently, the exact solution may be procured by using u = limn→∞ un.

In the following, we will apply the MFVIM to a model about Eq. (2) to illustrate the
strength of the method.
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Example We now consider the following time-space fractional NLS equation [30–32]:

i
∂αu
∂tα

+ a
∂2βu
∂x2β

+ bu|u|2 – icu = 0, t > 0, 0 < α,β ≤ 1, u(x, 0) = Aeix. (10)

Here a, b, c are constants. This equation occurs in various kinds of theoretical physics,
such as nonlinear optics, superconductivity and plasma physics, which also can represent
some dynamical system in quantum mechanics, fluid dynamics and nonlinear dynamics
[31].

The correction functional for (10) reads

un+1 = un + Jα
t

{
λ(t, x)

[
i
∂αun

∂tα
+ a

∂2ũn

∂x2 + bũn|ũn|2 – icũn

]}
. (11)

Making the above correction functional stationary,

δun+1 = δun + λ(t, x)iδun – Jα
t
{[

iλα(t, x)δun
]}

. (12)

After getting the coefficients of δun to zero we can determine the Lagrange multiplier

λ = i. (13)

We produces the iteration formulation as follows:

un+1 = un + iJα
t

[
i
∂αun

∂tα
+ a

∂2un

∂x2 + bun|u|2 – icun

]
, |u|2 = |u0|2. (14)

As stated before, we can select u0 = u(x, 0) = Aeix, using the iteration (14) and the Mathe-
matica software, we obtain the following successive approximations:

u0 = Aeix,

u1 = Aeix + aAei(x+πβ) itα

Γ (1 + α)
+ bA3eix itα

Γ (1 + α)
– icAeix itα

Γ (1 + α)

= Aeix
(

1 +
c1itα

Γ (1 + α)

)
, c1 = aeiπβ + bA2 – ic,

u2 = u1 – Aeix c1itα

Γ (1 + α)
+ aAei(x+πβ)

[
itα

Γ (1 + α)
+

c1i2t2α

Γ (1 + 2α)

]

+ bA3eix
[

itα

Γ (1 + α)
+

c1i2t2α

Γ (1 + 2α)

]

– icAeix
[

itα

Γ (1 + α)
+

c1i2t2α

Γ (1 + 2α)

]

= Aeix
[

1 +
c1itα

Γ (1 + α)
+

c2
1i2t2α

Γ (1 + 2α)

]
,

u3 = Aeix
[

1 +
c1itα

Γ (1 + α)
+

c2
1i2t2α

Γ (1 + 2α)
+

c3
1i3t3α

Γ (1 + 3α)

]
,
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· · · ,

un = Aeix
n∑

k=0

1
Γ (1 + kα)

[
c1itα

]k .

The exact solution of Eq. (10) is

uexact = Aeix lim
n→∞

n∑
k=0

1
Γ (1 + kα)

[
c1itα

]k = AeixEα

[(
aeiπβ + bA2 – ic

)
itα

]
. (15)

Here Eα[(aeiπβ + bA2 – ic)itα is the Mittag-Leffler function.

Remark 3 If we select A = 1, a = k, b = 2k, c = 0, α = 1, the solution (15) contains the result
(49) in Ref. [30], the result (3.18) and (3.21) in Ref. [31], the result (27) in Ref. [32], but we
can find that this iteration is much more simple, standard and powerful than the HAM, the
ADM and the VIM mentioned in Refs. [30–32]. The solution (15) is a new exact solution
for Eq. (10) to the best of our knowledge.

4 Conclusion
In this paper, the modified general mapping deformation method and the MFVIM are
used for finding exact and approximate solutions of the GFNLS equation with the Caputo
derivative. The obtained results indicate that the MFVIM is an effective, and a convenient
and powerful method for solving nonlinear fractional complex differential equations when
compared with some other traditional asymptotic decomposition method such as HAM,
VIM and ADM. We believe that these two methods should play an important role for
finding exact and approximate solutions in mathematical physics.
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