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Abstract
This paper is concentrated on a class of difference equations with a Weyl-like
fractional difference in a Banach space X forms like

�αx(n) = Ax(n + 1) + F(n, x(n)), n ∈ Z,

where α ∈ (0, 1), the operator A generates a C0-semigroup on X , �α denotes the
Weyl-like fractional difference operator, F(n, x) : Z× X → X is a nonlinear function.
Some existence theorems for asymptotically almost periodic mild solutions to this
system are obtained with the nonlinear perturbation F being of Lipschitz type or
non-Lipschitz type. The results are a consequence of applications of the Banach
contraction mapping theory, the Leray–Schauder alternative theorem, and
Matkowski’s fixed point theorem. As an application, an example is provided to show
the feasibility of the theoretical results.
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1 Introduction
Difference equations are an important area of applied mathematics, they appear as the
variational equations along the trajectories of dynamical systems with discrete time, and
they play an important role in numerical analysis, systems theory, computer science and
so on [1–3]. The theory of difference equations is richer than the corresponding theory of
differential equations since difference equations are more appropriate than their continu-
ous counterparts in cases when processes evolve in stages.

Difference equation models are a powerful tool in describing natural phenomena and
characterizing many physical problems. Due to their numerous application in many fields,
difference equation models have attracted increasing interest in recent years, and one of
the central topics in the study of difference equations is the investigation of the existence,
uniqueness of solutions with almost periodicity and asymptotically almost periodicity.
The original notion of discrete almost periodic sequence was proposed by Walther [4, 5]
and was further studied by Halanay [6] and Corduneanu [7] related to some aspects of con-
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tinuous almost periodic solutions for differential equations. As an important development
of the well-known discrete almost periodic sequence, the notion of discrete asymptotically
almost periodic sequence, which is based upon the Fréchet concept from [8, 9], was in-
troduced in the work of Fan [10] in 1943. Since then, this concept has been developed in
different directions and has been generalized into various situations, the theory and ap-
plications of discrete asymptotically almost periodic sequences have attracted increasing
attention in recent years. In particular, the investigation of the existence of solutions with
asymptotically almost periodicity has become one of the important as well as attractive
subjects in the theory as well as applications of difference equations due to both the in-
tensive development of the theorem of difference equations itself and the applications in
various sciences such as computer science, chemistry, physics, engineering. Recently, a lot
of papers have been published devoted to the investigation of asymptotically almost peri-
odicity of difference equation of various types (see for instance [11–16] and the references
therein).

On the other hand, the tools of fractional calculus are found to be of great utility in
studying various scientific processes and systems. It has been mainly due to the ability
of fractional order operators to describe long-memory effects of underlying processes. In
particular, models described by fractional differential equations have gained significant
importance and there has been a great interest in developing the theory and applications
of fractional differential equations. For examples and details, we refer the reader to a se-
ries of recent research articles [17–21] and the references therein. In recent years, differ-
ence equations of fractional order have attracted increasing interest of many researchers.
Besides their interest in terms of theory, the study of fractional difference equations has
great importance as regards applications. The study of modeling with fractional difference
equations began with the work of Atici and Sengül [22], and then Goodrich studied the
existence, uniqueness and positivity [23, 24] as well as monotonicity properties [25] of so-
lutions to the discrete boundary value problem of fractional order. More recently, Wu and
Baleanu [26] studied the discrete fractional logistic map and its chaos. The abstract frac-
tional difference equations began to be studied by Lizama [27]. He studied the existence
as well as stability of fractional difference equations forms like

⎧
⎨

⎩

C�αx(n) = Ax(n + 1), n ∈ N ,

x(0) = x0 ∈ X,

where α ∈ (0, 1), C�α is the Caputo-like fractional difference operator, and A is a closed
linear operator defined on a Banach space X. Especially in [28], Abadias and Lizama con-
sider a nonlinear partial difference-differential equations in a Banach space X forms like

�αx(n) = Ax(n + 1) + F
(
n, x(n)

)
, n ∈ Z, (1.1)

where α ∈ (0, 1), the operator A generates a C0-semigroup defined on X, �α denotes the
Weyl-like fractional difference operator, F(n, x) : Z × X → X is a nonlinear function. By
using the operator theoretical method and the Banach fixed point theorem, they prove the
existence and uniqueness of almost automorphic solutions to Eq. (1.1).

However, it should be mentioned that literature about the existence of solutions with
asymptotically almost periodicity to fractional difference equations is scarce. Motivated
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by the above facts, in this paper we give some existence theorems for mild solutions with
asymptotically almost periodicity to the fractional difference equation (1.1) with the non-
linear perturbation F is Lipschitz type or non-Lipschitz type. In particular, as an applica-
tion, we prove the existence and uniqueness of mild solutions with asymptotically almost
periodicity to the fractional difference equations in a Banach space X of forms like

�αx(n) = Ax(n + 1) +
μg(n)[1 + x(n)]

1 + sup{‖x(n)‖ : n ∈ Z} , n ∈ Z,

where α ∈ (0, 1), the operator A generates a C0-semigroup defined on X, g(n) : Z → X is a
sequence which is asymptotically almost periodic, and μ > 0 is a parameter.

An outline of this article is as follows. We introduce some basic concepts and recall some
preliminaries in Sect. 2. Section 3 is concerned with the existence of mild solutions with
asymptotically almost periodicity of the nonhomogeneous linear difference equations cor-
responding to Eq. (1.1). In Sect. 4, we give some existence theorems for mild solutions
with asymptotically almost periodicity to the nonlinear equation (1.1). The last section
deal with an example to validate the applications of our theoretical results.

2 Preliminaries
In this section, we introduce some basic concepts and recall some preliminaries.

In this paper, let N, Z, Z+, R, R+, C be the sets of all natural numbers, integral num-
bers, positive integral numbers, real numbers, positive real numbers, complex numbers,
respectively. For a Banach spaces (X,‖ · ‖), let Bρ(X) = {x ∈ X : ‖x‖ ≤ ρ}. s(Z, X) is a set
consisting of sequences f : Z → X. l∞(Z, X) is a set consisting of sequences

l∞(Z, X) := {f : Z → X|f is bounded on Z}.

The space l∞(Z, X) is a Banach space under the norm

‖x‖d := sup
n∈Z

∥
∥x(n)

∥
∥.

AAP0(Z, X) is a set consisting of sequences

AAP0(Z, X) :=
{

f (n) ∈ l∞(Z, X)
∣
∣ lim|n|→+∞

∥
∥f (n)

∥
∥ = 0

}
.

AAP0(Z, X) is also a Banach space under the norm ‖x‖d . l(Z, X) is a set consisting of se-
quences

l(Z, X) :=

{

f : Z→ X
∣
∣
∣‖f ‖l =

+∞∑

n=–∞

∥
∥f (n)

∥
∥ < +∞

}

.

Moreover, when X = R, we write l(Z) for short. lρ(Z, X) is a set consisting of sequences

lρ(Z, X) :=

{

f : Z → X
∣
∣
∣‖f ‖lρ =

+∞∑

n=–∞

∥
∥f (n)

∥
∥ρ(n) < +∞,

ρ : Z →R
+ is a positive sequence weight

}

.
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Let (Y ,‖ · ‖Y ) be another Banach space, l∞(Z× Y , X) is a set consisting of functions

l∞(Z× Y , X) :=
{

G : Z× Y → X|G is bounded on Z× Y and

G(n, ·) is continuous on Y for each fixed n ∈ Z
}

.

The space l∞(Z× Y , X) is a Banach space under the norm

‖|G‖| := sup
n∈Z,x∈Y

∥
∥G(n, x)

∥
∥.

AAP0(Z× Y , X) is a set consisting of functions

AAP0(Z× Y , X) :=
{

G(n, x) ∈ l∞(Z× Y , X)
∣
∣ lim|n|→+∞

∥
∥G(n, x)

∥
∥ = 0

uniformly for x ∈ Y
}

,

UC(Z× Y , X) =
{

G : Z× Y → X|∀ε > 0,∃δ > 0, s.t.
∥
∥G(n, x) – G(n, y)

∥
∥ ≤ ε

∀n ∈ Z x, y ∈ Y with ‖x – y‖Y ≤ δ
}

,

UCn(Z× Y , X) =
{

G : Z× Y → X|∀ε > 0,∃δ > 0, s.t.
∥
∥G(n, x) – G(n, y)

∥
∥ ≤ Lf (n)ε

∀n ∈ Z x, y ∈ Y with ‖x – y‖Y ≤ δ, Lf ∈ l(Z)
}

.

Let L(X, Y ) be the collection of all bounded linear operators from X to Y . Under the uni-
form operator topology

‖Υ ‖L(X,Y ) := sup
{‖Υ f ‖Y : f ∈ X,‖f ‖ = 1

}
,

we denote L(X) = L(X, X). For A ∈ L(X), let ρ(A) be the resolvent of A and D(A) be the
domain of A.

Firstly, we recall the definitions and related properties on discrete almost periodic se-
quences as well as discrete asymptotically almost periodic sequences.

Following Bohr, Walther has formulated the notion of discrete almost periodic sequence.

Definition 2.1 (Walther [4, 5], Corduneanu [29]) Let {f (n)}n∈Z be a discrete sequence
with values in X. If for each ε > 0, the collection

T(f , ε) :=
{

k ∈ Z :
∥
∥f (n + k) – f (n)

∥
∥ < ε for every n ∈ Z

}

is relatively dense inZ, that is, for any ε > 0, there is an integer N = N(ε) > 0, such that there
exists at least one integer k ∈ �, where � is any collection consisting of N consecutive
integers, satisfying

∥
∥f (n + k) – f (n)

∥
∥ < ε, n ∈ Z,

then {f (n)}n∈Z is said to be a discrete almost periodic sequence.
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The integer k ∈ T(k, ε), with the property in Definition 2.1, is said to be an ε-translation
number of the sequence {f (n)}n∈Z.

