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1 Introduction
This paper studies the existence of extremal solutions for the boundary value problem of
a fractional p-Laplacian equation with the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–Dσ (φp(–Dτ u(t))) = h(t, u(t), Dτ u(t)), 0 < t < 1,

Dτ u(0) = 0,

Dσ–1(φp(–Dτ u(1)))

= Iγ k(θ ,φp(–Dτ u(θ ))) + d = 1
Γ (γ )

∫ θ

0 (θ – s)γ –1k(s,φp(–Dτ u(s))) ds + d,

u(0) = 0, Dτ–1u(1) = Iεu(ζ ) + e = 1
Γ (ε)

∫ ζ

0 (ζ – s)ε–1u(s) ds + e,

(1.1)

where Dτ and Dσ are the standard Riemann–Liouville fractional derivatives, Iγ , Iε are
the Riemann–Liouville fractional integral, and 1 < σ , τ < 2, γ , ε > 1, 0 < θ , ζ < 1, d, e ∈ R,
h ∈ C([0, 1]×R×R,R), k ∈ C([0, 1]×R,R). The p-Laplacian operator is defined as φp(t) =
|t|p–2t, p > 1, and (φp)–1 = φq, 1

p + 1
q = 1.

Recently, much attention has been paid to the study of the existence of extremal solu-
tions, for fractional differential equations with corresponding initial or boundary condi-
tions; see [1–9]. The monotone iterative technique, combined with the method of upper
and lower solutions, provides an effective mechanism to prove constructive existence re-
sults for nonlinear differential equations, the advantage and importance of the technique
needs no special emphasis [10, 11]. By using the monotone iterative technique, Ahmad
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[12] and Alsaedi [13] successfully investigated initial value problems for nonlinear frac-
tional differential equations with fractional derivatives. Han [14] considered the existence
of positive solutions for the following problem:

⎧
⎨

⎩

Dβ (φp(Dαu(t))) = λf (u(t)), 0 < t < 1,

u(0) = u′(0) = u′(1) = 0, φp(Dαu(0)) = (φp(Dαu(1)))′ = 0,

where 2 < α ≤ 3, 1 < β ≤ 2 are real numbers, λ > 0 is a parameter, and f : (0, +∞) →
(0, +∞) is continuous. By using the properties of Green function and the Guo–Krasno-
sel’skii fixed-point theorem on cones, several existence results of at least one or two posi-
tive solutions in terms of different eigenvalue interval are obtained. By means of the mono-
tone iterative method, Wang [15] investigated the fractional integral boundary problem

⎧
⎪⎪⎨

⎪⎪⎩

CDαu(t) = f (t, u(t), u(θ (t)), n < α ≤ n + 1, n ≥ 2, t ∈ [0, 1],

u′(0) = u′′(0) = u′′′(0) = · · · = un(0) = 0,

u(0) =
∫ 1

0 g(s, u(s)) ds + λ,

where λ > 0, and f , g are continuous functions. However, the existence results in [10]
mainly depend upon a restrictive condition, i.e.,

f (t, u, v) ≥ f (t, u, v).

It is a critical condition in order to discuss the monotone iterative sequences. Therefore,
it is natural to ask whether similar results can be obtained if

f
(
t, u(t), Dτ u(t)

)
– f

(
t, v(t), Dτ v(t)

) ≤ L
[
φp

(
–Dτ v(t)

)
– φp

(
–Dτ u(t)

)]
.

Being directly inspired by Wang [15], the purpose of this paper is to study the nonlin-
ear integral boundary value problem for p-Laplacian differential equations. The nonlinear
terms h, k are not required to satisfy monotonicity conditions on the unknown function u
or their derivatives. The monotone iterative technique combined with the method of up-
per and lower solutions is applied. In particular, we construct two well-defined monotone
iterative sequences of upper and lower solutions and prove that they converge uniformly
to the actual solution of the problem.

2 Preliminaries
In this section, we deduce some preliminary results which will be used in the next section.

Denote Cτ [0, 1] = {u : u ∈ C[0, 1], Dτ u(t) ∈ C[0, 1]} and endow it with the norm
‖u‖τ = ‖u‖ + ‖Dτ u‖, where ‖u‖ = max0≤t≤1 |u(t)| and ‖Dτ u‖ = max0≤t≤1 |Dτ u(t)|. Then
(Cτ [0, 1],‖ · ‖τ ) is a Banach space (see [16]).

