
Khalid et al. Advances in Difference Equations        (2019) 2019:378 
https://doi.org/10.1186/s13662-019-2318-7

R E S E A R C H Open Access

A numerical algorithm based on modified
extended B-spline functions for solving
time-fractional diffusion wave equation
involving reaction and damping terms
Nauman Khalid1, Muhammad Abbas2* , Muhammad Kashif Iqbal3 and Dumitru Baleanu4

*Correspondence:
muhammad.abbas@uos.edu.pk
2Department of Mathematics,
University of Sargodha, Sargodha,
Pakistan
Full list of author information is
available at the end of the article

Abstract
In this study, we have proposed an efficient numerical algorithm based on third
degree modified extended B-spline (EBS) functions for solving time-fractional
diffusion wave equation with reaction and damping terms. The Caputo
time-fractional derivative has been approximated by means of usual finite difference
scheme and the modified EBS functions are used for spatial discretization. The
stability analysis and derivation of theoretical convergence validates the authenticity
and effectiveness of the proposed algorithm. The numerical experiments show that
the computational outcomes are in line with the theoretical expectations. Moreover,
the numerical results are proved to be better than other methods on the topic.
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1 Introduction
The study of fractional calculus is considered to be an extension of classical calculus
which has been given significant attentions in last couple of decades. Many applications of
fractional differential equations are found in electro-chemistry, biomedical engineering,
hydrology, probability theory and finance [1–6]. Fractional-order differential equations
appear in mathematical modeling of several natural phenomena such as diffusion proce-
dures, viscoelasticity, thermo-elasticity, seepage of a liquid, dynamical processes in self-
similar and porous structures, wave propagation, anomalous diffusion transport, signal
processing, control theory of dynamical systems, rheology and optics [7–11]. The time-
fractional diffusion-wave equation (DWE) is one of them. This mathematical model is
formulated from the classical DWE after replacing the second order time derivative by
fractional derivative of order α (1 < α ≤ 2). Consider the following time-fractional DWE
with Caputo’s fractional derivative involving reaction and damping terms:

∂αu(z, t)
∂tα

+ β
∂u(z, t)

∂t
+ γ u(z, t) –

∂2u(z, t)
∂z2 = f (z, t), t ∈ [0, T], z ∈ [a, b], (1)
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controlled by the following constraints:

u(z, 0) = φ0(z), ut(z, 0) = φ1(z); a ≤ z ≤ b, (2)

u(a, t) = ψ0(t), u(b, t) = ψ1(t); 0 ≤ t ≤ T , (3)

where f (z, t), φi, ψi (i = 0, 1) are smooth functions with second order continuous deriva-
tives and β , γ are coefficients of the reaction and damping terms, respectively. The Caputo
fractional derivative ∂α

∂tα u(z, t) of order α ∈ (1, 2] is defined as

∂α

∂tα
u(z, t) =

1
Γ (2 – α)

∫ t

0

∂2u(z, τ )
∂τ 2 (t – τ )1–α dτ , 1 < α ≤ 2, (4)

where Γ denotes the gamma function.
The study of exact and approximate solutions of differential/integral equations has al-

ways remained an attractive area of research. The existence and behavior of unique solu-
tions for some fractional-order quadratic Volterra equations and nonlinear integral equa-
tions has been discussed in [12–16]. In the last couple of decades many researchers studied
the approximate solution of fractional-order DWE. Ding et al. [17] presented two numer-
ical algorithms based on usual finite difference formulation for solving time-fractional
DWE. Bhrawy et al. [18] employed the spectral tau method composed with the shifted
Jacobi matrix for numerical treatment of second order fractional DWE. A numerical al-
gorithm based on radial basis functions for solving fractional DWE was developed by
Avazzadeh et al. [19]. A triangular function algorithm based on the operational matrix
of a fractional-order integration was discussed by Ebadian et al. [20] for solving a time-
fractional DWE. Osama et al. [21] employed the Sinc-Legendre collocation method to
explore the numerical solution of a time-fractional DWE by reducing the problem into
system of linear algebraic equations. Hooshmandasl et al. [22] numerically solved the
fractional sub-diffusion and time-fractional DWE by employing the Galerkin technique
depending on the fractional-order Legendre functions.

Chatterjee et al. [23] used Bernstein polynomials to approximate truncated series for
nonlinear fractional-order DWE. A numerical algorithm based on Chebyshev wavelets
was formulated by Zhou and Xu [24] to obtain the approximate solution for time-
fractional DWE. Numerous researchers have developed various methods for solving a
time-fractional DWE; see [14, 25–27]. Recently, Kanwal et al. [28] presented a Ritz–
Galerkin method together with two-dimensional Genocchi polynomials to establish the
numerical solutions of a time-fractional DWE and a time-fractional Klein–Gordon equa-
tion.

Various numerical methods based on spline functions have also been employed by re-
searchers in pursue of reliable solutions for fractional-order differential equations [29–31].
The B-spline functions provide decent approximations in contrast with rest of numerical
schemes due to the nominal, compact support and C2 continuity [32]. The approximate
solution of a time-fractional DWE via cubic trigonometric B-splines was explored in [33].
Sayevand et al. [34] employed the B-spline collocation technique for a numerical investi-
gation of time-fractional diffusion problems arising in transport dynamic systems. Shukla
and Tamsir [35] proposed differential quadrature method based on third degree EBS test
functions for solving Fisher’s reaction–diffusion equation. Recently, Mohyud-Din et al.
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[32] discretized the spatial derivatives using extended cubic B-spline (ECBS) functions for
solving a time-fractional advection–diffusion equation (ADE).

