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more severe forms of dengue infections are DSS and DHF, causing 22,000 deaths annually
[10]. Moreover, dengue virus is recognized as the major arbovirus on the globe, and each
year produces more than 50 million infections [11, 12].

It is evident that vaccination plays an essential part in eliminating infectious diseases and
is used as an effective method to eliminate the infection by reducing the strength of the
susceptible group in the community [13–21]. The impact of impulsive vaccination on an
epidemic model with regular constant vaccination was studied in [20], where a fraction of
the susceptible class was partially transferred to the vaccination class. In [15], the author
explored and conceptualized the role of vaccination in the epidemic model and further
highlighted the influence of vaccination on the infection. Even though vaccination is the
most powerful tool to eradicate and reduce the level of infection, however, most types of
it are not fully effective and do not provide complete immunity to the infection. As a re-
sult, mathematical models with vaccination strategy provide vital information to decision
makers at both global and national levels. Although several epidemic models have been
introduced in previous research to conceptualize and explore the dynamics of dengue in-
fection to detect the leading factors that significantly affect the transmission of the infec-
tion [22–32], few have focused on modeling the effect of vaccination on dengue dynamics
and this falls within the scope of this research.

A common assumption for the infectious model with vaccination strategy is that the
immunization activities happen continuously. However, this is not how things look like.
Generally, the immunization happens in regular intervals, and consequently, the contin-
uous human’s intervention measure is then removed from the system, and replaced by an
impulsive perturbation. Thus, mathematical models with impulsive vaccination have been
proposed and investigated [33–40]. In [38, 39], the authors inspected the delay epidemic
models with the influence of impulsive vaccination, moreover, the stability of the linear
impulsive system was investigated in [41]. Note that individuals, who have immunization
to one dengue virus due to infection or vaccination, can also be infected by another dengue
virus. So the interesting problem is how to design the vaccination regime (i.e., as regards
the vaccination intensity and how frequently the vaccination should be implemented) to
effectively control the dengue infection.

The target of this work is to initiate a dynamical model for dengue fever with periodic
transmission functions and pulse vaccination. The preeminent motivation behind this re-
search is to examine the level of disease after implementation of impulsive vaccination
and to investigate how the impulsive policy influences the dynamics of dengue infection.
This article is ordered as follows: in Sect. 2 of the article, we introduce the dynamics of
dengue fever with periodic transmission functions and impulsive vaccination strategies.
In Sect. 3, we reveal that the infection-free periodic solution is GAS for R0 less than 1
and is unstable in other respects. Furthermore, the uniform persistence of dengue infec-
tion has been shown in the proposed impulsive system for R0 > 1. In Sect. 4, we carry out
some numerical simulation to elucidate the impulsive system to inspect the feasibility of
the impulsive vaccination control strategy. Finally, we present endemic indicator in terms
of different parameters of the system numerically.

2 Formulation of the model
To formulate the interaction of vector and human for dengue infection, we indicate
the total female vector size by Nv and the total human size by Nh. The total female
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vector size is categorized into susceptible (Sv) and infectious (Iv) states while the hu-
man population Nh is categorized into susceptible human (Sh1 ), susceptible human
with partial immunity (Sh2 ), infected (Ih) and recovered (Rh) states. Moreover, it is as-
sumed that negligible mortality is produced by dengue infection and the natural re-
cruitment and death rates of vector and host are supposed to be μv and μh, respec-
tively.

The flow of dengue infection from an infected mosquito to a susceptible human starts
by the bite of infectious mosquitoes when it sucks the blood of a susceptible host. In both
populations, the flow of dengue infection from susceptible state to infected one relies on
the biting rate of mosquitoes, the number of susceptible and infectious members of both
populations, and the transmission probabilities. In this formulation, b is for the per capita
bitting rate of vectors and βh1 , βh2 and βv represent the transmission probabilities from
vector to susceptible humans and vice versa. In this formulation, the infection rates per
humans and mosquitoes are described by ( bβh1

Nh
Iv), ( bβh2

Nh
Iv) and ( bβvNh

Ih), respectively. We
assume that a fraction υ of the recovered class lose immunity and become susceptible
with less transmission probability.