Definition 2.1 A function u(t) ∈ Cτ [0, 1] satisfying Dσ (φp(–Dτ u(t))) ∈ C[0, 1] is called a
lower solution of problem (1.1) if

⎧
⎪⎪⎨

⎪⎪⎩

–Dσ (φp(–Dτ u(t))) ≤ h(t, u(t), Dτ u(t)), 0 < t < 1,

Dτ u(0) = 0, Dσ–1(φp(–Dτ u(1))) ≤ Iγ k(θ ,φp(–Dτ u(θ ))) + d,

u(0) = 0, Dτ–1u(1) ≤ Iεu(ζ ) + e.
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A function v(t) ∈ Cτ [0, 1] satisfying Dσ (φp(–Dτ v(t))) ∈ C[0, 1] is called an upper solution
of problem (1.1) if the above inequalities are reversed.

For the sake of convenience, we now present some assumptions as follows.
(H1) Assume that u0, v0 ∈ Cτ [0, 1] satisfying Dσ (φp(–Dτ u0(t))), Dσ (φp(–Dτ v0(t))) ∈

C[0, 1] are lower and upper solutions of problem (1.1), respectively, and u0(t) ≤
v0(t), Dτ v0(t) ≤ Dτ u0(t), t ∈ [0, 1].

(H2) There exists a constant L ∈R such that

h
(
t, u(t), Dτ u(t)

)
– h

(
t, v(t), Dτ v(t)

) ≤ L
[
φp

(
–Dτ v(t)

)
– φp

(
–Dτ u(t)

)]
,

for u0(t) ≤ u(t) ≤ v(t) ≤ v0(t), Dτ v0(t) ≤ Dτ v(t) ≤ Dτ u(t) ≤ Dτ u0(t), t ∈ [0, 1].
(H3) There exists a constant μ ≥ 0, such that

k
(
t,φp

(
–Dτ v(t)

))
– k

(
t,φp

(
–Dτ u(t)

)) ≥ μ
[
φp

(
–Dτ v(t)

)
– φp

(
–Dτ u(t)

)]
,

for u0(t) ≤ u(t) ≤ v(t) ≤ v0(t), Dτ v0(t) ≤ Dτ v(t) ≤ Dτ u(t) ≤ Dτ u0(t), t ∈ [0, 1].
(H4) Γ (σ + γ ) > μθσ+γ –1.
(H5) 2Γ (σ + γ )|L| < Γ (σ )[Γ (σ + γ ) – μθσ+γ –1].
(H6) For any t ∈ (0, 1), we have

Γ (2 – σ )tσ L > 1 – σ

and

Γ (2 – σ )μθγ < Γ (γ ).

Lemma 2.1 ([17]) Let f (t) ∈ C[0, 1], a ∈ R, and Γ (σ + γ ) 	= μθσ+γ –1, then the fractional
boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

–Dσ w(t) = f (t), t ∈ [0, 1],

w(0) = 0,

Dσ–1w(1) = μIγ w(θ ) + a = μ

Γ (γ )
∫ θ

0 (θ – s)γ –1w(s) ds + a,

(2.1)

is equivalent to

w(t) =
∫ 1

0
J(t, s)f (s) ds +

aΓ (σ + γ )tσ–1

Γ (σ )[Γ (σ + γ ) – μθσ+γ –1]
,

where

J(t, s) =
1


⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[Γ (σ + γ ) – μ(θ – s)σ+γ –1]tσ–1

– [Γ (σ + γ ) – μθσ+γ –1](t – s)σ–1, s ≤ t, s ≤ θ ;

Γ (σ + γ )tσ–1 – μ(θ – s)σ+γ –1tσ–1, t ≤ s ≤ θ ;

Γ (σ + γ )[tσ–1 – (t – s)σ–1] + μθσ+γ –1(t – s)σ–1, θ ≤ s ≤ t;

Γ (σ + γ )tσ–1, s ≥ t, s ≥ θ ,

and  = Γ (σ )[Γ (σ + γ ) – μθσ+γ –1].
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Lemma 2.2 ([17]) If (H4) holds, then the Green’s function J(t, s) satisfies

0 ≤ J(t, s) ≤ Γ (σ + γ )
Γ (σ )[Γ (σ + γ ) – μθσ+γ –1]

(
1 + tσ–1).

Lemma 2.3 Let L, a ∈R, w(t), f (t) ∈ C[0, 1] and (H4), (H5) hold, then the boundary value
problem

⎧
⎪⎪⎨

⎪⎪⎩

–Dσ w(t) + Lw(t) = f (t), t ∈ [0, 1],

w(0) = 0,

Dσ–1w(1) = μIγ w(θ ) + a,

(2.2)

has a unique solution w(t) ∈ C[0, 1].

Proof It follows from Lemma 2.1 that problem (2.2) is equivalent to the following integral
equation:

w(t) =
∫ 1

0
J(t, s)

[
f (s) – Lw(s)

]
ds +

aΓ (σ + γ )tσ–1

Γ (σ )[Γ (σ + γ ) – μθσ+γ –1]
, ∀t ∈ [0, 1].