In the present paper, the application of modified ECBS functions has been presented for
a numerical treatment of a time-fractional DWE involving reaction and damping terms.
For temporal discretization, a usual finite difference approach consorted with Caputo’s
time-fractional derivative has been used, while spatial derivatives are described by modi-
fied ECBS functions.

The section-wise organization of the paper is as follows: In Sect. 2, derivation of space
derivatives via modified ECBS functions has been discussed. The temporal discretization
is explained in Sect. 3. The description of numerical method is presented in Sect. 4. The
stability and convergence analysis of the proposed scheme is given in Sect. 5. To corrobo-
rate the efficiency and validity of the present approach, the experimental results and com-
parisons are displayed in Sect. 6. Finally, concluding remarks are presented in Sect. 7.

2 Modified extended cubic B-spline functions
Consider a partition a = z0 < z1 < · · · < zN = b of the interval [a, b] into subintervals [zi–1, zi]
with equal spacing h = 1

N (b – a), i = 1 : 1 : N .
Let U(z, t) denote the ECBS solution to the problem (1)–(3) s.t.

U(z, t) =
n+1∑
i=–1

αn
i (t)ηi(z), (5)

where αn
i (t) are time dependent constants, to be determined, and the ECBS blending func-

tions of degree 4, ηi(z), are defined as [32, 36]

ηi(z) =
1

24h4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4h(1 – μ)(z – zi–2)3 + 3μ(z – zi–2)4, if z ∈ [zi–2, zi–1),

(4 – μ)h4 + 12h3(z – zi–1) + 6h2(2 + μ)(z – zi–1)2

– 12h(z – zi–1)3 – 3μ(z – zi–1)4, if z ∈ [zi–1, zi),

(4 – μ)h4 – 12h3(z – zi+1) – 6h2(2 + μ)(z – zi+1)2

+ 12h(z – zi+1)3 + 3μ(z – zi–1)4, if z ∈ [zi, zi+1),

–4h(1 – μ)(z – zi+2)3 – 3μ(z – zi+2)4, if z ∈ [zi+1, zi+2),

0, otherwise.

(6)

In the above formulation, μ is a free parameter which is used to change the shape of the
B-spline curve and –m(m – 2) ≤ μ ≤ 1, m is the degree of ECBS [35]. For μ = 0, the ECBS
functions reduce to ordinary cubic B-spline functions. Further, η–1,η0, . . . ,ηN+1 are taken
in such a way that it forms spline basis over [a, b]. The values of ECBS functions and their
derivative at nodal points are displayed in Table 1. The approximate solution Un

i = U(zi, tn)
with its first and second derivative in terms of the time parameter αi can be expressed as

⎧⎪⎪⎨
⎪⎪⎩

Un
i = c1α

n
i–1 + c2α

n
i + c1α

n
i+1,

(Uz)n
i = c3α

n
i–1 – c3α

n
i+1,

(Uzz)n
i = c4α

n
i–1 + c5α

n
i + c4α

n
i+1,

(7)

where c1 = 4–μ

24 , c2 = 16+2μ

24 , c3 = 1
2h , c4 = 2+μ

2h2 , c5 = –4–2μ

2h2 .
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Table 1 The coefficients of ECBS ηi(z) and their derivatives at node zi

z zi–2 zi–1 zi zi+1 zi+2

ηi(z) 0 4–μ
24

16+2μ
24

4–μ
24 0

η′
i (z) 0 1

2h 0 –1
2h 0

η′′
i (z) 0 2+μ

2h2
–4–2μ
2h2

2+μ

2h2
0

In the present study, the ECBS functions are modified in such a way that they pre-
serve the diagonal dominance property. The modification in ECBS functions is as follows
[37]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

B0(z) = η0(z) + 2η–1(z),

B1(z) = η1(z) – η–1(z),

Bi(z) = ηi(z) (i = 2 : 1 : N – 2)

BN–1(z) = ηN–1(z) – ηN+1(z),

BN (z) = ηN (z) + 2ηN+1(z),

(8)

where {B0, B1, . . . , BN } are the modified ECBS basis over the spatial domain [a, b].