The differential system that represents the flow of dengue infection with the upper men-
tioned suppositions is specified as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSh1
dt = μhNh – βh1b

Nh
Sh1 Iv – μhSh1 ,

dSh2
dt = – βh2b

Nh
Sh2 Iv – μhSh2 + υRh,

dIh
dt = βh1b

Nh
Sh1 Iv + βh2b

Nh
Sh2 Iv – (μh + γh)Ih,

dRh
dt = γhIh – (υ + μh)Rh,
dSv
dt = μvNv – βvb

Nh
SvIh – μvSv,

dIv
dt = βvb

Nh
SvIh – μvIv,

(1)

with appropriate non-negative initial condition, moreover, the total population size of vec-
tor and host are

Nv = Sv + Iv, Nh = Sh1 + Sh2 + Ih + Rh. (2)

It is well known that there exist periodic outbreaks of dengue infection and fluctu-
ation occurs in the density of the vector population because of environmental factors
such as humidity and temperature. Therefore, we introduce periodic transmission rates
and seasonality in the vector population to represent more realistically the phenom-
ena of dengue infection. We denote the periodic transmission rates by βh1 (t), βh2 (t) and
βv(t), and we indicate the periodic recruitment rate and natural death rate of mosquitoes
by A(t) and μv(t). Note that here the seasonality in the death rate of mosquitoes is
due to the phenology feature in vectors which brings fluctuation in the death rate with
time [42]. Further, we introduce an impulsive vaccination mechanism of control and
prevention for dengue infection, where vaccination is applied to a fraction q of host
population Sh1 , these susceptible hosts shift to the recovery class Rh after successful
vaccination. Then the system of equations (1) with the above assumptions takes the
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form
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSh1
dt = μhNh – bβh1 (t)

Nh
Sh1 Iv – μhSh1 ,

dSh2
dt = – bβh2 (t)

Nh
Sh2 Iv – μhSh2 + υRh,

dIh
dt = bβh1 (t)

Nh
Sh1 Iv + bβh2 (t)

Nh
Sh2 Iv – (μh + γh)Ih,

dRh
dt = γhIh – (υ + μh)Rh,
dSv
dt = A(t) – bβv(t)

Nh
SvIh – μv(t)Sv,

dIv
dt = bβv(t)

Nh
SvIh – μv(t)Iv,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t �= nT, n ∈ N,

Sh1 (t+) = (1 – q)Sh1 (t),

Sh2 (t+) = Sh2 (t),

Ih(t+) = Ih(t),

Rh(t+) = Rh(t) + qSh1 (t),

Sv(t+) = Sv(t),

Iv(t+) = Iv(t),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t = nT, n ∈ N.

(3)

with non-negative initial condition Sh1 (0) = Sh10, Sh2 (0) = Sh20, Ih(0) = Ih0, Rh(0) = Rh0,
Sv(0) = Sv0 and Iv(0) = Iv0. The above impulsive dynamical model (3) implies

dNv(t)
dt

= A(t) – μv(t)Nv(t), (4)

with non-negative initial condition Nv(0) = Nv0. System (4) has a unique positive T-
periodic globally asymptotically stable solution given by

Ñv(t) = Ñv(0)e–
∫ t

0 μv(ρ)dρ + e–
∫ t

0 μv(ρ)dρ

∫ t

0
A(ρ)e

∫ ρ
0 μv(τ )dτ dρ,

with

Ñv(0) =
∫ T

0 A(ρ)e
∫ ρ

0 μv(τ )dτ dρ

e
∫ T

0 μv(ρ)dρ – 1
.

In consequence of this, Nv(t) → Ñv(t) as t tends to infinity. Finally, the system of equa-
tions (3) with the assumptions of β1(t) = bβh1 (t)

Nh
, β2(t) = bβh2 (t)

Nh
and β3(t) = bβv(t)

Nh
, takes the

form
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSh1
dt = μhNh – β1(t)Sh1 Iv – μhSh1 ,

dSh2
dt = –β2(t)Sh2 Iv – μhSh2 + υ(Nh – Sh1 – Sh2 – Ih),

dIh
dt = β1(t)Sh1 Iv + β2(t)Sh2 Iv – (μh + γh)Ih,
dIv
dt = β3(t)(Ñv(t) – Iv)Ih – μv(t)Iv,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

t �= nT, n ∈ N,

Sh1 (t+) = (1 – q)Sh1 (t),

Sh2 (t+) = Sh2 (t),

Ih(t+) = Ih(t),

Iv(t+) = Iv(t),

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

t = nT, n ∈ N,

(5)
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with non-negative initial condition Sh1 (0) = Sh10, Sh2 (0) = Sh20, Ih(0) = Ih0 and Iv(0) =
Iv0.