Let

Aw(t) =
∫ 1

0
J(t, s)

[
f (s) – Lw(s)

]
ds +

aΓ (σ + γ )tσ–1

Γ (σ )[Γ (σ + γ ) – μθσ+γ –1]
, ∀t ∈ [0, 1].

For any u, w ∈ C[0, 1], by (H4) and Lemma 2.2, we have

‖Au – Aw‖ = max
0≤t≤1

∣
∣Au(t) – Aw(t)

∣
∣

≤ max
0≤t≤1

(∫ 1

0
J(t, s)|L| · |u – w|ds

)

≤ |L|Γ (σ + γ )‖u – w‖
Γ (σ )[Γ (σ + γ ) – μθσ+γ –1]

max
0≤t≤1

(
1 + tσ–1)

≤ 2Γ (σ + γ )‖u – w‖|L|
Γ (σ )[Γ (σ + γ ) – μθσ+γ –1]

.

Noting that (H5) holds, which implies 2Γ (σ+γ )|L|
Γ (σ )[Γ (σ+γ )–μθσ+γ –1] < 1, we have

‖Au – Aw‖ < ‖u – w‖.

By the Banach fixed point theorem, the operator A has a unique fixed point. That is, (2.2)
has a unique solution. �

Lemma 2.4 Assume that z(t) ∈ C[0, 1], k ∈R. Then the fractional boundary value problem

⎧
⎨

⎩

–Dτ u(t) = z(t), 0 < t < 1,

u(0) = 0, Dτ–1u(1) = k,
(2.3)
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is equivalent to

u(t) =
∫ 1

0
H(t, s)z(s) ds +

ktτ–1

Γ (τ )
,

where

H(t, s) =

⎧
⎨

⎩

tτ–1 – (t – s)τ–1, 0 ≤ s ≤ t ≤ 1,

tτ–1, 0 ≤ t ≤ s ≤ 1.

Proof We can transform the equation –Dτ v(t) = z(t) to an equivalent integral equation

u(t) = –Iτ z(t) + C1tτ–1 + C2tτ–2.

Note that u(0) = 0, we have C2 = 0. Consequently, we have the following form:

u(t) = –Iτ z(t) + C1tτ–1

and

Dτ–1u(t) = –Dτ–1Iτ z(t) + C1Dτ–1tτ–1

= –Iτ–(τ–1)z(t) + C1Dτ–1tτ–1

= –
∫ t

0
z(s) ds + C1Γ (τ ).

On the other hand Dτ–1u(1) = k, and we obtain

C1 =
1

Γ (τ )

∫ 1

0
z(s) ds +

k
Γ (τ )

. (2.4)

Therefore, the solution of problem (2.3) is

u(t) = –
1

Γ (τ )

∫ t

0
(t – s)τ–1z(s) ds +

tτ–1

Γ (τ )

∫ 1

0
z(s) ds +

ktτ–1

Γ (τ )

=
∫ 1

0
H(t, s)z(s) ds +

ktτ–1

Γ (τ )
. �

Lemma 2.5 Assume that k, a ∈ R, u(t) ∈ Cτ [0, 1], f (t) ∈ C[0, 1] and (H4), (H5) hold. Then
the boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

–Dσ (φp(–Dτ u(t))) + Lφp(–Dτ u(t)) = f (t), 0 < t < 1,

Dτ u(0) = 0, Dσ–1(φp(–Dτ u(1))) = μIγ φp(–Dτ u(θ )) + a,

u(0) = 0, Dτ–1u(1) = k,

(2.5)

has a unique solution u(t).
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Proof Let φp(–Dτ u(t)) = w(t), and consider the boundary value problem:

⎧
⎨

⎩

–Dσ w(t) + Lw(t) = f (t), 0 < t < 1,

w(0) = 0, Dσ–1w(1) = μIγ w(θ ) + a.
(2.6)

From Lemma 2.3, we know that (2.6) has a unique solution w(t) ∈ C[0, 1]. Note that
φp(–Dτ u(t)) = w(t) ∈ C[0, 1], and –Dτ u(t) = φq(w(t)) ∈ C[0, 1]. Then the problem (2.5) is
transformed into to the following problem:

⎧
⎨

⎩

–Dτ u(t) = φq(w(t)), 0 < t < 1,

u(0) = 0, Dτ–1u(1) = k.
(2.7)

By Lemma 2.4, the solution of (2.7) can be written

u(t) =
∫ 1

0
H(t, s)φq

(
w(s)

)
ds +

ktτ–1

Γ (τ )
.

Combining with (2.6) and (2.7), we assert that the boundary problem (2.5) has a unique
solution u(t). �

Lemma 2.6 ([18, Lemma 2.6]) Assume that (H6) holds, w(t) ∈ C[0, 1], satisfying Dσ w(t) ∈
C[0, 1] and

⎧
⎪⎪⎨

⎪⎪⎩

–Dσ w(t) ≥ –Lw(t), t ∈ [0, 1],

w(0) = 0,

Dσ–1w(1) ≥ μIγ w(θ ),

(2.8)

then w(t) ≥ 0, ∀t ∈ [0, 1].