3 Temporal discretization
The second order differential operator approximation in time direction, using a finite dif-
ference scheme, is given by

∂2

∂t2 u(z, t) =
u(z, tn+1) – 2u(z, tn) + u(z, tn–1)

(�t)2 + O
(
�t2), t ∈ [tn, tn+1], (9)

where tn = n × �t, n = 0 : 1 : M and T = M × �t. The Caputo fractional derivative term
∂αu(z,t)

∂tα given in Eq. (1) is discretized by making use of Eqs. (4) and (9) to obtain an efficient
approximation as follows:

∂αu(z, tn+1)
∂tα

=
∫ tn+1

0

1
Γ (2 – α)

∂2u(z, τ )
∂τ 2 (tn+1 – τ )1–α dτ

=
1

Γ (2 – α)

n∑
r=0

∫ tr+1

tr

∂2u(z, τ )
∂τ 2 (tn+1 – τ )1–α dτ

=
1

Γ (2 – α)

n∑
r=0

u(z, tr+1) – 2u(z, tr) + u(z, tr–1)
(�t)2

∫ tr+1

tr

(tn+1 – τ )1–α dτ + en+1
�t

=
1

Γ (2 – α)

n∑
r=0

u(z, tr+1) – 2u(z, tr) + u(z, tr–1)
(�t)2

∫ tn+1–r

tn–r

s1–α ds + en+1
�t

=
1

Γ (2 – α)

n∑
r=0

u(z, tn–r+1) – 2u(z, tn–r) + u(z, tn–r–1)
(�t)2

∫ tr+1

tr

s1–α ds + en+1
�t .
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Hence

∂αu(z, tn+1)
∂tα

=
1

Γ (3 – α)

n∑
r=0

br
u(z, tn–r+1) – 2u(z, tn–r) + u(z, tn–r–1)

(�t)α
+ en+1

�t , (10)

where br = (r + 1)2–α – (r)2–α , s = tn+1 – τ and the truncation error en+1
�t is bounded such

that

∣∣en+1
�t

∣∣≤ σ (�t)2, (11)

where σ is a constant.

Lemma 3.1 The following properties are fulfilled by the coefficients br [34]:
• br > 0 and b0 = 1, r = 1 : 1 : n,
• b0 > b1 > b2 > · · · > br , br → 0 as r → ∞,
• –br + (2br – br–1) +

∑n–1
r=1 (–br–1 + 2br – br+1) + (2b0 – b1) = 1.

Using Eq. (10) in Eq. (1), we get the following form:

n∑
r=0

br
u(z, tn–r+1) – 2u(z, tn–r) + u(z, tn–r–1)

Γ (3 – α)(�t)α
+ β

u(z, tn+1) – u(z, tn)
�t

+ γ u(z, tn+1) –
∂2u(z, tn+1)

∂z2 = f (z, tn+1). (12)

Assuming ρ = 1
Γ (3–α)(�t)α , β0 = β

�t , un+1 = u(z, tn+1), the above expression takes the follow-
ing form:

(ρ + β0 + γ )un+1 – (2ρ + β0)un + ρun–1 + ρ

n∑
r=1

br
(
un–r+1 – 2un–r + un–r–1)

–
∂2un+1

∂z2 = f (z, tn+1), (13)

where n = 0 : 1 : M. We use the initial condition to eliminate u–1, which will occur for n = 0,
i.e.

u–1 = u1 – 2�tφ1(z). (14)

In particular, taking n = 0, the scheme takes the following form:

(ρ + β0 + γ )u1 – (2ρ + β0)u0 + ρu–1 =
∂2u1

∂z2 + f (z, t1).

Using Eq. (14), the above equation simply leads to the following form:

(2ρ + β0 + γ )u1 – (2ρ + β0)u0 =
∂2u1

∂z2 + 2�tφ1(z) + f (z, t1). (15)
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4 Description of the numerical scheme
Using the ECBS approximations given in Eq. (7) in Eq. (13), the implicit finite difference
formulation yields the following recurrence relation:

[
(ρ + β0 + γ )c1 – c4

]
αn+1

i–1 +
[
(ρ + β0 + γ )c2 – c5

]
αn+1

i +
[
(ρ + β0 + γ )c1 – c4

]
αn+1

i+1

= (2ρ + β0)
(
c1α

n
i–1 + c2α

n
i + c1α

n
i+1
)

– ρ
(
c1α

n–1
i–1 + c2α

n–1
i + c1α

n–1
i+1

)

– ρ

n∑
r=1

br
[
c1
(
αn–r+1

i–1 – 2αn–r
i–1 + αn–r–1

i–1
)

+ c2
(
αn–r+1

i – 2αn–r
i + αn–r–1

i
)

+ c1
(
αn–r+1

i+1 – 2αn–r
i+1 + αn–r–1

i+1
)]

+ f n+1
i . (16)

The above system together with Eq. (15) gives (N + 1) linear equations with (N + 1) un-
knowns. We obtain a tri-diagonal (N + 1) × (N + 1) matrix system as

pαn+1
i–1 + qαn+1

i + pαn+1
i+1

= ρ

[
–bn

(
c1α

1
i–1 + c2α

1
i + c1α

1
i+1
)

+ (2bn – bn–1)
(
c1α

0
i–1 + c2α

0
i + c1α

0
i+1
)

+
n–1∑
r=1

(–br + 2br – br+1)
(
c1α

1
r + c2α

r
i + c1α

r
i+1
)

+ (2b0 – b1 + β0)
(
c1α

n
i–1 + c2α

n
i + c1α

n
i+1
)]

+ qn+1
i , (17)

where p = (ρ + β0 + γ )c1 – c4, q = (ρ + β0 + γ )c2 – c5 and qn+1
i = 2bn�tφ1(z) + f n+1

i . First
of all, it is essential to find the initial vector α0 = [α0

0 ,α0
1 , . . . ,α0

N ]T to initiate the iteration
procedure. Making use of the initial conditions, we have

U0
i = φ0(zi), for i = 0 : 1 : N . (18)

In matrix notation, the above tri-diagonal system is expressed as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
c1 c2 c1

c1 c2 c1
. . .

c1 c2 c1

c1 c2 c1

0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0

α1

α2
...