To analyze the impulsive system (5), we take the general impulsive differential system

dy(t)
dt

= b – dy(t), t �= nT, n ∈ N,

y
(
t+)

= (1 – φ)y(t), t = nT, n ∈ N,
(6)

where b, d are positive and 0 < φ < 1. Here, we present that the impulsive dynamical system
(6) admits a positive periodic, and globally asymptotically stable solution.

Lemma 2.1 The impulsive dynamical system (6) has a positive periodic globally asymp-
totically stable solution

ỹ(t) =
b
d

+
(

y∗ –
b
d

)

e–d(t–nT), t ∈ (
nT, (n + 1)T

]
,

where

y∗ =
b(1 – φ)(1 – e–dT)
d[1 – (1 – φ)e–dT]

.

Proof To obtain the required result, we integrate the first equation of the dynamical sys-
tem (6) at pulses, and we get

ỹ(t) =
b
d

+
(

y(nT) –
b
d

)

e–d(t–nT), t ∈ (
nT, (n + 1)T

]
, (7)

where y(nT) denotes the base value at nT. In the next step, we solve the last equation of
the impulsive dynamical system (6) and obtain

y
(
(n + 1)T

)
= (1 – φ)

[
b
d

+
(

y(nT) –
b
d

)

e–dT
]

= g
(
y(nT)

)
, (8)

where g(y) = (1 – φ)[ bd + (y – b
d )e–dT]. Furthermore, it is effortless to show that (8) has

a unique positive solution given by y∗ = [ b(1–φ)(1–e–dT)
d(1–(1–φ)e–dT) ], which satisfies the condition y <

g(y) < y∗, if 0 < y < y∗ and satisfies the condition y∗ < g(y) < y if y > y∗. Evidently, y∗ is
globally asymptotically stable for Eq. (8) by [43]. Consequently, we have a positive periodic
globally asymptotically stable solution of the impulsive system (6), given by

ỹ(t) =
b
d

+
(

y∗ –
b
d

)

e–d(t–nT), t ∈ (
nT, (n + 1)T

]
,

with

y∗ =
b(1 – φ)(1 – e–dT)
d[1 – (1 – φ)e–dT]

.

This completes the proof. �
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Next, we present the following concept for the solution of a linear system of the form
y′ = G(t)y. Let w1, w2 ∈ R

n, where (Rn,Rn
+) is a standard order n-dimensional Euclidean

space and ‖ · ‖ is the norm defined on (Rn,Rn
+). Further, we take w1 ≥ w2, if w1 – w2 ∈ R

n
+;

w1 > w2, if w1 – w2 ∈R
n
+ \ 0; and w1 	 w2, if w1 – w2 ∈ Int(Rn

+). Here, we assume a matrix
function G(t) of order n, which is irreducible, cooperative, continuous and periodic with a
positive period ω. Take the linear system y′ = G(t)y having a fundamental matrix solution
ΦG(·)(t) and r(ΦG(·)(ω)) represents the highest eigenvalue of ΦG(·)(ω) in magnitude. Then
the Perron–Frobenius theorem implies that r(ΦG(·)(ω)) is the principal eigenvalue of the
solution matrix ΦG(·)(ω). The following lemma is introduced for the further analysis of our
impulsive system.

Lemma 2.2 ([44, 45]) Let ψ = 1
ω

ln r(ΦG(·)(ω)). Then the linear system y′ = G(t)y has a
solution eψtu(t), where u(t) is a ω-periodic and positive function.

3 Threshold dynamics
The existence of the disease-free periodic solution of impulsive dynamical model (5) and
its stability will be studied in this section of the article. Suppose both populations are free
of infections, more specifically there is no infection in host and vector populations, that
is, Ih(t) = Iv(t) = 0, then the impulsive system (5) becomes

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dSh1
dt = μhNh – μhSh1 ,

dSh2
dt = –μhSh2 + υ(Nh – Sh1 – Sh2 ),

⎫
⎬

⎭
t �= nT, n ∈ N,

Sh1 (t+) = (1 – q)Sh1(t),

Sh2 (t+) = Sh2 (t),

⎫
⎬

⎭
t = nT, n ∈ N,

(9)

with proper non-negative initial conditions. The following result is concerned with the
positive periodic solution of the disease-free system (9) and its global asymptotical stabil-
ity.

Theorem 3.1 The impulsive dynamical system (9) admits a positive periodic, and globally
asymptotically stable solution.