By AP(Z, X) we denote the collection of such sequences.
The following notion of a normal process is needed to formulate an important property

of the discrete almost periodic processes.

Definition 2.2 (Corduneanu [29], Zhang, Liu and Gopalsamy [11]) A discrete sequence
{f (n)}n∈Z is called a normal process, if for any sequence {α(k)} ∈ Z, there is a subsequence
{β(k)} ⊂ {α(k)}, for which {f (n + β(k))} converges uniformly with respect to n ∈ Z, as
k → ∞. That is to say, for any ε > 0, there exist an integer K(ε) > 0 and a discrete pro-
cess {f̄ (n)}n∈Z such that

∥
∥f

(
n + β(k)

)
– f̄ (n)

∥
∥ < ε for k ≥ K(ε), n ∈ Z.

Lemma 2.1 (Corduneanu [29]) A discrete process is almost periodic if and only if it is
normal.

Lemma 2.2 (Corduneanu [29], Zhang [30, 31])
(I) For any almost periodic sequence {f (n)}n∈Z, there is a function g(t), t ∈R which is

almost periodic satisfying g(n) = f (n) for n ∈ Z.
(II) For any almost periodic function g(t), t ∈R, {g(n)}n∈Z is an almost periodic sequence.

Remark 2.1 (Campo, Pinto and Vidal [14]) The discretization of a periodic functions may
not lead to a periodic sequences. For instance, {cos(k)}, k = 1, 2, 3, . . . , is not a periodic
sequence, it is an almost periodic sequence.

Lemma 2.3 (Corduneanu [29], Zhang [30, 31]) {f (n)}n∈Z is bounded if {f (n)}n∈Z is an al-
most periodic sequence.

Lemma 2.4 (Corduneanu [29], Long and Pan [32]) Under the norm ‖ · ‖d , AP(Z, X) forms
a Banach space.

Definition 2.3 (Abadias and Lizama [28]) An operator-valued sequence {Υ (n)}n∈N ⊂
L(X) is summable if

‖Υ ‖1 :=
+∞∑

n=0

∥
∥Υ (n)

∥
∥
L(X) < ∞.

The following lemma which comes from Gohberg and Feldman [33] is the essential
property to study almost periodicity and asymptotic almost periodicity of difference equa-
tions.

Lemma 2.5 (Gohberg and Feldman [33]) Assume {Υ (n)}n∈N is a summable sequence.
Then, for any discrete sequence {f (n)}n∈Z which is almost periodic, the sequence {g(n)}n∈Z
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defined by

g(n) =
+∞∑

k=0

Υ (k)f (n – k), n ∈ Z

is also an almost periodic sequence.

Definition 2.4 (Song [13]) Let G : Z× Y → X and Ω be any compact set in Y . If for any
ε > 0, the collection

T(G, ε,Ω) :=
{

k ∈ Z :
∥
∥G(n + k, x) – G(n, x)

∥
∥ < ε for each n ∈ Z and x ∈ Ω

}

is relatively dense in Z, that is, for any ε > 0, there is an integer N = N(ε,Ω) such that there
exists at least one integer k ∈ �, where � is any collection consisting of N consecutive
integers, satisfying

∥
∥G(n + k, x) – G(n, x)

∥
∥ < ε ∀n ∈ Z, x ∈ Ω ,

then G(n, x) is said to be almost periodic in n ∈ Z uniformly for x ∈ Y . The integer k ∈
T(G, ε,Ω), with the property in Definition 2.4, is said to be the ε-translation number of
G(n, x).

By AP(Z× Y , X) we denote the collection of such functions.

Lemma 2.6 (Campo, Pinto and Vidal [14], Song [13]) Let Ω be any compact set in Y and
assume G ∈ AP(Z× Y , X). Then G(n, ·) is continuous on Ω uniformly for n ∈ Z, that is, for
any ε > 0, there is a constant δ > 0 such that

∥
∥G(n, x) – G(n, y)

∥
∥ < ε ∀n ∈ Zx, y ∈ Ω with ‖x – y‖ < δ,

and G(Z× Ω) is relatively compact in X.

Lemma 2.7 (Song [13]) Assume f ∈ AP(Z, X). Then, for any integer sequence {αk}, there
are a subsequence {βk} ⊂ {αk} and a sequence g : Z → X satisfying

f (n + βk) → g(n)

uniformly on Z as k → ∞. Moreover, g ∈ AP(Z, X).

Lemma 2.8 (Song [13]) Assume G ∈ AP(Z×Y , X) and Ω is any compact set in Y . Then, for
any integer sequence {αk}, there are a subsequence {βk} ⊂ {αk} and a function H : Z× Y →
X satisfying

G(n + βk , x) → H(n, x)

uniformly on Z× Ω as k → ∞. Moreover H ∈ AP(Z× Y , X).
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Lemma 2.9 Assume G ∈ AP(Z×Y , X) and Ω is any compact set in Y . For any f ∈ AP(Z, Y )
satisfying f (n) ∈ Ω , ∀n ∈ Z, then the sequence {G(n, f (n))}n∈Z is almost periodic.

Proof From G ∈ AP(Z×Y , X) and f ∈ AP(Z, Y ), together with Lemma 2.7 and Lemma 2.8,
it follows that, for any integer sequence {αk}, there exist a subsequence {βk} ⊂ {αk} and two
functions H : Z× Y → X, g : Z→ Y satisfying

G(n + βk , x) → H(n, x)

uniformly on Z× Ω as k → ∞, and

f (n + βk) → g(n)

uniformly on Z as k → ∞. Moreover H ∈ AP(Z × Y , X) and g ∈ AP(Z, Y ). From
Lemma 2.6, it follows that H(n, x) is continuous on Ω uniformly for n ∈ Z, thus, for any
ε > 0, one can find a constant δ = δ( ε

2 ) > 0 satisfying

∥
∥H(n, x) – H(n, y)

∥
∥ <

ε

2
∀n ∈ Zx, y ∈ Ω with ‖x – y‖Y < δ.

Moreover, there is a constant K = K( ε
2 ) such that, for all k > K ,

∥
∥G(n + βk , x) – H(n, x)

∥
∥ <

ε

2
, ∀n ∈ Zx ∈ Ω ,

∥
∥f (n + βk) – g(n)

∥
∥ < δ, ∀n ∈ Z.

On the other hand, since f (n + βk) ∈ Ω , ∀n ∈ Z, for any k > K ,

∥
∥G

(
n + βk , f (n + βk)

)
– H

(
n, f (n)

)∥
∥

≤ ∥
∥G

(
n + βk , f (n + βk)

)
– H

(
n, f (n + βk)

)∥
∥ +

∥
∥H

(
n, f (n + βk)

)
– H

(
n, x(n)

)∥
∥

<
ε

2
+

ε

2
= ε,

which shows {G(n, x(n))}n∈Z is a normal process, then G(n, x(n)) is almost periodic which
follows from Lemma 2.1. �

As an important development of the well-known discrete almost periodic sequence,
the notion of discrete asymptotically almost periodic sequence, which is based upon the
Fréchet concept from [8, 9], was introduced in the literature [10] by Fan.

Definition 2.5 (Fan [10], Song [13]) If a sequence f (n) = g(n) + h(n) with g(n) ∈ AP(Z, X)
and h(n) ∈ AAP0(Z, X), then the sequence f : Z → X is said to be asymptotically almost
periodic.

The sequence {g(n)}n∈Z is called the almost periodic component of {f (n)}n∈Z, and
{h(n)}n∈Z is called the ergodic perturbation of {f (n)}n∈Z.

By AAP(Z, X) we denote the collection of such sequences.
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Lemma 2.10 (Zhang [30, 31])
(I) For any discrete asymptotically almost periodic sequence {f (n)}n∈Z, there is a

function g(t), t ∈R which is asymptotically almost periodic satisfying g(n) = f (n) for
n ∈ Z.

(II) For any asymptotically almost periodic function g(t), t ∈ R, {g(n)}n∈Z is a discrete
asymptotically almost periodic sequence.

Lemma 2.11 (Zhang [30, 31]) The decomposition of an asymptotically almost periodic
sequence {f (n)}n∈Z

f (n) = g(n) + h(n)

with g(n) ∈ AP(Z, X) and h(n) ∈ AAP0(Z, X), is unique.

Lemma 2.12 (Long and Pan [32]) Under the norm ‖ · ‖d , AAP(Z, X) also forms a Banach
space.

Lemma 2.13 Assume g(n) is the almost periodic component of the sequence f (n) ∈
AAP(Z, X). Then g(Z) ⊂ f (Z).

Proof Denote h(n) = f (n) – g(n), the ergodic perturbation of f (n). If g(Z) is not contained
in f (Z), then there are ε0 > 0 and n0 ∈ Z such that

inf
n∈Z

∥
∥f (n) – g(n0)

∥
∥ ≥ ε0.

Let us take k ∈ T(g, ε0
2 ). Then

∥
∥h(n0 + k)

∥
∥ =

∥
∥f (n0 + k) – g(n0 + k)

∥
∥

≥ ∥
∥f (n0 + k) – g(n0)

∥
∥ –

∥
∥g(n0 + k) – g(n0)

∥
∥ ≥ ε0

2
,

which is a contradiction with h(n) ∈ AAP0(Z, X). �

Definition 2.6 (Campo, Pinto and Vidal [14], Long and Pan [32]) A function G(n, x) :
Z × Y → X is said to be a discrete asymptotically almost periodic function in n ∈ Z for
each x ∈ Y if

G(n, x) = H(n, x) + W (n, x)

with H(n, x) ∈ AP(Z× Y , X) and W (n, x) ∈ AAP0(Z× Y , X).