Lemma 2.7 If u(t) ∈ C[0, 1] satisfies

⎧
⎪⎪⎨

⎪⎪⎩

–Dτ u(t) ≥ 0, 0 < t < 1,

u(0) = 0,

Dτ–1u(1) ≥ 0,

(2.9)

then u(t) ≥ 0, ∀t ∈ [0, 1].

Proof By Lemma 2.4, we know that (2.3) has a unique solution

u(t) =
∫ 1

0
H(t, s)z(s) ds +

ktτ–1

Γ (τ )
.

It is easy to verify that the Green’s function H(t, s) ≥ 0, t, s ∈ [0, 1]. Let z(t) ≥ 0 and k ≥ 0.
Then we obtain (2.9) and u(t) ≥ 0, ∀t ∈ [0, 1]. �
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3 Main results
Theorem 3.1 Suppose that (H1)–(H6) hold. Then problem (1.1) has extremal solution
u∗, v∗ ∈ [u0, v0]. Moreover,

u0(t) ≤ u∗(t) ≤ v∗(t) ≤ v0(t)

and

Dτ v0(t) ≤ Dτ v∗(t) ≤ Dτ u∗(t) ≤ Dτ u0(t), ∀t ∈ [0, 1].

Proof For n = 0, 1, 2, . . . , we define

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–Dσ (φp(–Dτ un+1(t)))

= h(t, un(t), Dτ un(t)) – L[φp(–Dτ un+1(t)) – φp(–Dτ un(t))],

Dτ un+1(0) = 0,

Dσ–1(φp(–Dτ un+1(1)))

= Iγ {k(θ ,φp(–Dτ un(θ ))) + μ[φp(–Dτ un+1(θ )) – φp(–Dτ un(θ ))]} + d,

un+1(0) = 0, Dτ–1un+1(1) = Iεun(ζ ) + e,

(3.1)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–Dσ (φp(–Dτ vn+1(t)))

= h(t, vn(t), Dτ vn(t)) – L[φp(–Dτ vn+1(t)) – φp(–Dτ vn(t))],

Dτ vn+1(0) = 0,

Dσ–1(φp(–Dτ vn+1(1)))

= Iγ {k(θ ,φp(–Dτ vn(θ ))) + μ[φp(–Dτ vn+1(θ )) – φp(–Dτ vn(θ ))]} + d,

vn+1(0) = 0, Dτ–1vn+1(1) = Iεvn(ζ ) + e.

(3.2)

In view of Lemma 2.5, the functions u1 and v1 are well defined. First, we show that
u0(t) ≤ u1(t) ≤ v1(t) ≤ v0(t), and Dτ v0(t) ≤ Dτ v1(t) ≤ Dτ u1(t) ≤ Dτ u0(t), t ∈ [0, 1]. Let
δ(t) = φp(–Dτ u1(t)) – φp(–Dτ u0(t)). From (3.1) and (H1), we obtain

–Dσ δ(t) ≥ h
(
t, u0(t), Dτ u0(t)

)
– L

[
φp

(
–Dτ u1(t)

)
– φp

(
–Dτ u0(t)

)]

– h
(
t, u0(t), Dτ u0(t)

)

≥ –Lδ(t).

Also δ(0) = 0 and

Dσ–1δ(1) = Dσ–1(φp
(
–Dτ u1(1)

))
– Dσ–1(φp

(
–Dτ u0(1)

))

≥ Iγ
{

k
(
θ ,φp

(
–Dτ u0(θ )

))
+ μ

[
φp

(
–Dτ u1(θ )

)
– φp

(
–Dτ u0(θ )

)]}

– Iγ k
(
θ ,φp

(
–Dτ u0(θ )

))

≥ μIγ δ(θ ).
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In view of Lemma 2.6, we have φp(–Dτ u1(t)) ≥ φp(–Dτ u0(t)), t ∈ [0, 1], since φp(x) is non-
decreasing, thus

Dτ u1(t) ≤ Dτ u0(t). (3.3)

Let α(t) = u1(t) – u0(t), it follows from (3.1) and (3.3) that

⎧
⎪⎪⎨

⎪⎪⎩

–Dτ α(t) = –Dτ u1(t) + Dτ u0(t) ≥ 0, t ∈ [0, 1],

α(0) = 0,

Dτ–1α(1) = Dτ–1u1(1) – Dτ–1u0(1) ≥ Iεu0(ζ ) – Iεu0(ζ ) = 0.