αN–2

αN–1

αN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ0(z0)
φ0(z1)
φ0(z2)

...
φ0(zN–2)
φ0(zN–1)
φ0(zN )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19)

5 Stability and convergence
This section is for the discussion of the stability analysis and theoretical convergence of
the proposed scheme.

5.1 Stability analysis
The numerical scheme is stable when the errors vanish as the computational procedure
continues [38]. The Fourier method has been employed to investigate the stability of the
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presented numerical algorithm for solving time-fractional DWE. Let Φn
i be the growth

factor of the fourier mode and Φ̃n
i be its approximation. Define the error term εn

i as

εn
i = Φn

i – Φ̃n
i , i = 1 : 1 : N – 1, n = 0 : 1 : M, (20)

and εn = [εn
1 , εn

2 , ·, εn
N–1]T .

It is sufficient to analyze stability of the scheme presented in Eq. (16) for force-free case
(f = 0) only. The round-off error equation has been obtained from Eqs. (20) and (16) as

[
(ρ + β0 + γ )c1 – c4

]
εn+1

i–1 +
[
(ρ + β0 + γ )c2 – c5

]
εn+1

i +
[
(ρ + β0 + γ )c1 – c4

]
εn+1

i+1

= (2ρ + β0)
(
c1ε

n
i–1 + c2ε

n
i + c1ε

n
i+1
)

– ρ
(
c1ε

n–1
i–1 + c2ε

n–1
i + c1ε

n–1
i+1

)

– ρ

n∑
r=1

br
[
c1
(
εn–r+1

i–1 – 2εn–r
i–1 + εn–r–1

i–1
)

+ c2
(
εn–r+1

i – 2εn–r
i + εn–r–1

i
)

+ c1
(
εn–r+1

i+1 – 2εn–r
i+1 + εn–r–1

i+1
)]

. (21)

The initial/boundary conditions are satisfied by the error equation such as

ε0
i = φ0(zi), (εt)0

i = φ1(zi), i = 1 : 1 : N , (22)

and

εn
0 = ψ0(tn), εn

N = ψ1(tn), n = 0 : 1 : M. (23)

Now, we define the mesh function as follows:

εn =

⎧⎨
⎩

εn
i , zi – h

2 < z ≤ zi + h
2 , i = 1 : 1 : N – 1,

0, a ≤ z ≤ a + h
2 or b – h

2 ≤ z ≤ b.
(24)

Expressing εn(z) in the Fourier series form:

εn(z) =
∞∑

–∞
ξn(m)e

2π imz
b–a , n = 0 : 1 : M, (25)

where

ξn(m) =
1

b – a

∫ b

a
εn(z)e

–2π imz
b–a dz. (26)

Using the norm definition, we have

∥∥εn∥∥
2 =

(N–1∑
i=1

h
∣∣εn

i
∣∣2
) 1

2

=

(∫ a+ h
2

a

∣∣εn∣∣2 dz +
N–1∑
i=1

∫ zi+ h
2

zi– h
2

∣∣εn∣∣2 dz +
∫ b

b– h
2

∣∣εn∣∣2 dz

) 1
2

=
(∫ b

a

∣∣εn∣∣2 dz
) 1

2
.
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Using the Parseval equality,
∫ b

a |εn|2 dz =
∑∞

–∞ |ξn(m)|2, we obtain the following relation:

∥∥εn∥∥2
2 =

∞∑
–∞

∣∣ξn(m)
∣∣2. (27)

Suppose the solution in the Fourier series form is presented as follows:

εn
j = ξneiλjh, (28)

where i =
√

–1 and λ = 2πm
b–a . Using Eq. (28) in Eq. (21) and then dividing by eiλjh, we obtain

[
(ρ + β0 + γ )c1 – c4

]
ξn+1e–iλh +

[
(ρ + β0 + γ )c2 – c5

]
ξn+1 +

[
(ρ + β0 + γ )c1 – c4

]
ξn+1eiλh

= (2ρ + β0)
(
c1ξne–iλh + c2ξn + c1ξneiλh) – ρ

(
c1ξn–1e–iλh + c2ξn–1 + c1ξn–1eiλh)

– ρ

n∑
r=1

br
[
c1
(
ξn–r+1e–iλh – 2ξn–re–iλh + ξn–r–1e–iλh)

+ c2(ξn–r+1 – 2ξn–r + ξn–r–1) + c1
(
ξn–r+1eiλh – 2ξn–reiλh + ξn–r–1eiλh)]. (29)

Using the relation eiλh + e–iλh = 2 cos(λh) and collecting the like terms, we get

ξn+1 =
2ξn

ω
–

ξn–1

ω
–

1
ω

n∑
r=1

br(ξn–r+1 – 2ξn–r + ξn–r–1), (30)

where ω = 1 + 2(γ c1–c4) cos(λh)+(γ c2–c5)
(ρ+β0)(2c1 cos(λh)+c2) , and we see that clearly ω ≥ 1.