By AAP(Z× Y , X) we denote the collection of such functions.

Lemma 2.14 Assume G(n, x) ∈ AAP(Z×Y , X) and Ω is any compact set in Y . Then G(n, x)
is bounded on Z× Ω .

Proof As G(n, x) ∈ AAP(Z× Y , X), then

G(n, x) = H(n, x) + W (n, x)
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with H(n, x) ∈ AP(Z × Y , X) and W (n, x) ∈ AAP0(Z × Y , X). From Lemma 2.6, it follows
that H(n, x) is bounded on Z× Ω . On the other hand, as W (n, x) ∈ AAP0(Z× Y , X), then
W (n, x) is bounded on Z× Y . Thus G(n, x) = H(n, x) + W (n, x) is bounded on Z× Ω . �

In the following, we give the definitions of the discrete α-resolvent family, the fractional
sum and fractional difference of α.

Let α > 0, defined a sequence {kα(n)}n∈N by

kα(n) :=
Γ (n + α)

Γ (α)Γ (n + 1)
,

where Γ is the Gamma function. Note that kα satisfies the semigroup property,

(kα ∗ kβ )(n) =
n∑

j=0

kα(n – j)kβ (j) = kα+β (n), ∀n ∈N,α,β > 0.

We define the forward Euler operator � : s(Z, X) → s(Z, X) as

�γ (n) := γ (n + 1) – γ (n), n ∈ Z.

Recursively, for each k ∈N, define �k+1 = ��k = �k�, and �0 = I is the identity operator.

Definition 2.7 (Abadias and Lizama [28]) Assume α > 0 and A is a closed linear operator
with domain D(A) ⊂ X. An operator sequence {Sα(n)}n∈N ⊂ L(X) is said to be a discrete
α-resolvent family generated by A if for any n ∈N and x ∈ D(A)

Sα(n)Ax = ASα(n)x, Sα(n)x = kα(n)x + A(kα ∗ Sα)(n)x.

Definition 2.8 (Abadias and Lizama [28]) For any α > 0, let ρ(n) = |n|α–1, n ∈ Z, and f ∈
lρ(Z, X) be a sequence. The fractional sum of f is given by

�–αf (n) :=
n∑

j=–∞
kα(n – j)f (j), n ∈ Z.

Definition 2.9 (Abadias and Lizama [28]) For any α > 0, let ρ(n) = |n|α–1, n ∈ Z, and f ∈
lρ(Z, X) be a sequence. The fractional difference of f is given by

�αf (n) := �p�–(p–α)f (n), n ∈ Z,

where p = [α] + 1, [·] is the largest integer function.

Finally, we give a compactness criterion, the Leray–Schauder alternative theorem and
Matkowski’s fixed point theorem.

Assume h : Z →R
+ is a sequence satisfying

h(n) ≥ 1, ∀n ∈ Z, h(n) → +∞ when |n| → +∞.
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Define

C0
h(Z, X) :=

{

ξ : Z→ X : lim|n|→+∞
‖ξ (n)‖

h(n)
= 0

}

.

It is clear that C0
h(Z, X) is a Banach space under the norm

‖ξ‖h := sup
n∈Z

‖ξ (n)‖
h(n)

.

From Cuevas and Pinto (see [34]), we have the following lemma.

Lemma 2.15 (Agarwal, Cuevas and Dantas [35]) Let S be a subset of C0
h(Z, X). S is rela-

tively compact in C0
h(Z, X) if

(i) for all n ∈ Z, the set Hn(S) := { x(n)
h(n) : x ∈ S} is relatively compact in X ,

(ii) S is weighted equiconvergent at ±∞, i.e., ∀ε > 0, ∃N > 0 s.t. ‖x(n)‖ < εh(n) for
|n| ≥ N and x ∈ S.

Lemma 2.16 (Matkowski’s fixed point theorem [36]) Let Λ : Ξ → Ξ be a map which is
defined on a complete metric space (Ξ , d) satisfying

d(Λx,Λy) ≤ Ψ
(
d(x, y)

) ∀x, y ∈ Ξ ,

where Ψ : R+ →R
+ is a nondecreasing function satisfying

lim
n→∞Ψ n(t) = 0, ∀t > 0.

Then there is a unique fixed point z ∈ X such that Λz = z.

Lemma 2.17 (Leray–Schauder alternative theorem [37]) Let Λ : Ω → Ω be a completely
continuous map defined on Ω , which is a closed convex subset of X satisfying 0 ∈ Ω . Then
Λ has a fixed point in Ω or the collection

{
x ∈ Ω : x = λΛ(x), 0 < λ < 1

}

is unbounded.

3 Asymptotically almost periodicity of linear fractional difference equations
In this section, we formulate and prove conditions for the existence of mild solutions with
asymptotically almost periodicity of the nonhomogeneous linear difference equations of
fractional order given by

�αx(n) = Ax(n + 1) + F(n), n ∈ Z, (3.1)

where α ∈ (0, 1), the operator A generates a C0-semigroup on X, �α denotes the Weyl-
like fractional difference operator, F : Z → X is a discrete asymptotically almost periodic
sequence.
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Lemma 3.1 (Abadias and Lizama [28]) Assume A generates a C0-semigroup {T(t)}t≥0 on
X, which is exponentially stable, i.e.

∥
∥T(t)

∥
∥
L(X) ≤ Me–δt for ∀t > 0 and some constants M > 0, δ > 0. (3.2)

Then there exists a discrete α-resolvent family {Sα(n)}n∈N generated by A, which is given by

Sα(n)x :=
∫ ∞

0

∫ ∞

0
e–t tn

n!
fs,α(t)T(s)x ds dt, n ∈N, x ∈ X,

where fs,α(t) is said to be a stable Lévy process, which is given by

fs,α(t) =
1

2π i

∫ σ+i∞

σ–i∞
ezλ–tzα

dz, σ > 0, s > 0, t ≥ 0, 0 < α < 1.

Moreover, {Sα(n)}n∈N is summable and

‖Sα‖1 =
∞∑

k=0

∥
∥Sα(n)

∥
∥
L(X) ≤ 1

δαπ

(
π

2
– arctan

(
cot(απ )

)
)

=
1
δ

.

From the Gearhart–Prüss–Greiner theorem, Abadias and Lizama obtained the follow-
ing remarkable result.

Lemma 3.2 (Abadias and Lizama [28]) Let H be a Hilbert space, assume A generate a
C0-semigroup on H satisfying

{
η ∈C : Re(η) > 0

} ⊂ ρ(A), sup
Re(η)>0

(η – A)–1 < ∞.

Then there is a discrete α-resolvent family {Sα(n)}n∈N ⊂ L(X) generated by A, which is
summable.

Definition 3.1 (Abadias and Lizama [28]) Assume {Sα(n)}n∈N ⊂ L(X) is a discrete α-
resolvent family generated by A. If for each n ∈ Z, m → Sα(m)F(n – 1 – m) is summable
on N. Then the sequence

x(n) =
n–1∑

k=–∞
Sα(n – 1 – k)F(k), n ∈ Z,

is said to be a mild solution for equation (3.1).

Theorem 3.1 Assume {Sα(n)}n∈N ⊂ L(X) is a discrete α-resolvent family generated by A.
If F ∈ AAP(Z, X), then there exists an asymptotically almost periodic mild solution of
Eq. (3.1), which is given by

x(n) =
n–1∑

k=–∞
Sα(n – 1 – k)F(k), n ∈ Z.
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Proof {Sα(n)}n∈N ⊂ L(X) is a discrete α-resolvent family generated by A, which is
summable. Then one has

∥
∥x(n)

∥
∥ ≤

n–1∑

k=–∞

∥
∥Sα(n – 1 – k)

∥
∥
∥
∥F(k)

∥
∥ =

+∞∑

k=0

∥
∥Sα(k)

∥
∥
∥
∥F(n – 1 – k)

∥
∥

≤ ‖F‖d

+∞∑

k=0

∥
∥Sα(k)

∥
∥ = ‖F‖d‖Sα‖1 < +∞, ∀n ∈ Z.

Thus

x(n) =
n–1∑

k=–∞
Sα(n – 1 – k)F(k), n ∈ Z,

is a mild solution to Eq. (3.1).
Next we show that x(n) ∈ AAP(Z, X).
Indeed, since F ∈ AAP(Z, X), we have F(n) = G(n) + H(n) with G(n) ∈ AP(Z, X) and

H(n) ∈ AAP0(Z, X), thus

x(n) =
n–1∑

k=–∞
Sα(n – 1 – k)G(k) +

n–1∑

k=–∞
Sα(n – 1 – k)H(k)

=
+∞∑

k=0

Sα(k)G(n – 1 – k) +
n–1∑

k=–∞
Sα(n – 1 – k)H(k)

:= P(n) + Q(n), n ∈ Z.

According to Lemma 2.5, we get P(n) ∈ AP(Z, X).
As H(n) ∈ AAP0(Z, X), then ∀ε > 0, ∃N = N(ε) > 0 s.t.

∥
∥H(k)

∥
∥ ≤ ε, ∀k > N .