Proof To obtain the result, firstly we take the portion of Sh1 of the impulsive system (9),
that is

⎧
⎨

⎩

dSh1
dt = μhNh – μhSh1 , t �= nT, n ∈ N,

Sh1 (t+) = (1 – q)Sh1 (t), t = nT, n ∈ N.
(10)

Obviously, the impulsive system (10) admits a positive periodic globally asymptotically
stable solution by Lemma 2.1, given by

S̃h1 (t) = Nh +
(
S∗
h1 – Nh

)
e–μh(t–nT), t ∈ (

nT, (n + 1)T
]
, (11)

with

S∗
h1 =

Nh(1 – q)(1 – e–μhT)
[1 – (1 – q)e–μhT]

.
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Secondly, we take the portion of Sh2 of the impulsive system (9), that is

⎧
⎨

⎩

dSh2 (t)
dt = υ(Nh – S̃h1 (t)) – (υ + μh)Sh2 (t), t �= nT, n ∈ N,

Sh2 (t+) = Sh2 (t), t = nT, n ∈ N.
(12)

The above-mentioned system (12) also admits a positive periodic globally asymptotically
stable solution, given by

S̃h2 (t) = e–(υ+μh)(t–nT)
[

S∗
h2 +

∫ t

nT
υ
(
Nh – S̃h1 (ρ)

)
e(υ+μh)(t–nT) dρ

]

,

t ∈ (
nT, (n + 1)T

]
, (13)

with

S∗
h2 =

∫ (n+1)T
nT υ(Nh – S̃h1 (ρ))e(υ+μh)ρ dρ

e(υ+μh)T – 1
.

As a result, the impulsive system (9) has a positive periodic globally asymptotically stable
solution, i.e., (̃Sh1 (t), S̃h2 (t)). This completes the proof. �

Theorem 3.1 ensures that the impulsive dynamical system (5) has a unique positive peri-
odic disease-free solution (S̃h1 (t), S̃h2 (t), 0, 0) on every impulsive interval. Next, to investi-
gate the stability results of disease-free periodic solution of impulsive system (5), let us take
the linear system y′ = G(t)y, where G(t) is a matrix of order n and assume that ΦG(·)(t) is
its fundamental solution. Also, the spectral radius of ΦG(·)(ω) is assumed to be r(ΦG(·)(ω)),
then the local stability result of the disease-free solution can be obtained by taking small-
amplitude perturbations of the solutions. After small perturbations, the linearizing system
of (5) at the infection-free periodic solution is

y′(t) = G(t)y(t), t �= nT, n ∈ N,

y
(
t+)

= Hy(t), t = nT, n ∈ N,
(14)

in this linear system, we have

G(t) =

[
G1 G2(t)
O F(t) – V(t)

]

, H(t) =

[
H1 0
0 I

]

,

with

G1 =

[
–μh 0
–υ –(μh + υ)

]

, G2(t) =

[
0 –β1(t)̃Sh1 (t)

–υ –β2(t)̃Sh2 (t)

]

,

O =

[
0 0
0 0

]

, H1 =

[
1 – q 0

0 1

]

, V(t) =

[
(μh + γh) 0

0 μv(t)

]

, and

F(t) =

[
0 β1(t)̃Sh1 (t) + β2(t)̃Sh2 (t)

β3(t)Ñv(t) 0

]

.
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Let ΦG(t) = (Φij)1≤i,j≤2 be the fundamental solution of linear system y′(t) = G(t)y(t). Con-
sequently, we have Φ ′

G(t) = G(t)ΦG(t) with appropriate initial value ΦG(0) = E4. Further
computation implies that

ΦG(t) =

[
eG1t Φ12(t)

0 ΦF(t)–V(t)(t)

]

,

then we obtain

HΦG(T) =

[
H1eG1T H1Φ12(T)

0 Φ(F(t)–V(t))(T)

]

.

It can be noticed that r(H1eG1T ) < 1. Denote the basic reproduction number

R0 � r
(
Φ(F–V)(·)(t)(T)

)
,

therefore, based on Floquet theory, we obtain the following conclusion.

Theorem 3.2 The infection-free periodic solution of the impulsive dynamical system (5) is
locally asymptotically stable if R0 less than 1, and is unstable in other cases.

Note that here R0 works as a threshold (endemic indicator) for the impulsive system (5)
such that, if R0 is less than 1, then an infected individual generate less than an infected
individual and the infection vanishes. In the case that R0 greater than 1, this implies that
an infected individual generates more infected individuals in the community [46].

Theorem 3.3 The infection-free periodic solution of impulsive dynamical system (5) is
globally asymptotically stable for R0 < 1.