Lemma 5.1 Let ξn be the solution of Eq. (30), then |ξn| ≤ 2|ξ0|, n = 0 : 1 : T × M.

Proof We prove this result by induction.
For n = 0, Eq. (30) implies

|ξ1| =
2
ω

|ξ0| ≤ 2|ξ0|, ω ≥ 1.

Suppose that the result |ξn| ≤ 2|ξ0| is true for n = 1 : 1 : T × M – 1, and from Eq. (30), we
obtain

|ξn+1| ≤ 2|ξn|
ω

–
|ξn–1|

ω
–

1
ω

n∑
r=1

br
(|ξn–r+1| – 2|ξn–r| + |ξn–r–1|

)

≤ 4
ω

|ξ0| –
2
ω

|ξ0| –
2
ω

n∑
r=1

br
(|ξ0| – 2|ξ0| + |ξ0|

)

≤ 2|ξ0|. �

Theorem 1 The implicit collocation scheme (16) is unconditionally stable.

Proof By making use of Eq. (27) and Lemma 5.1, we get

∥∥εn∥∥
2 ≤ ∣∣ε0∣∣

2, n = 0 : 1 : M.
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From the aforementioned relations we conclude that the proposed scheme (16) is uncon-
ditionally stable. �

5.2 Convergence analysis
We follow Kadalbajoo and Arora [39] to examine the convergence of the proposed scheme.
First of all, we state a theorem due to Boor [40] and Hall [41] which plays a key role for the
convergence analysis of the proposed scheme.

Theorem 2 Let, u(z, t) belongs to C4[a, b], f belongs to C2[a, b] and Π = {a = z0, z1, . . . , zN =
b} be a partition such that zi = ih, i = 1 : 1 : N . Let Ũ(z, t) denote the unique spline approx-
imation to the present problem at the knots z ∈ Π , then ∀t ≥ 0, ∃ aj, free of h, s.t.

∥∥Dj(u(z, t) – Ũ(z, t)
)∥∥∞ ≤ ajh4–j, j = 0, 1, 2. (31)

Lemma 5.2 The modified ECBS set {η0,η1, . . . ,ηN } presented in Eq. (8) satisfy the inequal-
ity,

N∑
i=0

∣∣ηi(z)
∣∣≤ 7

4
. (32)

Proof Using the triangular inequality, we have

∣∣∣∣∣
N∑

i=0

ηi(z)

∣∣∣∣∣≤
N∑

i=0

∣∣ηi(z)
∣∣.

For any nodal point zi, we get

N∑
i=0

∣∣ηi(z)
∣∣ =

∣∣ηi–1(zi)
∣∣ +

∣∣ηi(zi)
∣∣ +

∣∣ηi+1(zi)
∣∣

=
4 – μ

24
+

8 + μ

12
+

4 – μ

24
= 1 <

7
4

.

Furthermore, for a point z ∈ [zi, zi+1], we obtain

N∑
i=0

∣∣ηi(z)
∣∣ =

∣∣ηi–1(z)
∣∣ +

∣∣ηi(z)
∣∣ +

∣∣ηi+1(z)
∣∣ +

∣∣ηi+2(z)
∣∣ =

20 + μ

12
,

where

∣∣ηi–1(z)
∣∣≤ 4 – μ

24
,

∣∣ηi(z)
∣∣≤ 8 + μ

12
,

∣∣ηi+1(z)
∣∣≤ 8 + μ

12
,

∣∣ηi+2(z)
∣∣≤ 4 – μ

24
.

Since –8 ≤ μ ≤ 1, we have 1 ≤ 20+μ

12 ≤ 7
4 .

Hence,

N∑
i=0

∣∣ηi(z)
∣∣≤ 7

4
. �
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Theorem 3 The numerical approximation U(z, t) to the closed form solution u(z, t) exists
for the time-fractional problem (1)–(3). Also, if f ∈ C2[0, 1], we have

∥∥u(z, t) – U(z, t)
∥∥∞ ≤ κh2, ∀t ≥ 0 (33)

where h is sufficiently small and κ > 0 is, a constant, free of h.

Proof Let Ũ(z, t) =
∑N

i=0 di(t)ηi(z) be the computed spline for the approximate solution
U(z, t) and exact solution u(z, t). Using the triangular inequality, the expression can be
written as

∥∥u(z, t) – U(z, t)
∥∥∞ ≤ ∥∥u(z, t) – Ũ(z, t)

∥∥∞ +
∥∥Ũ(z, t) – U(z, t)

∥∥∞.

Using (31), we have

∥∥u(z, t) – U(z, t)
∥∥∞ ≤ a0h4 +

∥∥Ũ(z, t) – U(z, t)
∥∥∞. (34)

Let Lu(zi, t) = LU(zi, t) = f (zi, t), i = 0 : 1 : N , be the collocation conditions, then

LŨ(z, t) = f̃ (zi, t), i = 0 : 1 : N .