Thus

∥
∥Q(n)

∥
∥ =

∥
∥
∥
∥
∥

n–1∑

k=–∞
Sα(n – 1 – k)H(k)

∥
∥
∥
∥
∥

≤
n–1∑

k=–∞

∥
∥Sα(n – 1 – k)

∥
∥
∥
∥H(k)

∥
∥

=
+∞∑

k=0

∥
∥Sα(k)

∥
∥
∥
∥H(n – 1 – k)

∥
∥ ≤ ε

+∞∑

k=0

∥
∥S(k)

∥
∥ = ε‖Sα‖1, ∀n > N + k – 1,

which implies Q(n) ∈ AAP0(Z, X).
Then

x(n) =
n–1∑

k=–∞
Sα(n – 1 – k)F(k), n ∈ Z,

is a mild solution of Eq. (3.1), and it is asymptotically almost periodic. �

According to Lemma 3.1, we can get the following corollary.
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Corollary 3.1 Assume the C0-semigroup on X generated by A satisfies (3.2). If F ∈
AAP(Z, X), then there is an asymptotically almost periodic mild solution of Eq. (3.1) given
by

x(n) =
n–1∑

k=–∞
Sα(n – 1 – k)F(k), n ∈ Z,

where {Sα(n)}n∈N is given by Lemma 3.1.

From Lemma 3.2, we have the following corollary.

Corollary 3.2 Let H be a Hilbert space, assume A generates a C0-semigroup on H satisfy-
ing

{
η ∈C : Re(η) > 0

} ⊂ ρ(A), sup
Re(η)>0

(η – A)–1 < ∞.

Then there is a discrete α-resolvent family {Sα(n)}n∈N ⊂ L(H) generated by A, which is
summable (by Lemma 3.2). If F ∈ AAP(Z, H), then there is an asymptotically almost peri-
odic mild solution of Eq. (3.1) in H given by

x(n) =
n–1∑

k=–∞
Sα(n – 1 – k)F(k), n ∈ Z.

4 Asymptotically almost periodicity of nonlinear fractional difference
equations

In this section, we will state and prove conditions for the existence of mild solutions with
asymptotically almost periodicity of the nonhomogeneous nonlinear difference equations
of fractional order given by

�αx(n) = Ax(n + 1) + F
(
n, x(n)

)
, n ∈ Z, (4.1)

where α ∈ (0, 1), the operator A generates a C0-semigroup on X, �α denotes the Weyl-like
fractional difference operator, F(n, x) : Z× X → X is a function to be specified later.

Definition 4.1 (Abadias and Lizama [28]) Assume {Sα(n)}n∈N ⊂ L(X) is a discrete α-
resolvent family generated by A. A sequence x ∈ s(Z, X) is said to be a mild solution of
Eq. (4.1) if for each n ∈ Z, m → Sα(m)F(n – 1 – m, x(n – 1 – m)) is summable on N, and x
satisfies

x(n) =
n–1∑

k=–∞
Sα(n – 1 – k)F

(
k, x(k)

)
, n ∈ Z. (4.2)

Now we give a composition theorem of discrete asymptotically almost periodic se-
quences.
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Lemma 4.1 Assume {T(n)}n∈N is a summable sequence. Then, for any discrete asymptoti-
cally almost periodic sequence φ : Z → X, the sequence T ∗ β given by

(T ∗ ϕ)(n) :=
n–1∑

k=–∞
T(n – 1 – k)ϕ(k), n ∈ Z,

is discrete asymptotically almost periodic.

Proof Note that

∥
∥(T ∗ ϕ)(n)

∥
∥ ≤

n–1∑

k=–∞

∥
∥T(n – 1 – k)

∥
∥
∥
∥ϕ(k)

∥
∥ =

+∞∑

k=0

∥
∥T(k)

∥
∥
∥
∥ϕ(n – 1 – k)

∥
∥

≤ ‖ϕ‖d

+∞∑

k=0

∥
∥T(k)

∥
∥ ≤ ‖ϕ‖d‖T‖1 < +∞,

hence T ∗ ϕ is well defined.
Next, we prove that (T ∗ ϕ)(n) ∈ AAP(Z, X).
Indeed, since ϕ ∈ AAP(Z, X), then ϕ(n) = ϕ1(n) + ϕ2(n) with ϕ1(n) ∈ AP(Z, X), ϕ2(n) ∈

AAP0(Z, X), thus

(T ∗ ϕ)(n) =
n–1∑

k=–∞
S(n – 1 – k)ϕ1(k) +

n–1∑

k=–∞
T(n – 1 – k)ϕ2(k)

=
+∞∑

k=0

T(k)ϕ1(n – 1 – k) +
n–1∑

k=–∞
T(n – 1 – k)ϕ2(k)

:= P(n) + Q(n), n ∈ Z.

According to Lemma 2.5, we get P(n) ∈ AP(Z, X).
As ϕ2(n) ∈ AAP0(Z, X), then ∀ε > 0, ∃N = N(ε) > 0 s.t.

∥
∥ϕ2(k)

∥
∥ ≤ ε, ∀k > N .

Thus

∥
∥Q(n)

∥
∥ =

∥
∥
∥
∥
∥

n–1∑

k=–∞
T(n – 1 – k)ϕ2(k)

∥
∥
∥
∥
∥

≤
n–1∑

k=–∞

∥
∥T(n – 1 – k)

∥
∥
∥
∥ϕ2(k)

∥
∥

=
+∞∑

k=0

∥
∥T(k)

∥
∥
∥
∥ϕ2(n – 1 – k)

∥
∥ ≤ ε

+∞∑

k=0

∥
∥T(k)

∥
∥ ≤ ε‖T‖1, ∀n > N + k,

which implies Q(n) ∈ AAP0(Z, X). �

Lemma 4.2 Let F ∈ UC(Z×X, X)∩AAP(Z×X, X) and Ω be any compact set in X. Assume
x ∈ AP(Z, X) and x(n) ∈ Ω . Then U(n) := F(n, x(n)) is a discrete asymptotically almost
periodic sequence.
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Proof Let

F(n, x) = G(n, x) + H(n, x), x(n) = ϕ(n) + ψ(n),

with

G(n, x) ∈ AP(Z× X, X), H(n, x) ∈ AAP0(Z× X, X),

ϕ(n) ∈ AP(Z, X), ψ(n) ∈ AAP0(Z, X).

As x(n) ∈ Ω , then ϕ(n) ∈ Ω (by Lemma 2.13). And Lemma 2.9 guarantees that G(·,ϕ(·)) ∈
AP(Z, X). Consequently, it suffices to prove the sequence β given by

β(·) := F
(·, x(·)) – G

(·,ϕ(·)) =
(
F
(·, x(·)) – F

(·,ϕ(·))) + H
(·,ϕ(·))

belongs to AAP0(Z, X).
As F ∈ UC(Z× X, X), one has ∀ε > 0, ∃δ > 0 s.t.

∥
∥F(n, x) – F(n, y)

∥
∥ ≤ ε

2
, ∀n ∈ Z x, y ∈ X with ‖x – y‖ ≤ δ.

For the above ε and δ, as H(n, x) ∈ AAP0(Z× X, X) and ψ(n) ∈ AAP0(Z, X), together with
ϕ(Z) ⊂ x(Z) which follows from Lemma 2.13, we have ∃N = N(δ) > 0 s.t.

∥
∥H

(
n,ϕ(n)

)∥
∥ ≤ ε

2
, ∀n > N uniformly for ϕ(n) ∈ Ω ,

∥
∥x(n) – ϕ(n)

∥
∥ =

∥
∥ψ(n)

∥
∥ ≤ δ, ∀n > N .

Thus

∥
∥β(n)

∥
∥ =

∥
∥F

(
n, x(n)

)
– F

(
n,ϕ(n)

)∥
∥ +

∥
∥H

(
n,ϕ(n)

)∥
∥ ≤ ε, ∀n > N ,

which implies β(·) ∈ AAP0(Z, X). �

Corollary 4.1 Assume F ∈ AAP(Z × X, X) and satisfies a Lipschitz condition in x ∈ X
uniformly for n ∈ Z, i.e.

∥
∥F(n, x) – F(n, y)

∥
∥ ≤ L‖x – y‖ for ∀x, y ∈ X, n ∈ Z and some constant L.

Then the conclusion of Lemma 4.2 also holds.

Corollary 4.2 The conclusion of Lemma 4.2 holds if F ∈ AAP(Z× X, X) and satisfies

∥
∥F(n, x) – F(n, y)

∥
∥ ≤ Φ

(‖x – y‖), ∀n ∈ Z, x, y ∈ X,

with Φ : R+ →R
+ being a linear nondecreasing function.

Lemma 4.3 Let F ∈ UCn(Z× X, X) ∩ AAP(Z× X, X) and Ω be any compact set in X. As-
sume x ∈ AP(Z, X) and x(n) ∈ Ω . Then U(n) = F(n, x(n)) is discrete asymptotically almost
periodic.
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Proof Let

F(n, x) = G(n, x) + H(n, x), x(n) = ϕ(n) + ψ(n),

with

G(n, x) ∈ AP(Z× X, X), G(n, x) ∈ AAP0(Z× X, X),

ϕ(n) ∈ AP(Z, X), ψ(n) ∈ AAP0(Z, X).

Similar to the proof of Lemma 4.2, it suffices to prove the sequence β defined by

β(·) := F
(·, x(·)) – G

(·,ϕ(·)) =
(
F
(·, x(·)) – F

(·,ϕ(·))) + H
(·,ϕ(·))

belongs to AAP0(Z, X).
As F ∈ UCn(Z× X, X), then ∀ε > 0, ∃δ > 0 s.t.

∥
∥F(n, x) – F(n, y)

∥
∥ ≤ LF (n)ε, ∀n ∈ Z x, y ∈ X with ‖x – y‖ ≤ δ.

For the above ε and δ, as h(n, x) ∈ AAP0(Z× X, X) and ψ(n) ∈ AAP0(Z, X), together with
p(Z) ⊂ x(Z) which follows from Lemma 2.13, then ∃N = N(δ) > 0 s.t.