According to Lemma 2.7, we have u1(t) ≥ u0(t), ∀t ∈ [0, 1].
By a similar way, we can show that v0(t) ≥ v1(t), and Dτ v0(t) ≤ Dτ v1(t). Now, we put

p(t) = φp(–Dτ v1(t)) – φp(–Dτ u1(t)). From (H2) and (H3), we have

–Dσ p(t) = h
(
t, v0(t), Dτ v0(t)

)
– L

[
φp

(
–Dτ v1(t)

)
– φp

(
–Dτ v0(t)

)]

– h
(
t, u0(t), Dτ u0(t)

)
+ L

[
φp

(
–Dτ u1(t)

)
– φp

(
–Dτ u0(t)

)]

≥ –L
[
(φp

(
–Dτ v0(t)

)
– φp

(
–Dτ u0(t)

)]
– L

[
φp

(
–Dτ v1(t)

)
– φp

(
–Dτ v0(t)

)]

+ L
[
φp

(
–Dτ u1(t)

)
– φp

(
–Dτ u0(t)

)]

= –Lp(t),

also p(0) = 0, and

Dσ–1p(1) = Iγ
{

k
(
θ ,φp

(
–Dτ v0(θ )

))
+ μ

[
φp

(
–Dτ v1(θ )

)
– φp

(
–Dτ v0(θ )

)]}

– Iγ
{

k
(
θ ,φp

(
–Dτ u0(θ )

))
+ μ

[
φp

(
–Dτ u1(θ )

)
– φp

(
–Dτ u0(θ )

)]}

≥ Iγ
{
μ

[
φp

(
–Dτ v0(θ )

)
– φp

(
–Dτ u0(θ )

)]

+ μ
[
φp

(
–Dτ v1(θ )

)
– φp

(
–Dτ v0(θ )

)]

– μ
[
φp

(
–Dτ u1(θ )

)
– φp

(
–Dτ u0(θ )

)]}

= μIγ p(θ ).

In view of Lemma 2.6, we have p(t) ≥ 0, ∀t ∈ [0, 1]. Thus we have φp(–Dτ v1(t)) ≥
φp(–Dτ u1(t)), that is, Dτ v1(t) ≤ Dτ u1(t), since φp is nondecreasing. Therefore Dτ v0(t) ≤
Dτ v1(t) ≤ Dτ u1(t) ≤ Dτ u0(t) ∀t ∈ [0, 1] holds.

Let θ (t) = v1(t) – u1(t). From (H1), we have

⎧
⎨

⎩

–Dτ θ (t) = –Dτ v1(t) + Dτ u1(t) ≥ 0,

θ (0) = 0, Dτ–1θ (1) = Dτ–1v1(1) – Dτ–1u1(1) = Iεv0(ζ ) – Iεu0(ζ ) ≥ 0.

Moreover, we get v1(t) ≥ u1(t), from Lemma 2.7. Hence, we have the relation u0(t) ≤
u1(t) ≤ v1(t) ≤ v0(t), ∀t ∈ [0, 1].



He and Bi Advances in Difference Equations        (2019) 2019:415 Page 9 of 15

In the following, we show that u1(t), v1(t) are lower and upper solutions of problem (1.1),
respectively. From (3.1)–(3.2) and (H2), (H3), one gets

–Dσ
(
φp

(
–Dτ u1(t)

))
= h

(
t, u0(t), Dτ u0(t)

)
– h

(
t, u1(t), Dτ u1(t)

)
+ h

(
t, u1(t), Dτ u1(t)

)

– L
[
φp

(
–Dτ u1(t)

)
– φp

(
–Dτ u0(t)

)]

≤ L
[
φp

(
–Dτ u1(t)

)
– φp

(
–Dτ u0(t)

)]

– L
[
φp

(
–Dτ u1(t)

)
– φp

(
–Dτ u0(t)

)]

+ h
(
t, u1(t), Dτ u1(t)

)

= h
(
t, u1(t), Dτ u1(t)

)
.

Also Dτ u1(0) = 0, u1(0) = 0, and

Dσ–1(φp
(
–Dτ u1(1)

))
= Iγ

{
k
(
θ ,φp

(
–Dτ u0(θ )

))
– k

(
θ ,φp

(
–Dτ u1(θ )

))

+ k
(
θ ,φp

(
–Dτ u1(θ )

))

+ μ
[
φp

(
–Dτ u1(θ )

)
– φp

(
–Dτ u0(θ )

)]}
+ d

≤ Iγ
{
μ

[
φp

(
–Dτ u0(θ )

)
– φp

(
–Dτ u1(θ )

)]

+ μ
[
φp

(
–Dτ u1(θ )

)
– φp

(
–Dτ u0(θ )

)]

+ k
(
θ ,φp

(
–Dτ u1(θ )

))}
+ d

= Iγ k
(
θ ,φp

(
–Dτ u1(θ )

))
+ d,

Dτ–1u1(1) = Iεu0(ζ ) + e ≤ Iεu1(ζ ) + e.