At any time level n, the given problem in the form of the difference equation L(Ũ(zi, t) –
U(zi, t)) can be written as follows:

[
(ρ + β0 + γ )c1 – c4

]
νn+1

i–1 +
[
(ρ + β0 + γ )c2 – c5

]
νn+1

i +
[
(ρ + β0 + γ )c1 – c4

]
νn+1

i+1

= (2ρ + β0)
(
c1ν

n
i–1 + c2ν

n
i + c1ν

n
i+1
)

– ρ
(
c1ν

n–1
i–1 + c2ν

n–1
i + c1ν

n–1
i+1

)

– ρ

n∑
r=1

br
[
c1
(
νn–r+1

i–1 – 2νn–r
i–1 + νn–r–1

i–1
)

+ c2
(
νn–r+1

i – 2νn–r
i + νn–r–1

i
)

+ c1
(
νn–r+1

i+1 – 2νn–r
i+1 + νn–r–1

i+1
)]

+ f n+1
i . (35)

Also, the boundary conditions take the following form:

c1ν
n+1
i–1 + c2ν

n+1
i + c1ν

n+1
i+1 = 0, i = 0, N ,

where

νn
i = αn

i – dn
i , i = 0 : 1 : N ,

and

Ωn
i = h2[f n

i – f̃ n
i
]
, i = 0, . . . , N .

It is evident from (31) that we have

∣∣Ωn
i
∣∣ = h2∣∣f n

i – f̃ n
i
∣∣≤ ah4.

We define Ωn = max{|Ωn
i |; 0 ≤ i ≤ N}, ẽn

i = |νn
i | and ẽn = max{|en

i |; 0 ≤ i ≤ N}.
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For n = 0, Eq. (35) together with (14) takes the following form:

[
(2ρ + β0 + γ )c1 – c4

]
ν1

i–1 +
[
(2ρ + β0 + γ )c2 – c5

]
ν1

i +
[
(2ρ + β0 + γ )c1 – c4

]
ν1

i+1

= (2ρ + β0)
(
c1ν

0
i–1 + c2ν

0
i + c1ν

0
i+1
)

+
1
h2 Ω1

i .

Using the initial condition, e0 = 0, we have

[
(2ρ + β0 + γ )c2 – δc5

]
ν1

i = –
[
(2ρ + β0 + γ )c1 – δc4

](
ν1

i–1 + ν1
i+1
)

+
1
h2 Ω1

i .

Taking absolute values of Ωn
i and νn

i with a sufficiently small mesh size h, we have

ẽ1 ≤ 6ah2

(2ρ + β0 + γ )(2 + μ)h2 + 12δ(2 + μ)

⇒ ẽ1 ≤ a1h2, (36)

where a1 is independent of h.
Using the induction technique, assume that ẽs

i ≤ ash2 is true for s = 1, 2, . . . , n.
Let a = max{as : 0 ≤ s ≤ n}, then Eq. (35) becomes

[
(ρ + β0 + γ )c1 – c4

]
νn+1

i–1 +
[
(ρ + β0 + γ )c2 – c5

]
νn+1

i +
[
(ρ + β0 + γ )c1 – c4

]
νn+1

i+1

= (2ρ + β0 – ρb1)
(
c1ν

n
i–1 + c2ν

n
i + c1ν

n
i+1
)

– ρ
[
(b0 – 2b1 + b2)

(
c1ν

n–1
i–1 + c2ν

n–1
i + c1ν

n–1
i+1

)

+ (b1 – 2b2 + b3)
(
c1ν

n–2
i–1 + c2ν

n–2
i + c1ν

n–2
i+1

)
+ · · ·

+ (bn–2 – 2bn–1 + bn)
(
c1ν

1
i–1 + c2ν

1
i + c1ν

1
i+1
)]

+
1
h2 Ωn

i .

Hence,

ẽn+1
i ≤ 6ah2

(2ρ + β0 + γ )(2 + μ)h2 + 12δ(2 + μ)

[
(2ρ + β0 – ρb1)

× (
c1ν

n
i–1 + c2ν

n
i + c1ν

n
i+1
)

– ρ

n–1∑
r=0

(br – 2br+1 + br+2)ah2 + ah2

]
.

Thus, for all values of n, we have

ẽn+1
i ≤ ah2. (37)

Now,

Ũ(z, t) – U(z, t) =
N∑

i=0

(
di(t) – αi(t)

)
ηi(z).

Taking the infinite norm and using Lemma 5.1, we obtain

∥∥Ũ(z, t) – U(z, t)
∥∥∞ ≤ 1.75ah2. (38)
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From Eq. (38), Eq. (34) takes the following form:

∥∥u(z, t) – U(z, t)
∥∥∞ ≤ a0h4 + 1.75ah2 = κh2,

where κ = a0h2 + 1.75a. �

From the aforementioned theorem and Eq. (11) we conclude that the proposed numer-
ical approach is convergent. Hence,

∥∥u(z, t) – U(z, t)
∥∥∞ ≤ κh2 + σ (�t)2,

where κ and σ are constants.

6 Numerical examples
To examine the accuracy of the proposed computational scheme, some test examples are
considered for the time-fractional DWE. The L2 and L∞ norms are used to calculate the
absolute errors of the proposed method as in [42]. We have

L2 =

√√√√h
N∑

i=0

∣∣U(zi, t) – u(zi, t)
∣∣2, L∞ = max

0≤i≤N

∣∣U(zi, t) – u(zi, t)
∣∣.