∥
∥H

(
n,ϕ(n)

)∥
∥ ≤ ε, ∀n > N uniformly for ϕ(n) ∈ Ω ,

∥
∥x(n) – ϕ(n)

∥
∥ =

∥
∥ψ(n)

∥
∥ ≤ δ, ∀n > N .

Thus, for n > N , together with LF ∈ L(Z), we have

∥
∥β(n)

∥
∥ =

∥
∥F

(
n, x(n)

)
– F

(
n,ϕ(n)

)∥
∥ +

∥
∥H

(
n,ϕ(n)

)∥
∥

≤ LF (n)ε + ε ≤ (‖LF‖l + 1
)
ε,

which implies β(·) ∈ AAP0(Z, X). �

Corollary 4.3 Assume F ∈ AAP(Z×X, X) and satisfies a local Lipschitz condition in x ∈ X
uniformly for n ∈ Z, i.e. for each r > 0, and ∀x, y ∈ X with ‖x‖ ≤ r, ‖y‖ ≤ r,

∥
∥F(n, x) – F(n, y)

∥
∥ ≤ LF (r)‖x – y‖, ∀n ∈ Z,

where LF : R+ →R
+ is a function. Then the conclusion of Lemma 4.3 also holds.

Now we are in a position to show the asymptotic almost periodicity of mild solutions to
Eq. (4.1). To prove the results, let us introduce the following assumptions:

(H0) For all n1, n2 ∈ Z, n1 ≤ n2 and η > 0, the collection {F(n, x) : n1 ≤ n ≤ n2,‖x‖ ≤ η} is
relatively compact in X .

(H1) The discrete α-resolvent family {Sα(n)}n∈N ⊂ L(X) generated by A is summable.
(H2) F(n, x) ∈ AAP(Z× X, X) and it is bounded on Z× X .
Firstly, we give an important lemma.
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Lemma 4.4 Assume (H0), (H1) and (H2) hold. Let x(n) be given by (4.2), then the collection
{x(n) : n ∈ Z} is compact in X.

Proof From (H2), it follows that ∃M > 0 s.t. ‖F(n, x)‖ < M for ∀n ∈ Z and x ∈ X. This,
together with (H1), implies that

∥
∥x(n)

∥
∥ ≤

n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥
∥
∥F

(
i, x(i)

)∥
∥ =

+∞∑

i=0

∥
∥Sα(i)

∥
∥
∥
∥F

(
n – 1 – i, x(n – 1 – i)

)∥
∥

≤ M
+∞∑

i=0

∥
∥Sα(i)

∥
∥ = M‖Sα‖1 < +∞ for all n ∈ Z.

From (H1), it follows that, for ε > 0, one can choose m ∈ Z
+ s.t.

M
∞∑

i=m

∥
∥Sα(i)

∥
∥ ≤ ε.

Since

x(n) =
n–1∑

i=–∞
Sα(n – 1 – i)F

(
i, x(i)

)

=
+∞∑

i=0

Sα(i)F
(
n – 1 – i, x(n – 1 – i)

)

=
m–1∑

i=0

Sα(i)F
(
n – 1 – i, x(n – 1 – i)

)
+

∞∑

i=m

Sα(i)F
(
n – 1 – i, x(n – 1 – i)

)
,

noting that

∥
∥
∥
∥
∥

∞∑

i=m

Sα(i)F
(
n – 1 – i, x(n – 1 – i)

)
∥
∥
∥
∥
∥

≤
∞∑

i=m

∥
∥Sα(i)

∥
∥
∥
∥F

(
n – 1 – i, x(n – 1 – i)

)∥
∥

≤ M
∞∑

i=m

∥
∥Sα(i)

∥
∥ ≤ ε,

one has

x(n) ∈ co(S) + Bε(X),

here co(S) is the convex hull of S and

S =
m–1⋃

i=0

{
Sα(i)F(τ , x) : τ ∈ [n – l, n – 1] ∩Z,‖x‖ ≤ M‖Sα‖1

}
.

It follows from (H0) that S is relatively compact in X, this together with

{
x(n) : n ∈ Z

} ⊆ co(S) + Bε(X),
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shows that the collection {x(n) : n ∈ Z} is relatively compact in X. Then {x(n) : n ∈ Z} is
compact in X. �

Remark 4.1 In Lemma 2.14, we prove that a discrete asymptotically almost periodic func-
tion F(n, x) : Z×X → X is bounded only on Z×Ω for any compact set Ω in X, so the con-
dition boundedness in (H2) does not conflict with the condition F(n, x) ∈ AAP(Z× X, X).

Firstly, we state and prove the existence and uniqueness of mild solutions with asymp-
totically almost periodicity of Eq. (4.1) when the perturbation F is Lipschitz type.

(H3) F satisfies the following Lipschitz condition:

∥
∥F(n, x) – F(n, y)

∥
∥ ≤ LF‖x – y‖, ∀n ∈ Z, x, y ∈ X,

where LF > 0 is a constant.

Theorem 4.1 Assume (H0), (H1), (H2) and (H3) hold. Then there is a unique mild solution
of Eq. (4.1) whenever LF‖Sα‖1 < 1. Moreover, the mild solution is asymptotically almost
periodic.

Proof Let F : AAP(Z, X) → AAP(Z, X) be the map given by

(Fx)(n) :=
n–1∑

i=–∞
Sα(n – 1 – i)F

(
i, x(i)

)
. (4.3)

Since {Sα(n)}n∈N ⊂ L(X) is a discrete α-resolvent family generated by A, and it is
summable, we have

∥
∥(Fx)(n)

∥
∥ ≤

n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥
∥
∥F

(
i, x(i)

)∥
∥ =

+∞∑

i=0

∥
∥Sα(i)

∥
∥
∥
∥F

(
n – 1 – i, x(n – 1 – i)

)∥
∥

≤ ‖|F‖|
+∞∑

i=0

∥
∥Sα(i)

∥
∥ = ‖|F‖|‖Sα‖1 < +∞ for all n ∈ Z.

From Corollary 4.1, together with x ∈ AAP(Z, X), F(n, x) satisfying (H3) and Lemma 4.4,
it follows that F(·, x(·)) is in AAP(Z, X). Furthermore it follows from Lemma 4.1 that Fx is
in AAP(Z, X). Hence F is well defined.

In addition, for x, y ∈ AAP(Z, X), one has

∥
∥(Fx)(n) – (Fy)(n)

∥
∥ =

∥
∥
∥
∥
∥

n–1∑

i=–∞
Sα(n – 1 – i)

[
F
(
i, x(i)

)
– F

(
i, y(i)

)]
∥
∥
∥
∥
∥

≤
n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥
∥
∥F

(
i, x(i)

)
– F

(
i, y(i)

)∥
∥

≤ LF

n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥
∥
∥x(i) – y(i)

∥
∥

≤ ‖Sα‖1LF‖x – y‖d,
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which implies

∥
∥(Fx)(n) – (Fy)(n)

∥
∥

d ≤ ‖Sα‖1LF‖x – y‖d.

Recalling that ‖Sα‖1LF < 1, then F is a contraction on AAP(Z, X). and thus, there is a
unique sequence x ∈ AAP(Z, X) satisfying

x(n) =
n–1∑

i=–∞
Sα(n – 1 – i)F

(
i, x(i)

)
, n ∈ Z,

which shows that x is a unique mild solution of Eq. (4.1) and it is discrete asymptotically
almost periodic. �

Following Lemma 3.2, we have the following corollary.

Corollary 4.4 Let H be a Hilbert space, assume A generates a C0-semigroup on H satisfy-
ing

{
η ∈C : Re(η) > 0

} ⊂ ρ(A), sup
Re(η)>0

(η – A)–1 < ∞.

Then there is a discrete α-resolvent family {Sα(n)}n∈N ⊂ L(H) generated by A, which is
summable (by Lemma 3.2). Assume (H0), (H2) and (H3) hold with X instead of H . Then
there is a unique mild solution of Eq. (4.1) whenever LF‖Sα‖1 < 1. Moreover, the mild solu-
tion is asymptotically almost periodic.

According to Lemma 3.1, we can get the following corollary.

Corollary 4.5 Assume the C0-semigroup on X generated by A satisfies (3.2), and (H0), (H2),
(H3) hold. Then there is a unique mild solution of Eq. (4.1) whenever LF < δ, where δ is given
by Lemma 3.1. Moreover, the mild solution is asymptotically almost periodic.

Theorem 4.1 can be extended to the case of F being locally Lipschitz continuous.
(H4) F(n, x) satisfies a local Lipschitz condition in x ∈ X uniformly for n ∈ Z, i.e. for each

r > 0, and ∀x, y ∈ X with ‖x‖ ≤ r, ‖y‖ ≤ r,

∥
∥F(n, x) – F(n, y)

∥
∥ ≤ LF (r)‖x – y‖, ∀n ∈ Z,

where LF : R+ →R
+ is a nondecreasing function.

Theorem 4.2 Assume that (H0), (H1), (H2), (H4) hold and if there exists r0 > 0 such that

‖Sα‖1

(

LF (r0) +
1
r0

sup
i∈Z

∥
∥F(i, 0)

∥
∥

)

< 1.