This proves that u1(t) is a lower solution of the problem (1.1). Similarly, we find that v1(t)
is an upper solution of (1.1).

Using mathematical induction, we see that

u0(t) ≤ u1(t) ≤ · · · ≤ un(t) ≤ · · · ≤ vn(t) ≤ · · · ≤ v1(t) ≤ v0(t)

and

Dτ v0(t) ≤ Dτ v1(t) ≤ · · · ≤ Dτ vn(t) ≤ · · · ≤ Dτ un(t) ≤ · · · ≤ Dτ u1(t) ≤ Dτ u0(t),

for t ∈ [0, 1] and n = 1, 2, 3, . . . .
Since the space of solutions is Cτ [0, 1], the sequences {un} and {vn} are uniformly

bounded and equi-continuous. The Arzela–Ascoli theorem guarantees that they are rel-
atively compact sets in the space Cτ [0, 1]. Therefore, {un} and {vn} converge, say to u∗(t)
and v∗(t), uniformly on [0, 1], respectively. That is,

lim
n→∞ un(t) = u∗(t), lim

n→∞ vn(t) = v∗(t),

and

lim
n→∞ Dτ un(t) = Dτ u∗(t), lim

n→∞ Dτ vn(t) = Dτ v∗(t),
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uniformly on t ∈ [0, 1]. Moreover, from (3.1) and (3.2), we find that u∗(t) and v∗(t) are
solutions of problem of (1.1).

Finally, we prove that u∗(t), v∗(t) are the minimal and maximal solutions of problem
(1.1), respectively. Let u(t) ∈ [u0, v0] be any solution of the problem (1.1). We suppose
that un(t) ≤ u(t) ≤ vn(t), Dτ vn(t) ≤ Dτ u(t) ≤ Dτ un(t) ∀t ∈ [0, 1] for some n. Let y(t) =
φp(–Dτ u(t)) – φp(–Dτ un+1(t)), x(t) = φp(–Dτ vn+1(t)) – φp(–Dτ u(t)). Then, by assumptions
(H2) and (H3), we see that

–Dσ y(t) = h
(
t, u(t), Dτ u(t)

)
– h

(
t, un(t), Dτ un(t)

)

+ L
[
φp

(
–Dτ un+1(t)

)
– φp

(
–Dτ un(t)

)]

≥ –L
[
φp

(
–Dτ u(t)

)
– φp

(
–Dτ un(t)

)]

+ L
[
φp

(
–Dτ un+1(t)

)
– φp

(
–Dτ un(t)

)]

= –Ly(t),

also y(0) = 0, and

Dσ–1y(1) = Iγ k
(
θ ,φp

(
–Dτ u(θ )

))
– Iγ

{
k
(
θ ,φp

(
–Dτ un(θ )

))

+ μ
[
φp

(
–Dτ un+1(θ )

)
– φp

(
–Dτ un(θ )

)]}

= Iγ
{

k
(
θ ,φp

(
–Dτ u(θ )

))
– k

(
θ ,φp

(
–Dτ un(θ )

))

– μ
[
φp

(
–Dτ un+1(θ )

)
– φp

(
–Dτ un(θ )

)]}

≥ Iγ
{
μ

[
φp

(
–Dτ u(θ )

)
– φp

(
–Dτ un(θ )

)]

– μ
[
φp

(
–Dτ un+1(θ )

)
– φp

(
–Dτ un(θ )

)]}

= μIγ y(θ ).

On the other hand

⎧
⎪⎪⎨

⎪⎪⎩

–Dσ x(t) ≥ –Lx(t),

x(0) = 0,

Dσ–1x(1) ≥ μIγ x(θ ).

Using Lemma 2.6, we have

Dτ vn+1(t) ≤ Dτ u(t) ≤ Dτ un+1(t). (3.4)

Let m(t) = u(t) – un+1(t), ξ (t) = vn+1(t) – u(t), by (3.4), we get

⎧
⎪⎪⎨

⎪⎪⎩

–Dτ m(t) = –Dτ u(t) + Dτ un+1(t) ≥ 0, t ∈ [0, 1],

m(0) = 0,

Dτ–1m(1) = Dτ–1u(1) – Dτ–1un+1(1) = Iεu(ζ ) – Iεun(ζ ) ≥ 0,
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and

⎧
⎪⎪⎨

⎪⎪⎩

–Dτ ξ (t) ≥ 0, t ∈ [0, 1],

ξ (0) = 0,

Dτ–1ξ (1) ≥ 0.