Proof To obtain the result, we take the solution ϕ(t,x) = (Sh1 (t),Sh2 (t), Ih(t), Iv(t)) of the
impulsive system (5), where x ∈ R4

+. By the non-negativity of Ih(t) and Iv(t), we have

⎧
⎨

⎩

dSh1
dt ≤ μhNh – μhSh1 , t �= nT, n ∈ N,

Sh1 (t+) = (1 – q)Sh1 (t), t = nT, n ∈ N,
(15)

taking the auxiliary system

⎧
⎨

⎩

dx1
dt = μhNh – μhx1, t �= nT, n ∈ N,

x1(t+) = (1 – q)x1(t), t = nT, n ∈ N.
(16)

Obviously, the impulsive system (16) admits a positive periodic globally asymptotically
stable solution by Lemma 2.1, say x̃1(t), that is, x1(t) converges to x̃1(t), as t tends to
infinity. Further, the comparison theorem of IDEs implies that Sh1 (t) ≤ x1(t), similarly
we can justify that Sh2 (t) ≤ x2(t). Next, we define the solution S(t) = (Sh1 (t),Sh2 (t))T and
x(t) = (x1(t),x2(t))T of the infection-free impulsive system (9), with S(0) = x(0). It is clear
that the τ -periodic solution is globally asymptotically stable for the infection-free sys-
tem (9) by Theorem 3.1, say S̃(t) = (̃Sh1 (t), S̃h2 (t))T . To be more specific, the solution
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x(t) → S̃(t) as t tends to infinity. We fix ξ > 0. Then we can find t1 > 0 in such a man-
ner that x1(t) ≤ S̃h1 (t) + ξ and x2(t) ≤ S̃h2 (t) + ξ for all t ≥ t1. Thus, for t ≥ t1, we have
Sh1 (t) ≤ S̃h1 (t) + ξ and Sh2 (t) ≤ S̃h2 (t) + ξ . By system (5), we have

⎧
⎨

⎩

dIh
dt ≤ (β1(t)(̃Sh1 (t) + ξ ) + β2(t)(̃Sh2 (t) + ξ ))Iv – (μh + γh)Ih,
dIv
dt ≤ β3(t)Ñv(t)Ih – μv(t)Iv.

(17)

Taking the auxiliary system

⎧
⎨

⎩

dw1
dt = (β1(t)(̃Sh1 (t) + ξ ) + β2(t)(̃Sh2 (t) + ξ ))w2 – (μh + γh)w1,
dw2
dt = β3(t)Ñv(t)w1 – μv(t)w2,

(18)

system (18) is converted into

w′ =
(
F(t) – V(t)

)
w + ξW (t)w, (19)

where w is a vector of the form w = (w1, w2)T and

W (t) =

[
0 β1(t) + β2(t)
0 0

]

.

Based on Lemma 2.2, the linear differential system (19) has a solution, that is, eμ1tu(t),
where μ1 = 1

T ln r(Φ(F–V)(·)(t)+ξW (t)(T)) and the vector u(t) = (u1(t),u2(t))T is a positive T-
periodic function. Choose t2 > t1 and a small number α > 0 in such a way that w(t2) ≤
αu(0). Consequently we obtain

w(t) ≤ αeμ1(t–t2)u(t – t2), t ≥ t2.

Applying Theorem B.1 presented in [47], we have

(
Ih(t), Iv(t)

)T ≤ w(t) ≤ αeμ1(t–t2)u(t – t2), t ≥ t2.

While R0 < 1, one can select a small ξ in such a way that r(Φ(F(t)–V(t))(·)+ξW (t)(T)) < 1.
Hence, we obtain μ1 < 0. As a result w(t) → 0 as t approaches infinity, it shows that
(Ih(t), Iv(t))T → 0 as t approaches infinity. As a result, we obtain limt→∞ Sh1 (t) = S̃h1 (t)
and limt→∞ Sh2 (t) = S̃h2 (t) from the impulsive system (5). Thus, the solution of the impul-
sive system is globally attractive. As a consequence, the disease-free periodic solution of
impulsive system (5) is GAS for R0 < 1. This completes the proof. �

Remark The stability result presented in Theorem 3.3 exhibits the threshold dynamics
and agrees with the epidemiological mechanism, where the infection will vanish if the av-
erage number infected by an infective individual in his infectious period is less than 1, but
the infection will remain in the community if the average number is greater than 1. More-
over, the stability of the infection-free solution means that the host population converges
to the periodic functions given by (11) and (13), while the vector population tends to zero.
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Theorem 3.4 The infection in the impulsive system (5) is uniformly persistent if R0 > 1, in
other words, there is κ > 0 such that limt→∞ inf Ih(t) > κ , limt→∞ inf Iv(t) > κ .