Then there is a unique mild solution x(n) of Eq. (4.1), moreover, x(n) is asymptotically al-
most periodic and ‖x(n)‖ ≤ r0.
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Proof Let

F : Br0

(
AAP(Z, X)

) → Br0

(
AAP(Z, X)

)

be the map defined by (4.3). Since x ∈ AAP(Z, X) and F(n, x) satisfies (H4), together with
Lemma 4.4, one can see by Corollary 4.3 that F(·, x(·)) is in AAP(Z, X). Furthermore it
follows from Lemma 4.1 that Fx is in AAP(Z, X). Let x be in Br0 (AAP(Z, X)), we have the
following estimates:

∥
∥(Fx)(n)

∥
∥ =

∥
∥
∥
∥
∥

n–1∑

i=–∞
Sα(n – 1 – i)F

(
i, x(i)

)
∥
∥
∥
∥
∥

≤
n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥
∥
∥F

(
i, x(i)

)
– F(i, 0)

∥
∥ +

n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥
∥
∥F(i, 0)

∥
∥

≤ LF (r0)
n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥
∥
∥x(i)

∥
∥ + ‖Sα‖1 sup

i∈Z

∥
∥F(i, 0)

∥
∥

≤ ‖Sα‖1

(

LF (r0) +
supi∈Z ‖F(i, 0)‖

r0

)

r0 < r0.

Hence Fx ∈ Br0 (AAP(Z, X)), which implies F is well defined.
In addition, for x, y ∈ Br0 (AAP(Z, X)), one has

∥
∥(Fx)(n) – (Fy)(n)

∥
∥ =

∥
∥
∥
∥
∥

n–1∑

i=–∞
Sα(n – 1 – i)

[
F
(
i, x(i)

)
– F

(
i, y(i)

)]
∥
∥
∥
∥
∥

≤
n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥
∥
∥F

(
i, x(i)

)
– F

(
i, y(i)

)∥
∥

≤ LF (r0)
n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥
∥
∥x(i) – y(i)

∥
∥

≤ ‖Sα‖1LF (r0)‖x – y‖d,

which implies

∥
∥(Fx)(n) – (Fy)(n)

∥
∥

d ≤ ‖Sα‖1LF (r0)‖x – y‖d.

Recalling that ‖Sα‖1LF (r0) < 1, then F is a contraction on Br0 (AAP(Z, X)), and thus, there
is a unique sequence x(n) ∈ Br0 (AAP(Z, X)) satisfying

x(n) =
n–1∑

i=–∞
Sα(n – 1 – i)F

(
i, x(i)

)
, n ∈ Z,

which shows x is a unique mild solution of Eq. (4.1), and it is discrete asymptotically almost
periodic satisfying ‖x(n)‖ ≤ r0. �

Following Lemma 3.2, we have the following corollary.
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Corollary 4.6 Let H be a Hilbert space, assume A generates a C0-semigroup on H satisfy-
ing

{
η ∈C : Re(η) > 0

} ⊂ ρ(A), sup
Re(η)>0

(η – A)–1 < ∞.

Then there is a discrete α-resolvent family {Sα(n)}n∈N ⊂ L(H) generated by A, which is
summable (by Lemma 3.2). Assume (H0), (H2), (H4) hold with X instead of H , and there
exists r0 > 0 such that

‖Sα‖1

(

LF (r0) +
1
r0

sup
i∈Z

∥
∥F(i, 0)

∥
∥

)

< 1.

Then there is a unique mild solution of Eq. (4.1) in H which is asymptotically almost peri-
odic and ‖x(n)‖ ≤ r0.

According to Lemma 3.1, we can get the following corollary.

Corollary 4.7 Assume the C0-semigroup on X generated by A satisfies (3.2), and (H0), (H2),
(H4) hold. If there exists r0 > 0 such that

LF (r0) +
1
r0

sup
i∈Z

∥
∥F(i, 0)

∥
∥ < δ,

where δ is given by Lemma 3.1, then there is a unique mild solution of Eq. (4.1) which is
asymptotically almost periodic and ‖x(n)‖ ≤ r0.

Furthermore, we can obtain the following result.
(H5) Assume F satisfies

∥
∥F(n, x) – F(n, y)

∥
∥ ≤ Φ

(‖x – y‖), ∀n ∈ Z, x, y ∈ X,

where Φ : R+ →R
+ is a linear nondecreasing function.

Theorem 4.3 Assume (H0), (H1), (H2) and (H5) hold. Then there is a unique mild solution
of Eq. (4.1) which is asymptotically almost periodic if, for each t > 0, (‖Sα‖1Φ)n(t) → 0 as
n → +∞.

Proof Let F : AAP(Z, X) → AAP(Z, X) be the map defined by (4.3). Since A generates a
discrete α-resolvent family {Sα(n)}n∈N ⊂ L(X), which is summable, one has

∥
∥(Fx)(n)

∥
∥ ≤

n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥
∥
∥F

(
i, x(i)

)∥
∥ =

+∞∑

i=0

∥
∥Sα(i)

∥
∥
∥
∥F

(
n – 1 – i, x(n – 1 – i)

)∥
∥

≤ ‖|F‖|
+∞∑

i=0

∥
∥Sα(i)

∥
∥ = ‖|F‖|‖Sα‖1 < +∞ for all n ∈ Z.

Since x ∈ AAP(Z, X) and F(n, x) satisfies (H5), together with Lemma 4.4, one can see by
Corollary 4.2 that F(·, x(·)) is in AAP(Z, X). Furthermore it follows from Lemma 4.1 that
Fx is in AAP(Z, X). Hence F is well defined.
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On the other hand, for x, y ∈ AAP(Z, X), we have

∥
∥(Fx)(n) – (Fy)(n)

∥
∥ =

∥
∥
∥
∥
∥

n–1∑

i=–∞
Sα(n – 1 – i)

[
F
(
i, x(i)

)
– F

(
i, y(i)

)]
∥
∥
∥
∥
∥

≤
n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥
∥
∥F

(
i, x(i)

)
– F

(
i, y(i)

)∥
∥

≤
n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥Φ

(∥
∥x(i) – y(i)

∥
∥
)

≤ ‖Sα‖1Φ
(‖x – y‖d

)
,

which implies

∥
∥(Fx)(n) – (Fy)(n)

∥
∥

d ≤ (‖Sα‖1Φ
)(‖x – y‖d

)
.

From the Matkowski fixed point theorem (Lemma 2.16), together with the assumption
(‖Sα‖1Φ)n(t) → 0 as n → +∞ for each t > 0, it follows that F has a unique fixed point
x(n) ∈ AAP(Z, X) such that

x(n) =
n–1∑

i=–∞
Sα(n – 1 – i)F

(
i, x(i)

)
, n ∈ Z,

which implies that x is a unique mild solution to Eq. (4.1), and it is discrete asymptotically
almost periodic. �

Following Lemma 3.2, we have the following corollary.

Corollary 4.8 Let H be a Hilbert space, assume A generates a C0-semigroup on H satisfy-
ing

{
η ∈C : Re(η) > 0

} ⊂ ρ(A), sup
Re(η)>0

(η – A)–1 < ∞.

Then there is a discrete α-resolvent family {Sα(n)}n∈N ⊂ L(H) generated by A, which is
summable (by Lemma 3.2). Assume (H0), (H2), (H5) hold with X instead of H . If for each
t > 0, (‖Sα‖1Φ)n(t) → 0 as n → +∞, then there is a unique mild solution of Eq. (4.1) in H
which is asymptotically almost periodic.

According to Lemma 3.1, we can get the following corollary.

Corollary 4.9 Assume the C0-semigroup on X generated by A satisfies (3.2), and (H0),
(H2), (H5) hold. If for each t > 0, (‖Sα‖1Φ)n(t) → 0 as n → +∞, then there is a unique mild
solution of Eq. (4.1) which is asymptotically almost periodic.

Then we state and prove the existence and uniqueness of mild solutions with asymptot-
ically almost periodicity of Eq. (4.1) when the perturbation F is of non-Lipschitz type, i.e.
F ∈ UCn(Z× X, X) or F ∈ UC(Z× X, X).
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Theorem 4.4 Let h be given by Lemma 2.15, and (H0), (H1), (H2) hold, F ∈ UCn(Z×X, X)
satisfying the following.

(I) There exist a function M : Z→R
+ and a nondecreasing function W : R+ →R

+ s.t.

∥
∥F(n, x)

∥
∥ ≤ M(n)W

(‖x‖), ∀n ∈ Z, x ∈ X.

(II) For every constant ν > 0,

lim|n|→+∞
1

h(n)

n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥M(i)W

(
νh(i)

)
= 0.

(III) For ∀ε > 0, ∃δ > 0 s.t. for ∀x, y ∈ C0
h(Z, X) with ‖x – y‖h ≤ δ implies that

n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥
∥
∥F

(
i, x(i)

)
– F

(
i, y(i)

)∥
∥ ≤ ε for all n ∈ Z,

(IV) lim infr→+∞ r
supn∈Z( 1

h(n)
∑n–1

i=–∞ ‖Sα (n–1–i)‖‖M(i)W (rh(i)))
> 1.

Then there is a mild solution of Eq. (4.1) which is asymptotically almost periodic.

The proof of Theorem 4.4 is based on two basic ingredients:
(i) Lemma 2.15 (Cuevas and Pinto [34]), a criterion to obtain the compactness,

(ii) Lemma 2.17 (Granas and Dugundji [37]), the Leray–Schauder alternative theorem
to obtain a fixed point.

Proof Define a map G : C0
h(Z, X) → C0

h(Z, X) by

(Gx)(n) :=
n–1∑

i=–∞
Sα(n – 1 – i)F

(
i, x(i)

)
, n ∈ Z. (4.4)

We will show that there is a fixed point of G in AAP(Z, X). In order to do this by
the Leray–Schauder alternative theorem, we show that the conditions in Lemma 2.17
are satisfied. We divide our reasoning into the following seven steps to complete the
proof.