These results and Lemma 2.7 imply that un+1(t) ≤ u(t) ≤ vn+1(t), t ∈ [0, 1], so by induction
u∗(t) ≤ u(t) ≤ v∗(t), Dτ v∗(t) ≤ Dτ u(t) ≤ Dτ u∗(t), t ∈ [0, 1] by taking as n −→ ∞. The proof
is complete. �

4 Iteration procedure and a numerical example
In this section, a numerical procedure is introduced to obtain an appropriate solution of
(1.1). For a given accuracy δ, we take un and vn as δ-accurate approximations of x and y,
respectively, according to the stopping criterion E(N) < δ, where for each n, E(n) is defined
by

E(n) =
∥
∥un(t) – vn(t)

∥
∥

1 =
∫ 1

0

∣
∣un(t) – vn(t)

∣
∣dt.

For the iteration equation (3.1), let φp(–Dτ un+1(t)) = xn+1, and with the boundary condi-
tions un+1(0) = 0, Dτ–1un+1(1) = k, and by Lemma 2.4,

u(t) =
k

Γ (τ )
tτ–1 +

∫ 1

0
H(t, s)φq

(
xn+1(s)

)
ds := Bxn+1(t), (4.1)

where k = Iεun(ζ ) + e = 1
Γ (ε)

∫ ζ

0 (ζ – s)ε–1un(s) ds + e and

H(t, s) =

⎧
⎨

⎩

tτ–1 – (t – s)τ–1, 0 ≤ s ≤ t ≤ 1,

tτ–1, 0 ≤ t ≤ s ≤ 1.

Thus the iteration equation (3.1) can be rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

–Dσ xn+1 = –Lxn+1 + h(t, Bxn, –φqxn) + Lxn,

xn+1(0) = 0,

Dσ–1xn+1(1))) = μIγ xn+1(θ ) + a.

(4.2)

Applying Lemma 2.1 to (4.2), we obtain

xn+1(t) =
aΓ (σ + γ )

Γ (σ )[Γ (σ + γ ) – μθσ+γ –1]
tσ–1

+
∫ 1

0
J(t, s)

[
–Lxn+1(s) + h

(
(s), Bxn(s), –φq

(
xn(s)

))
+ Lxn(s)

]
ds, (4.3)
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where a = Iγ k(θ , xn(θ )) – μIγ xn(θ ) + d, and

J(t, s) =
1


⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[Γ (σ + γ ) – μ(θ – s)σ+γ –1]tσ–1

– [Γ (σ + γ ) – μθσ+γ –1](t – s)σ–1, s ≤ t, s ≤ θ ;

Γ (σ + γ )tσ–1 – μ(θ – s)σ+γ –1tσ–1, t ≤ s ≤ θ ;

Γ (σ + γ )[tσ–1 – (t – s)σ–1] + μθσ+γ –1(t – s)σ–1, θ ≤ s ≤ t;

Γ (σ + γ )tσ–1, s ≥ t, s ≥ θ ,

 = Γ (σ )
[
Γ (σ + γ ) – μθσ+γ –1].

Discretize the interval [0, 1] with the nodes ti = ih, b = 1
K , K = N. Let u(i)

n+1 ≈ un+1(ti),
x(i)

n+1 ≈ xn+1(ti), H(i, j) = H(ti, sj), J(i, j) = J(ti, sj) and h(j)
n = h(sj, Bxn(sj), –φq(xn(sj))) + Lxn(sj).

Using the trapezoidal quadrature rule to approximate the integral in the right hand sides
of (4.3) and (4.1), we obtain the following linear systems of equations:

x(i)
n+1 =

aΓ (σ + γ )
Γ (σ )[Γ (σ + γ ) – μθσ+γ –1]

tσ–1
i –

b
2

K∑

j=0

LJ(i, j)djx
(j)
n+1

+
b
2

K∑

j=0

J(i, j)djh(j)
n , 0 ≤ i ≤ K , (4.4)

and

u(i)
n+1 = Bx(i)

n+1 =
k

Γ (τ )
tτ–1
i +

b
2

K∑

j=0

H(i, j)djφq
(
x(j)

n+1
)
, 0 ≤ i ≤ K , (4.5)

for the unknown x(i)
n+1, u(i)

n+1, 0 ≤ i ≤ K , where {dj} are the coefficients in the rule, d0 = dK =
1, dj = 2 for 0 ≤ i ≤ K – 1.

Setting Jij = b
2 J(i, j)dj, Hij = b

2 H(i, j)dj, the matrix Φ = (Jij), A = I+ LΦ , and G = (H(ij)) with
I the identity matrix. The systems (4.4) and (4.5) can be written as a system of matrix-
vector equations

⎧
⎨

⎩

A−→x n+1 = aΓ (σ+γ )
Γ (σ )[Γ (σ+γ )–μθσ+γ –1] Sσ–1 +

−→
F n,

−→
U n+1 = k

Γ (τ ) Sσ–1 + Gφq(−→x n+1),

where −→x n+1 = [x(0)
n+1, x(1)

n+1, . . . , x(K )
n+1],

−→
U n+1 = [u(0)

n+1, u(1)
n+1, . . . , u(K )

n+1], S = [t0, t1, . . . , tK ]T and
−→
F n is a column vector of its component Fi

n = b
2
∑K

j=0 J(i, j)djh
(j)
n .