Proof To obtain the required result, we will first provide evidence that we can find a con-
stant κ > 0, in such a way as to make

lim
t→∞ sup Ih(t) > κ , lim

t→∞ sup Iv(t) > κ .

In conflict with this, we take the assumption as regards time t in such a manner that Ih(t) <
κ and Iv(t) < κ , for all t ≥ t1. From system (5), we have

⎧
⎨

⎩

dSh1
dt ≥ μhNh – β1(t)Sh1κ – μhSh1 , t �= nT, n ∈N,

Sh1 (t+) = (1 – q)Sh1 (t), t = nT, n ∈N.
(20)

We take the auxiliary system

dx1

dt
= μhNh –

(
β1(t)κ + μh

)
x1, t �= nT, n ∈ N,

x1
(
t+)

= (1 – q)x1(t), t = nT, n ∈N.
(21)

The above-mentioned impulsive system (21) has a positive ω-periodic globally asymptot-
ically stable solution,

x̃1(t) = e–
∫ t

nT(β1(ρ)κ+μh)dρ

(

x∗
1 +

∫ t

nT
μhNhe

∫ ρ
nT(β1(τ )κ+μh)dτ dρ

)

, t ∈ (
nT, (n + 1)T

]
,

where

x∗
1 = (1 – q)

[∫ (n+1)T
nT μhNhe

∫ ρ
nT(β1(τ )k+μh)dτ dρ

e
∫ (n+1)T

nT (β1(ρ)κ+μh)dρ – (1 – q)

]

.

In other words, x1(t) → x̃1(t), as t tends to infinity. The comparison theorem of IDEs
implies that Sh1 (t) ≥ x1(t), similarly we can justify that Sh2 (t) ≥ x2(t). At the moment
limκ→0(̃x1, x̃2) = (̃Sh1 , S̃h2 ). As a consequence of this, there exists small κ1 for any ξ1 > 0
such that x̃1 ≥ S̃h1 – ξ1 and x̃2 ≥ S̃h2 – ξ1 for κ < κ1. Using a comparison analysis, there
exist t2 ≥ t1 and ξ2 > 0, in such a manner that

Sh1 (t) ≥ x1(t) ≥ x̃1 – ξ2 ≥ S̃h1 – ξ1 – ξ2

and

Sh2 (t) ≥ x2(t) ≥ x̃2 – ξ2 ≥ S̃h2 – ξ1 – ξ2.

Again from the dynamical system (5), we have

dIh
dt

≥ β1(t)
(
S̃h1 (t) – ξ1 – ξ2

)
Iv + β2(t)

(
S̃h2 (t) – ξ1 – ξ2

)
Iv – (μh + γh)Ih,

dIv
dt

≥ β3(t)
(
Ñv(t) – κ

)
Ih – μv(t)Iv.

(22)
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We take the auxiliary system

w′ =
(
F(t) – V (t)

)
w – M(t)w, (23)

where w = (w1,w2)T. In the premises of Lemma 2.2, we claim that we can find a T-periodic
and positive function v(t) = (v1(t), v2(t)) so that eμ2tv(t) is a solution of system (23) with
μ2 = 1

T ln r(Φ(F–V)(·)(t)–M(t)(T)). Select t3 > t2 and an η > 0 small enough in such a manner
that w(t2) ≥ ηv(0). We get

w(t) ≥ ηeμ2(t–t2)v(t – t2), t ≥ t3.

Applying the standard comparison theorem presented in [47], we have

(
Ih(t), Iv(t)

)T ≥ w(t) ≥ ηeμ2(t–t2)v(t – t2), t ≥ t3.

As r(Φ(F–V)(·)(t)(T)) > 1 and r(Φ(F–V)(·)(t) – M(t)(T)) is continuous for small ξ1 and ξ2, we
may choose ξ1, ξ2 > 0 in such a way that r(Φ(F–V)(·)–M(T)) > 1. As a result we obtain μ2 > 0.
Because of this w(t) converges to infinity as t → ∞, consequently (Ih(t), Iv(t))T → ∞ as
t → ∞, which conflicts the boundedness of Ih and Iv. Thus we obtain the proof of the
claim, that is, limt→∞ sup Ih(t) ≥ κ and limt→∞ sup Iv(t) ≥ κ . Furthermore, we have the
following two possibilities from the claim:

(a) Ih(t) > κ and Iv(t) > κ for large t;
(b) oscillations of Ih(t) and Iv(t) about κ for large t.