Step 1. The operator G is well defined.
Let x be in C0

h(Z, X), by condition (I) we have

∥
∥(Gx)(n)

∥
∥ =

∥
∥
∥
∥
∥

n–1∑

i=–∞
Sα(n – 1 – i)F

(
i, x(i)

)
∥
∥
∥
∥
∥

≤
n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥M(i)W

(∥
∥x(n)

∥
∥
)

≤
n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥M(i)W

(‖x‖hh(i)
)
,
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which implies

‖(Gx)(n)‖
h(n)

≤ 1
h(n)

n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥M(i)W

(‖x‖hh(i)
)
.

From condition (II), it follows that G is C0
h(Z, X)-valued, thus G is well defined.

Step 2. The map G : C0
h(Z, X) → C0

h(Z, X) is continuous.
Indeed, for ∀ε > 0 and x, y ∈ C0

h(Z, X) with ‖x – y‖h ≤ δ, where δ > 0 is given by condition
(III), from condition (III), it follows that

∥
∥(Gx)(n) – (Gy)(n)

∥
∥ =

∥
∥
∥
∥
∥

n–1∑

i=–∞
Sα(n – 1 – i)

[
F
(
i, x(i)

)
– F

(
i, y(i)

)]
∥
∥
∥
∥
∥

≤
n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥
∥
∥F

(
i, x(i)

)
– F

(
i, y(i)

)∥
∥ ≤ ε.

Note that h(n) ≥ 1 for every n ∈ Z, then one can get

‖(Gx)(n) – (Gy)(n)‖
h(n)

≤ ε ∀n ∈ Z,

this shows that

∥
∥(Gx)(n) – (Gy)(n)

∥
∥

h ≤ ε for all n ∈ Z.

Since ε > 0 is arbitrary, this implies that G : C0
h(Z, X) → C0

h(Z, X) is continuous.
Step 3. The map G is completely continuous.
Set V = G(BR(C0

h(Z, X))), y = Gx for x ∈ BR(C0
h(Z, X)), where R is a constant.

Firstly, we will prove that, for each n ∈ Z, the set

Ωn(V ) :=
{

x(n)
h(n)

: x ∈ V
}

is relatively compact in X.
From condition (II), it follows that, for any ε > 0, one can choose a constant m ∈ Z

+ s.t.

∞∑

i=m

∥
∥Sα(i)

∥
∥(M(n – 1 – i)W

(
Rh(n – 1 – i)

) ≤ ε.

Since y = Gx for x ∈ BR(C0
h(Z, X)),

y(n) =
n–1∑

i=–∞
Sα(n – 1 – i)F

(
i, x(i)

)

=
+∞∑

i=0

Sα(i)F
(
n – 1 – i, x(n – 1 – i)

)

=
m–1∑

i=0

Sα(i)F
(
n – 1 – i, x(n – 1 – i)

)
+

∞∑

k=m

Sα(i)F
(
n – 1 – i, x(n – 1 – i)

)
,
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we have

y(n)
h(n)

=
m

h(n)

(
1
m

m–1∑

i=0

Sα(i)F
(
n – 1 – i, x(n – 1 – i)

)
)

+
1

h(n)

∞∑

i=m

Sα(i)F
(
n – 1 – i, x(n – 1 – i)

)
.

Note that

1
h(n)

∥
∥
∥
∥
∥

∞∑

i=m

Sα(i)F
(
n – 1 – i, x(n – 1 – i)

)
∥
∥
∥
∥
∥

≤ 1
h(n)

∞∑

i=m

∥
∥Sα(i)

∥
∥M

(
(n – 1 – i)

)
W

(∥
∥x(n – 1 – i)

∥
∥
)

≤ 1
h(n)

∞∑

i=m

∥
∥Sα(i)

∥
∥M

(
(n – 1 – i)

)
W

(‖x‖hh(n – 1 – i)
)

≤ 1
h(n)

∞∑

i=m

∥
∥Sα(i)

∥
∥M

(
(n – 1 – i)

)
W

(
Rh(n – 1 – i)

) ≤ ε,

which implies

y(n)
h(n)

∈ m
h(n)

co(S) + Bε(X),

here co(S) is the convex hull of S and

S =
m–1⋃

i=0

{
Sα(i)F(τ , x) : τ ∈ [n – l, n – 1] ∩Z,‖x‖ ≤ R1

}
,

with

R1 = R max
τ∈[n–l,n–1]∩Z

h(τ ).

It follows from (H0) that S is relatively compact in X, this together with

Ωn(V ) ⊆ m
h(n)

co(S) + Bε(X)

shows that, for each n ∈ Z, the set Ωn(V ) is relatively compact in X.
Then we show that the collection V is weighted equiconvergent at ±∞.
For x ∈ BR(C0

h(Z, X)), one has

‖y(n)‖
h(n)

=
1

h(n)

∥
∥
∥
∥
∥

n–1∑

i=–∞
Sα(n – 1 – i)F

(
i, x(i)

)
∥
∥
∥
∥
∥

≤ 1
h(n)

n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥M(i)W

(∥
∥x(n)

∥
∥
)
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≤ 1
h(n)

n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥M(i)W

(‖x‖hh(i)
)
,

this together with condition (II) yields

lim|n|→+∞
‖y(n)‖
h(n)

= 0,

furthermore the convergence is independent of x ∈ BR(C0
h(Z, X)).

Then V is a relatively compact set in C0
h(Z, X) by Lemma 2.15.

Step 4. The set

{
x ∈ C0

h(Z, X) : x = γGx,γ ∈ (0, 1)
}

(4.5)

is bounded.
Let x be a solution of the equation x = γGx, γ ∈ (0, 1) and x(n) ∈ C0

h(Z, X). Compute
‖x‖h as

∥
∥x(n)

∥
∥ =

∥
∥
∥
∥
∥

n–1∑

i=–∞
Sα(n – 1 – i)F

(
i, x(i)

)
∥
∥
∥
∥
∥

≤
n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥M(i)W

(∥
∥x(n)

∥
∥
)

≤
n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥M(i)W

(‖x‖hh(i)
)
,

which implies

‖x(n)‖
h(n)

≤ sup
n∈Z

(
1

h(n)

( n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥M(i)W

(‖x‖hh(i)
)
))

for each n ∈ Z.

Furthermore, one has the following estimate:

‖x‖h

supn∈Z( 1
h(n) (

∑n–1
i=–∞ ‖Sα(n – 1 – i)‖M(i)W (‖x‖hh(i))))

≤ 1.

According to condition (IV), we get the boundedness of the set (4.5).
Step 5. We claim that ∃r0 > 0 s.t.

G
(
Br0

(
C0

h(Z, X)
)) ⊆ Br0

(
C0

h(Z, X)
)
.

If this is not true, then, for any r > 0, one can find xr ∈ Br(C0
h(Z, X)) such that ‖Gxr‖h > r.

Similar to the proof of Step 4, one can deduce that

r
supn∈Z( 1

h(n) (
∑n–1

i=–∞ ‖Sα(n – 1 – i)‖M(i)W (rh(i))))
≤ 1,
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then

lim inf
r→+∞

r
supn∈Z( 1

h(n) (
∑n–1

i=–∞ ‖Sα(n – 1 – i)‖M(i)W (rh(i))))
≤ 1,

which contradicts condition (IV) establishing the desired assertion.
Step 6. The map G has a fixed point.
From Lemma 4.3, together with Lemma 4.4, it follows that F(k, x(k)) ∈ AAP(Z, X) if

x ∈ AAP(Z, X). Hence from Lemma 4.1, it follows that G(AAP(Z, X)) ⊆ AAP(Z, X). Con-
sequently, combining with Step 5, we infer that

G
(
Br0

(
C0

h(Z, X)
) ∩ AAP(Z, X)

) ⊆ Br0

(
C0

h(Z, X)
) ∩ AAP(Z, X).

Furthermore

G
(
Br0

(
C0

h(Z, X)
) ∩ AAP(Z, X)

C0
h(Z,X)) ⊆ G(Br0

(
C0

h(Z, X)
) ∩ AAP(Z, X)

C0
h(Z,X))

⊆ Br0

(
C0

h(Z, X)
) ∩ AAP(Z, X)

C0
h(Z,X)

,

here SC0
h(Z,X) is the closure of S in C0

h(Z, X).
Consequently, we can consider

G : Br0

(
C0

h(Z, X)
) ∩ AAP(Z, X)

C0
h(Z,X) → Br0

(
C0

h(Z, X)
) ∩ AAP(Z, X)

C0
h(Z,X)

.

The arguments used in Steps 1–3 of this proof show that the map is completely continuous.
From the result of Step 4 and Lemma 2.17 (the Leray–Schauder alternative theorem), it
follows that G has a fixed point x and

x ∈ Br0

(
C0

h(Z, X)
) ∩ AAP(Z, X)

C0
h(Z,X)

.

Step 7. The fixed point x in Step 6 is discrete asymptotically almost periodic.
Let (xn)n be a sequence in Br0 (C0

h(Z, X)) ∩ AAP(Z, X) such that xn → x, as n → ∞ in the
norm of C0

h(Z, X). For ε > 0, let δ > 0 be the constant in (III), one can select n0 ∈ Z
+ large

enough so that

‖xn – x‖h ≤ δ, for all n ≥ n0.

From condition (III), it follows that, for n ≥ n0,

‖Gxn – Gx‖d = sup
i∈Z

∥
∥
∥
∥
∥

n–1∑

i=–∞
Sα(n – 1 – i)

[
F
(
i, xn(i)

)
– F

(
i, x(i)

)]
∥
∥
∥
∥
∥

≤ sup
i∈Z

n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥
∥
∥F

(
i, xn(i)

)
– F

(
i, x(i)

)∥
∥ ≤ ε,

which means (Gxn)n converges to Gx = x uniformly in Z, this together with Gxn ∈
AAP(Z, X), implies that x ∈ AAP(Z, X), and the proof is completed. �
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If F ∈ UC(Z × X, X), by Lemma 4.1, Lemma 4.2 and Lemma 2.17, we get the following
result.