Example 4.1 Consider the following fractional boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–D 5
4 (φ4(–D 3

2 u(t))) = – 1
2(1+t)3 (–D 3

2 u)3 + tu, 0 < t < 1,

D 3
2 u(0) = 0,

D 1
4 (φ4(–D 3

2 u(1)))

= I 5
4 k( 1

4 ,φ4(–D 3
2 u( 1

4 ))) + 0.1

= 1
Γ ( 5

4 )

∫ 1
4

0 ( 1
4 – s) 1

4 (s + 1)(φ4(–D 3
2 u(s))) ds + 0.1,

u(0) = 0, D 1
2 u(1) = 1

Γ ( 3
2 )

∫ 1
2

0 ( 1
2 – s) 1

2 u(s) ds + 0.2,

(4.6)
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where σ = 5
4 , τ = 3

2 , γ = 5
4 , ε = 3

2 , θ = 1
4 , ζ = 1

2 , d = 0.1, e = 0.2, p = 4, and

⎧
⎨

⎩

h(t, u, D 3
2 u) = – 1

2(1+t)3 (–D 3
2 u)3 + tu,

k(t,φ4(–D 3
2 u)) = (t + 1)φ4(–D 3

2 u).

Take u0(t) = 1
2 t 1

2 , v0(t) = 2t 1
2 –

√
Π
4 t2 + 8

15
√

Π
t 5

2 , then –1 ≤ –t 1
2 + t = D 3

2 v0(t) ≤
D 3

2 u0(t) = 0. It is not difficult to verify that u0, v0 are lower and upper solutions of problem
(4.6), respectively. So (H1) holds. In addition, we have

h
(
t, u(t), D

3
2 u(t)

)
– h

(
t, v(t), D

3
2 v(t)

)

= –
1

2(1 + t)3

[
–D

3
2 u

]3 +
1

2(1 + t)3

[
–D

3
2 v

]3 + t(u – v)

≤ 1
2(1 + t)3

[(
–D

3
2 v

)3 –
(
–D

3
2 u

)3]

≤ 1
16

[
φ4

(
–D

3
2 v

)
– φ4

(
–D

3
2 u

)]
(4.7)

and

k
(
t,φ4

(
–D

3
2 v

))
– k

(
t,φ4

(
–D

3
2 u

))

= (t + 1)
[
φ4

(
–D

3
2 v

)
– φ4

(
–D

3
2 u

)] ≥ φ4
(
–D

3
2 v

)
– φ4

(
–D

3
2 u

)
, (4.8)

where u0(t) ≤ u(t) ≤ v(t) ≤ v0(t). Therefore (H2) and (H3) hold.
From (4.7) and (4.8), we have L = 1

16 , μ = 1. Then

Γ (σ + γ ) = Γ

(
5
4

+
5
4

)

= Γ

(
5
2

)

≈ 1.3293 > μθσ+γ –1 = 1 ·
(

1
4

) 3
2

= 0.125,

2Γ (σ + γ )|L| = 2 · Γ
(

5
2

)

· 1
16

≈ 0.1662 < Γ (σ )
[
Γ (σ + γ ) – μθσ+γ –1]

= Γ

(
5
4

)[

Γ

(
5
2

)

– 1 ·
(

1
4

) 3
2
]

≈ 1.1609,

Γ (2 – σ ) · tσ · L = Γ

(
3
4

)

· tσ · 1
16

> 1 – σ = –
1
4

,

Γ (2 – σ )μθγ = Γ

(
3
4

)

· 1 ·
(

1
4

) 5
4 ≈ 0.2332 < Γ (γ ) = Γ

(
5
4

)

≈ 0.9064.

It appears that (H4), (H5) and (H6) hold. By Theorem 3.1, the boundary value problem
(4.6) has extremal solutions in [u0(t), v0(t)].

Applying the numerical scheme to Example 4.1, we obtain approximate solutions to un

and vn for 1 ≤ n ≤ N , with N some integer. The graphs of to un and vn for n = 0, 1, 2, 3, 4, 34
are shown in Fig. 1. Computed error values E(n) are displayed in Table 1. We found that,
for δ = 10–10, it took N = 34 iterations for E(N) < δ.
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Figure 1 Graph Un and Vn

Table 1 E(n) = 6n + 4, n = 0, 1, 2, 3, 4, 5

n 4 10 16 22 28 34
E(n) 0.2448 3.2744e–05 2.3971e–07 1.9264e–09 1.5492e–10 1.2416e–11
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