If case (a) is satisfied, then the required proof is obtained. Next, we focus on case (b).
As limt→∞ sup Ih(t) ≥ κ and limt→∞ sup Iv(t) ≥ κ , we can find a t1 ∈ (n1T, (n1 + 1)T] in
such a way that Ih(t1) ≥ κ and Iv(t1) ≥ κ . The above discussion implies that there exists
t2 ∈ (n2T, (n2 + 1)T], such that Ih(t2) ≥ κ and Iv(t2) ≥ κ , where n2 – n1 ≥ 0 is finite. We will
now observe the solution of the impulsive system (5) in the interval [t1, t2]:

I ′h = β1(t)Sh1 Iv + β2(t)Sh2 Iv – (μh + γh)Ih ≥ –(μh + γh)Ih.

Consequently, we get

Ih(t) ≥ Ih(t1)e–(μh+γh)(t–t1) ≥ κe–(μh+γh)(t2–t1) ≥ κe–(μh+γh)(n2–n1)T.

Moreover,

I ′v = β3(t)
(
Ñv(t) – Iv

)
Ih – μv(t)Iv ≥ –μv(t)Iv,

which gives

Iv(t) ≥ Iv(t1)e–
∫ t
t1

μv(s)ds ≥ κe–
∫ t2
t1 μv(s)ds ≥ κe–

∫ n2T
n1T μv(t)dt .

Let κ1 = min{κe–
∫ n2T

n1T μv(t)dt ,κe–(μh+γh)(n2–n1)T}, then κ1 > 0 cannot be infinitely small and
n2 – n1 ≥ 0 is finite. We have Ih(t) ≥ κ1 > 0 and Iv(t) ≥ κ1 > 0.
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Taking the same steps for t > t2, we obtain another non-infinitesimal positive κ2.

As a consequence of this, we get the sequence {κj}, where κk = min{κe–
∫ nk+1T

nkT μv(t)dt ,
κe–(μh+γh)(nk+1–nk)T} for j = 1, 2, . . . ,k, . . . is non-infinitesimal, as the term nk+1 – nk ≥ 0 is
finite. In this case, the solution of system (5) Ih(t) ≥ κk > 0 and Iv(t) ≥ κk > 0 holds true
in the interval [tk , tk+1] of time, where tk ∈ (nkT, nk+1T], tk+1 ∈ (nk+1T, (nk+1 + 1)T]. Let
κ∗ = minj(κj) = κl > 0, l ∈ N , κl ∈ {κj} for j = 1, 2, . . . , hence Ih(t) ≥ κ∗ > 0 and Iv(t) ≥ κ∗ > 0
for all t ≥ t1. This completes the proof. �

4 Numerical results
In this part of the article, we will analyze and investigate the dengue disease transmission
model (5) numerically to conceptualize the transmission pathway of dengue infection in
the proposed impulsive system, and to scrutinize the consequences of impulsive vaccina-
tion on the transmission dynamics. The periodic transmission probabilities from vector
to host and vice versa are taken as βh1 (t) = α1(1 + δ1 cos(2π t)), βh2 (t) = α2(1 + δ2 cos(2π t))
and βv(t) = α3(1 + δ3 cos(2π t)), respectively.

To demonstrate the influence of pulse vaccination on the transmission of dengue in-
fection numerically, we use the values of parameter for simulation purpose inventoried in
Table 1 and select the state variables for simulation purpose as Sv(0) = 18,000, Iv(0) = 3000,
Sh1(0) = 30,000, Sh2(0) = 20,000, Ih(0) = 1000 and Rh(0) = 20,000. Furthermore, we choose
the values α1 = 0.750, α2 = 0.300, α3 = 0.750, δ1 = 0.05, δ2 = 0.03, and δ3 = 0.01 to concep-
tualize the dynamical behavior of our impulsive system, moreover, we assumed constant
birth rates for simplicity in our simulations. In Fig. 1, we illustrate the moment path of in-
fected host individuals Ih(t) and infected vector individuals Iv(t) with fixed-moment pulse
vaccination and the vaccination strength q = 0.25, which demonstrates the endemic inten-
sity of dengue infection in both species. To examine the potency of the vaccination rate
q, we increase the vaccination rate from 0.25 to 0.75, as shown in Fig. 2. We observe that
the vaccination measure has a great influence on the system, which means that pulse vac-
cination can efficiently control infected individuals and can effectively prevent a dengue
outbreak. To be more specific, it can be noticed that after implementing the vaccination
strategy, the lower level of infected classes in vector and host decreases. Numerical results
predict that the vaccination rate q has a great influence on the infection and can success-
fully decrease the outbreak.