Theorem 4.5 Let h be given by Lemma 2.15, assume (H0), (H1), (H2) hold, and F satisfies
the following.

(I) There exists a nondecreasing and surjective function W : R+ →R
+ s.t.

∥
∥F

(
i, h(i)x

)
– F

(
i, h(i)y

)∥
∥ ≤ W

(‖x – y‖), ∀i ∈ Z, x, y ∈ X.

(II) lim|n|→+∞ 1
h(n)

∑n–1
i=–∞ ‖Sα(n – 1 – i)‖(W (‖x‖h) + supi∈Z ‖F(i, 0)‖) = 0.

(III) lim infτ→+∞ τ
‖S‖1(W (τ )+supi∈Z ‖F(i,0)‖) > 1.

Then there exists a mild solution to Eq. (4.1) which is asymptotically almost periodic.

Proof Using the same symbols as Theorem 4.4, define a map G : C0
h(Z, X) → C0

h(Z, X) by
(4.4). For x, y ∈ C0

h(Z, X), according to condition (I), one has the following estimates:

∥
∥Gx(n)

∥
∥

=

∥
∥
∥
∥
∥

n–1∑

i=–∞
Sα(n – 1 – i)F

(
i, x(i)

)
∥
∥
∥
∥
∥

≤
n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥
∥
∥F

(
i, x(i)

)
– F(i, 0)

∥
∥ +

n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥
∥
∥F(i, 0)

∥
∥

≤
n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥
(

W
(‖x‖h

)
+ sup

i∈Z

∥
∥F(i, 0)

∥
∥
)

,

which implies

‖(Gx)(n)‖
h(n)

≤ 1
h(n)

n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥
(

W
(‖x‖h

)
+ sup

i∈Z

∥
∥F(i, 0)

∥
∥
)

.

From condition (II), it follows that Gx(n) ∈ C0
h(Z, X) and G is well defined.

Furthermore,

∥
∥F

(
i, x(i)

)
– F

(
i, y(i)

)∥
∥ ≤ W

(‖x(i) – y(i)‖
h(i)

)

≤ W
(∥
∥x(i) – y(i)

∥
∥
)
,

which implies F ∈ UC(Z× X, X).
For x, y ∈ C0

h(Z, X), one has

∥
∥(Gx)(n) – (G)y(n)

∥
∥ =

∥
∥
∥
∥
∥

n–1∑

i=–∞
Sα(n – 1 – i)

[
F
(
i, x(i)

)
– F

(
i, y(i)

)]
∥
∥
∥
∥
∥

≤
n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥
∥
∥F

(
i, x(i)

)
– F

(
i, y(i)

)∥
∥
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≤
n–1∑

i=–∞

∥
∥Sα(n – 1 – i)

∥
∥W

(‖x(i) – y(i)‖
h(i)

)

≤ ‖Sα‖1W
(‖x – y‖h

)
,

which implies that G is continuous.
Next, let V = G(Br(C0

h(Z, X))) and y = Gx for x ∈ Br(C0
h(Z, X)), where r is a constant.

Initially, we show that, for each n ∈ Z, the set

Ωn(V ) :=
{

x(n)
h(n)

: x ∈ V
}

is relatively compact in X.
From condition (II), it follows that, for any ε > 0, one can choose m ∈ Z

+ s.t.

∞∑

i=m

∥
∥Sα(i)

∥
∥
(

W (r) + sup
i∈Z

∥
∥F(i, 0)

∥
∥
)

≤ ε.

Since y = Gx for x ∈ Br(C0
h(Z, X)),

y(n) =
n–1∑

i=–∞
Sα(n – 1 – i)F

(
i, x(i)

)

=
+∞∑

i=0

Sα(i)F
(
n – 1 – i, x(n – 1 – i)

)

=
m–1∑

i=0

Sα(i)F
(
n – 1 – i, x(n – 1 – i)

)
+

∞∑

i=m

Sα(i)F
(
n – 1 – i, x(n – 1 – i)

)
,

we have

y(n)
h(n)

=
m

h(n)

(
1
m

m–1∑

i=0

Sα(i)F
(
n – 1 – i, x(n – 1 – i)

)
)

+
1

h(n)

∞∑

i=m

Sα(i)F
(
n – 1 – i, x(n – 1 – i)

)
.

Note that

1
h(n)

∥
∥
∥
∥
∥

∞∑

i=m

Sα(i)F
(
n – 1 – i, x(n – 1 – i)

)
∥
∥
∥
∥
∥

≤ 1
h(n)

∞∑

i=m

∥
∥Sα(i)

∥
∥
∥
∥F

(
n – 1 – i, x(n – 1 – i)

)
– F(n – 1 – i, 0)

∥
∥

+
∞∑

i=m

∥
∥Sα(i)

∥
∥
∥
∥F(n – 1 – i, 0)

∥
∥
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≤ 1
h(n)

∞∑

i=m

∥
∥Sα(i)

∥
∥W

(‖x‖h
)

+
∞∑

i=m

∥
∥Sα(i)

∥
∥ sup

i∈Z

∥
∥F(i, 0)

∥
∥

≤ 1
h(n)

∞∑

i=m

∥
∥Sα(i)

∥
∥
(

W (r) + sup
i∈Z

∥
∥F(i, 0)

∥
∥
)

≤ ε,

which implies

y(n)
h(n)

∈ m
h(n)

co(S) + Bε(X),

here co(S) is the convex hull of S and

S =
l–1⋃

k=0

{
Sα(k)F(τ , x) : τ ∈ [n – l, n – 1] ∩Z,‖x‖ ≤ r1

}
,

with

r1 = r max
τ∈[n–l,n–1]∩Z

h(τ ).

It follows from (H0) that S is relatively compact in X, this, together with

Ωn(V ) ⊆ m
h(n)

co(S) + Bε(X),

shows that, for all n ∈ Z, the set Ωn(V ) is relatively compact in X.
Then we show the map G is completely continuous.
Let x ∈ Br(C0

h(Z, X)), one has

‖y(n)‖
h(n)

=
1

h(n)

∥
∥
∥
∥
∥

n–1∑

k=–∞
Sα(n – 1 – k)F

(
k, x(k)

)
∥
∥
∥
∥
∥

≤ 1
h(n)

[ n–1∑

k=–∞

∥
∥Sα(n – 1 – k)

∥
∥
∥
∥F

(
k, x(k)

)
– F(k, 0)

∥
∥ +

n–1∑

k=–∞

∥
∥Sα(n – 1 – k)

∥
∥
∥
∥F(k, 0)

∥
∥

]

≤ 1
h(n)

[ n–1∑

k=–∞

∥
∥Sα(n – 1 – k)

∥
∥
(

W
(‖x‖h

)
+ sup

k∈Z

∥
∥F(k, 0)

∥
∥
)
]

≤ 1
h(n)

n–1∑

k=–∞

∥
∥Sα(n – 1 – k)

∥
∥
(

W
(‖x‖h

)
+ sup

k∈Z

∥
∥F(k, 0)

∥
∥
)

,

this together with condition (II) yields

lim|n|→+∞
‖y(n)‖
h(n)

= 0,

uniform in x ∈ Br(C0
h(Z, X)). By Lemma 2.15, G is completely continuous.
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Finally, we prove that the collection

{
x ∈ C0

h(Z, X) : x = γGx,γ ∈ (0, 1)
}

(4.6)

is bounded.
If x ∈ C0

h(Z, X) is a solution of x = γGx for 0 < γ < 1, then similar to Step 4 of the proof
of Theorem 4.4, one has

‖x‖h

‖Sα‖1(W (‖x‖h) + supk∈Z ‖F(k, 0)‖)
≤ 1.

According to condition (III), we get the boundedness of the set (4.6).
Finally, similar to the proof of Theorem 4.4, together with Lemma 4.1 and Lemma 4.2,

there is a mild solution to Eq. (4.1), which is asymptotically almost periodic by Lem-
ma 2.17. �

5 Applications
In this section, an example is provided to demonstrate the effectiveness of our abstract
results.

Consider the difference equation of fractional order of the following form:

�αx(n) = Ax(n + 1) +
μg(n)[1 + x(n)]

1 + ‖x‖d
, n ∈ Z, (5.1)

where α ∈ (0, 1), the C0-semigroup on X generated by A satisfies (3.2), g(n) : Z → X is an
asymptotically almost periodic sequence, and μ > 0 is a parameter.

It follows from Lemma 3.1 that there exists a discrete α-resolvent family {Sα(n)}n∈N gen-
erated by A, which is summable and

‖Sα‖1 ≤ 1
δ

.

Thus (H1) holds.
Let

g(n) := sin n + sin
√

2n + e–|n|.

Thus from Lemma 2.10, it follows that g : Z×R →R, g(n) ∈ AAP(Z×R,R). Furthermore

F(n, x) =
μg(n)[1 + x(n)]

1 + ‖x‖d
, n ∈N, x ∈ X,

belongs to AAP(Z × X, X) and it is bounded, thus (H2) holds. Moreover, it is clear that
(H0) holds.

On the other hand,

∥
∥F(n, x) – F(n, y)

∥
∥

d ≤ μ‖g‖d

∥
∥
∥
∥

1 + x(n)
1 + ‖x‖d

–
1 + y(n)]
1 + ‖y‖d

∥
∥
∥
∥ ≤ 6μ‖x – y‖d, n ∈ Z, x, y ∈ X,
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that is, the assumptions (H3) holds with LF = 6μ. Then from Corollary 4.5 it follows that
there exists a unique mild solution to Eq. (5.1) whenever 6μ < δ, moreover, it is asymptot-
ically almost periodic.
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