The experimental order of convergence (EOC) is calculated to be [43]

EOC =
log(L∞(n)/L∞(2n))

log(2)
.

The numerical results obtained from the modified ECBS method are compared with given
exact solutions and the numerical methods available in the literature. The software pack-
age MATHEMATICA 9.0 is used to run the simulation.

Example 1 Consider the time-fractional DWE [33]

∂αu(z, t)
∂tα

–
∂2u(z, t)

∂z2

= sin(πz)
[

2t2–α

Γ (3 – α)
–

t1–α

Γ (2 – α)
+ π2(t2 – t

)]
, z ∈ [a, b], t ∈ [0, T],

with the conditions

u(z, 0) = 0, ut(z, 0) = – sin(πz),

The boundary conditions can be extracted from the true solution u(z, t) = (t2 – t) sin(πz).
A comparison of maximum absolute error for Example 1 with the Hermite formula (HF)
[44] and the cubic trigonometric B-spline method (CuTBSM) [33] is presented in Table 2.
The numerically approximated solution with t = 0.2 and α = 1.5, in the spatial domain
0 ≤ z ≤ 1 using different combinations of h and �t, is investigated. The results obtained
by modified ECBS method are self-explanatory as compared to the outcomes of HF [44]
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Table 2 Error norm L∞ at t = 0.2, 0 ≤ z ≤ 1 and α = 1.5 for Example 1

h �t HF [44] CuTBSM [33] Present method
1
5

1
50 0.01149 6.410× 10–4 9.881× 10–14

1
10

1
100 0.00361 8.203× 10–5 1.331× 10–14

1
20

1
150 0.00120 1.027× 10–5 3.685× 10–15

1
30

1
150 0.00115 3.049× 10–6 7.719× 10–16

1
30

1
200 0.00021 3.035× 10–6 8.826× 10–16

1
40

1
200 0.00019 1.281× 10–6 2.990× 10–16

1
40

1
210 0.00006 1.280× 10–6 2.225× 10–16

1
45

1
220 0.00004 8.989× 10–7 9.935× 10–17

Table 3 Error norm L∞ at t = 0.4, 0 ≤ z ≤ 1 and α = 1.7 for Example 1

h �t HF [44] CuTBSM [33] Present method
1
10

1
50 0.01396 2.490× 10–4 1.990× 10–13

1
20

1
100 0.01064 3.113× 10–5 4.080× 10–14

1
30

1
200 0.00736 9.178× 10–6 9.718× 10–15

1
50

1
250 0.00653 1.982× 10–6 3.602× 10–15

1
50

1
300 0.00586 1.980× 10–6 3.214× 10–15

1
60

1
400 0.00494 1.149× 10–6 2.169× 10–15

1
60

1
450 0.00460 1.443× 10–6 2.025× 10–15

1
75

1
480 0.00443 7.202× 10–7 8.354× 10–16

Table 4 Error norms L2 and L∞ and EOC for Example 1 when �t = 1
120 , α = 1.5 and 0 ≤ z ≤ 1

N CuTBSM [33] Present method

L2 L∞ L2 L∞ EOC

10 5.8885× 10–4 1.1194× 10–4 3.125× 10–13 2.859× 10–13 –
20 1.4794× 10–4 2.9588× 10–4 8.629× 10–13 1.078× 10–14 1.9147
40 3.7034× 10–5 7.4070× 10–5 2.085× 10–14 4.269× 10–14 1.9855
80 9.2619× 10–6 1.8524× 10–5 8.862× 10–14 1.722× 10–15 2.0121
160 2.3157× 10–6 4.6314× 10–6 3.691× 10–15 7.195× 10–15 2.0629

Figure 1 Exact and approximate solutions for Example 1 at t = 2, 4, 6 when N = 10, α = 1.5 and –1 ≤ z ≤ 1



Khalid et al. Advances in Difference Equations        (2019) 2019:378 Page 14 of 19

Figure 2 Exact and approximate solutions for Example 1, when N = 32, α = 1.5 and �t = 0.01

Figure 3 Absolute error graph for Example 1 at t = 1 when N = 20, α = 1.3 and 0≤ z ≤ 1

and CuTBSM [33]. Also the results elaborated in Table 3 show a far better agreement
with the analytical exact solution than the other methods at t = 0.4, α = 1.7 for different
choices of h and �t. The EOC is portrayed in Table 4. The error norms L2 and L∞ are also
compared with the method given in [33]. In Fig. 1, the approximate solution at different
time levels is shown in one frame when –1 ≤ z ≤ 1. The three dimensional visuals given
in Fig. 2 elucidate our claim about accuracy of the proposed scheme for N = 32, �t = 0.01
and t = 2. The 3D absolute error graph is displayed in Fig. 3 for N = 20, t = 1, �t = 0.01
and α = 1.3.

Example 2 Consider the time-fractional DWE involving damping term [45]

∂αu(z, t)
∂tα

+
∂u(z, t)

∂t
–

∂2u(z, t)
∂z2 =

[
6t3–α

Γ (4 – α)
+ 3t2 – t3

]
ez, z ∈ [0, 1], t ∈ [0, T],

with the initial/boundary conditions

u(z, 0) = ut(z, 0) = 0

and

u(0, t) = t3, u(1, t) = t2e.