Now we determine the influence of different parameters on the threshold parameter
R0 of system (5). We firstly examine the influence of the biting rate of mosquitoes on the
threshold parameter, illustrated in Fig. 3(a). It shows that changing the biting rate b from

Table 1 Parameters values with interpretation used in numerical simulations

Parameter Interpretation Values References

μh Recruitment and natural mortality rate of host 0.000046 &
0.004500

[48, 49]

βh1 (t) Transmission rate from mosquitoes to susceptible host Periodic [50]
b Bitting rate of mosquitoes 0.500 [26]
βh2 (t) Transmission rate from mosquitoes to susceptible after

losing immunity
Periodic [50]

βv (t) Transmission rate from host to susceptible mosquitoes Periodic [50]
υ Rate of lose of immunity 0.005 Assumed
γh Recovery rate of host 0.3288330 [48, 49]
μv Recruitment and natural mortality rate of vector Periodic Assumed
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Figure 1 Time series of the infected host individuals Ih and infected vector Iv under impulsive vaccination
strategy, where the red line shows the infected host and the black line shows the infected vector with pulse
vaccination strength q = 0.25

Figure 2 Time series of the infected host individuals Ih and infected vector Iv under impulsive vaccination
strategy, where the red line shows infected host and the black line shows infected vector with pulse
vaccination strength q = 0.75

0.1 to 1 increases the endemic level of the system from 0.26 to 2.34, and consequently
leads to an increase in the size of the outbreak and the level of infection, moreover, R0 =
r(Φ(F–V)(·)(T)) = 1 shows that the critical biting rate is b̄ = 0.384. This indicates that if we
control mosquitos such that the biting rate is less than b̄, implying that R0 is less than the
unity, then the dengue infection can be successfully controlled. We thus emphasize the
importance of using mosquito nets which can effectively result in the bitting rate decline.
Figure 3(b) shows the variation in the R0 with the variation of the losing rate of immunity
ν , which implies the rate of loss of immunity ν does not significantly affect the threshold
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Figure 3 Variation in the basic reproduction number R0 with the mosquitoes biting rate b (a), and with the
rate of loss of immunity ν (b)

parameter R0, indicating that the impact of the partial immunization on lowering the new
infection is limited, this happens in dengue infection due to the existence of four serotypes.

To examine the influence of impulsive vaccination on new infections we give the vari-
ation in threshold parameter R0 with the intensify q and period of pulse vaccination T ,
shown in Fig. 4(a) and (b). It says that the higher the vaccination rate is, the less the vacci-
nation period is, and the less the basic reproduction number R0 is, which implies frequent
implementation of the vaccination strategy with great intensity leads to decline of new
infections. As more than 50 percent of the world population are in regions with threat
of dengue infection and the economic weight of dengue is increasing day by day, pulse
vaccination is a beneficial strategy to lower the risk of infection and reduce the economic
burden, compared with continuous vaccination strategy in endemic area of dengue fever
to control the disease.

5 Conclusion
A pulse vaccination policy is an effective measure to prevent infectious diseases, it has
contributed successfully in the elimination of several infectious diseases including po-
liomyelitis and measles. In [51], the advantages of pulse vaccination have been shown
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Figure 4 Variation in the basic reproduction number R0 with the vaccination rate q (a), and with the period
of vaccination T (b)

against measles through mathematical models. Recently, the periodic repetition of vac-
cination and pulse vaccination policy has attracted the attention of researchers because
of the economic and epidemiological factors mentioned in [52–56]. Thus, in this article,
we proposed a dynamical model for the transmission pathway of dengue infection with
periodic transmission functions and seasonality in the vector population. Moreover, we
introduced the strategy of pulse vaccination in the susceptible host population in order to
curb the level of dengue infection. We obtained the basic reproduction number, defined as
the spectral radius of an infection operator for the proposed impulsive system, which gov-
erns whether the disease dies out or not. It has been proven that the disease-free periodic
solution is globally asymptotically stable if R0 less than unity and is unstable otherwise.
We further proved that the dengue infection is uniformly persistent in the community if
R0 > 1. Moreover, we numerically demonstrated the influence of pulse vaccination on the
infected hosts or infected mosquitos and examined the effect of different input factors on
the threshold parameter of the system. The finding indicates that frequent implementa-
tion of the vaccination strategy with great intensity leads to a decline of new infections.
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