The analytical exact solution is u(z, t) = t3ez . In Table 5, the approximate results returned
by our method are compared with the implicit numerical method (INM) proposed in [45]
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Table 5 Maximum absolute error (L∞) when α = 1.85 for Example 2

h �t = h2 INM [45] Present method
1
4

1
16 0.1098 1.1966× 10–2

1
8

1
64 2.7616× 10–2 2.9648× 10–3

1
16

1
256 6.7214× 10–3 6.0262× 10–4

1
32

1
1024 1.6341× 10–3 1.2834× 10–4

Figure 4 Exact and approximate solutions for Example 2 at t = 0.2, 0.3, 0.4, 0.5 when N = 10, α = 1.85 and
�t = 0.001

Figure 5 Exact and approximate solutions for Example 2, when N = 50, α = 1.25, t = 2 and �t = 0.01

for α = 1.85, t = 1 and �t = h2. The graphical representation of exact and numerical solu-
tions at different time levels is captured in Fig. 4. Figure 5 depicts the physical behavior of
exact and numerical solutions at N = 50, α = 1.25 and t = 1. The comparison of the results
shows a reflexive behavior of the approximate solution to the analytical exact solution.
Figure 6 shows a 3D absolute error graph for α = 1.5, t = 1, �t = 0.01 and N = 16.

Example 3 Consider a time-fractional DWE with a reaction term [19]

∂αu(z, t)
∂tα

+ u(z, t) –
∂2u(z, t)

∂z2 =
2t2–α sinh(z)

Γ (3 – α)
, z ∈ [0, 1], t ∈ [0, T],
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Figure 6 Absolute error graph for Example 2 at t = 1 when N = 16, α = 1.5 and 0≤ z ≤ 1

Table 6 Approximate results when N = 50 at t = 1 for Example 3

z α = 1.25 α = 1.5

RBF [19] CuTBSM [33] Present RBF [19] CuTBSM [33] Present

0.1 6.63× 10–4 2.10× 10–6 4.29× 10–9 6.55× 10–4 2.08× 10–6 3.23× 10–9

0.2 5.46× 10–4 4.07× 10–6 5.96× 10–9 5.33× 10–4 4.05× 10–6 4.49× 10–9

0.3 5.07× 10–4 5.81× 10–6 7.06× 10–9 4.89× 10–4 5.79× 10–6 5.77× 10–9

0.4 4.68× 10–4 7.20× 10–6 8.54× 10–9 4.48× 10–4 7.20× 10–6 7.90× 10–9

0.5 4.56× 10–4 8.12× 10–6 9.02× 10–9 4.34× 10–4 8.08× 10–6 8.09× 10–9

0.6 4.53× 10–4 8.41× 10–6 7.61× 10–9 4.32× 10–4 8.38× 10–6 7.28× 10–9

0.7 4.75× 10–4 7.92× 10–6 7.09× 10–9 4.57× 10–4 7.90× 10–6 6.78× 10–9

0.8 4.99× 10–4 6.49× 10–6 5.72× 10–9 4.85× 10–4 6.47× 10–6 4.70× 10–9

0.9 5.90× 10–4 3.92× 10–6 3.82× 10–9 5.83× 10–4 3.91× 10–6 2.64× 10–9

subject to the initial/boundary constraints

u(z, 0) = ut(z, 0) = 0,

u(0, t) = 0, u(1, t) = sinh(1)t2.

The exact solution is u(z, t) = t2 sinh(z). In Table 6, the numerical results obtained by
means of the modified ECBS method are compared with the radial basis function (RBF)
method introduced in [19] and CuTBSM developed in [33]. The absolute computational
errors corresponding to N = 50, μ = –0.0196, α = 1.25 and α = 1.5 are reported in Table 6.
The numerical solutions obtained by the proposed numerical method at different time
levels are depicted in Fig. 7. The 3D space-time graphs of exact and approximate solutions
for N = 50, α = 1.6, t = 1 and �t = 0.01 are displayed in Fig. 8. The three dimensional
pictorizations of the absolute error for N = 50, α = 1.5, t = 1 and �t = 0.01 are given in
Fig. 9.

7 Conclusion
An efficient fully implicit numerical algorithm, based on extended modified cubic B-spline
functions, has been presented for solving a time-fractional diffusion-wave equation with
reaction and damping terms. The Caputo time-fractional derivative is approximated by
the usual finite difference formulation, whereas modified extended B-spline functions are
employed to interpolate the solution curves in the space direction. The proposed nu-
merical scheme is proved to be unconditionally stable. The theoretical and experimental



Khalid et al. Advances in Difference Equations        (2019) 2019:378 Page 17 of 19

Figure 7 Exact and approximate solutions for Example 3 at t = 2, 4, 6, 8, 10 when N = 10, α = 1.5 and �t = 0.01

Figure 8 Exact and approximate solutions for Example 3, when N = 50, α = 1.6 and �t = 0.01, t = 1

Figure 9 Absolute error graph for Example 3 at t = 1 when N = 50, α = 1.5 and 0≤ z ≤ 1
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convergence is of order 2. The computational outcomes are proved to be more reliable
than the results found in RBF [19], CuTBSM [33], HF [44] and INM [45].
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