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Abstract
The interaction between prey and predator is one of the most fundamental processes
in ecology. Discrete-time models are frequently used for describing the dynamics of
predator and prey interaction with non-overlapping generations, such that a new
generation replaces the old at regular time intervals. Keeping in view the dynamical
consistency for continuous models, a nonstandard finite difference scheme is
proposed for a class of predator–prey systems with Holling type-III functional
response. Positivity, boundedness, and persistence of solutions are investigated.
Analysis of existence of equilibria and their stability is carried out. It is proved that a
continuous system undergoes a Hopf bifurcation at its interior equilibrium, whereas
the discrete-time version undergoes a Neimark–Sacker bifurcation at its interior fixed
point. A numerical simulation is provided to strengthen our theoretical discussion.

MSC: 39A30; 40A05; 92D25; 92C50

Keywords: Predator–prey model; Nonstandard finite difference scheme; Persistence;
Stability; Neimark–Sacker bifurcation

1 Introduction
Many real-life biological models including prey–predator interactions often are governed
by nonlinear differential equations. For these nonlinear differential systems analytical so-
lutions are not always easy to investigate. One of the most challenging tasks is solving these
nonlinear differential equations efficiently. There are several methods for converting con-
tinuous differential systems to their discrete counterparts. The most conventional way
for this purpose is to implement standard difference methods such as Euler approxima-
tions and Runge–Kutta methods. However, numerical instabilities are observed with the
implementation of standard finite difference schemes. In order to get rid of these numer-
ical instabilities, one can implement nonstandard finite difference schemes introduced by
Mickens [1].

Generally, a nonstandard finite difference scheme is based on the set of rules aimed at
preserving the most dynamical properties of the associated continuous-time model, such
as boundedness, positivity of solutions, stability of steady states, conservation laws, and
bifurcations. In other words, the main advantage of these nonstandard finite difference
schemes is to preserve the significant properties of their continuous analogs and conse-
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quently give reliable numerical results. On the other hand, the construction of these non-
standard finite difference schemes is not always a straightforward task and there are no
general criteria for their construction, and these may be considered as major drawbacks
for nonstandard finite difference schemes.

Predator–prey interactions belong to the most important ways that species interact in
ecological communities. Predator–prey models can reasonably be seen as the building
blocks for the ecosystems. Mathematical models governed by differential equations are
more appropriate for the species in which populations are overlapped. In the case of non-
overlapping generations, discrete-time models governed by difference equations are more
suitable than differential equations. Discretization of differential equations is one way
to produce discrete-time models governed by difference equations. Numerical methods
are implemented to differential equations in order to produce discrete-time models for
predator–prey systems. A discrete-time model is said to be dynamically consistent with
its continuous counterpart if the two demonstrate a similar dynamical behavior, such as
boundedness and persistence of solutions, stability behavior of steady states, chaos, and bi-
furcation [2]. Forward Euler approximations and piecewise constant arguments are more
frequently used methods to obtain discrete-time counterparts of predator–prey models.
But both of these methods are lacking the dynamical consistency with their continuous
counterparts. Ushiki [3] proposed a discrete-time predator–prey model with implementa-
tion of forward Euler approximation, and it was investigated that the discrete-time system
undergoes period-doubling bifurcation and the route to chaos was also discussed. Jing
and Yang [4] implemented an Euler forward scheme to obtain a discrete version of the
prey–predator system. Furthermore, in their paper they discussed period-doubling and
Neimark–Sacker bifurcations. Similarly, Liu and Xiao [5] presented complex dynamics for
a discrete Lotka–Volterra system after implementation of Euler method. For a similar type
of investigations related to predator–prey systems the interested reader is referred to [6–
17]. All these studies reveal that the discrete predator–prey models with implementation
of Euler approximation are dynamically inconsistent with their continuous counterparts.

On the other hand, some other researchers implemented piecewise constant arguments
to produce a discrete analog of the predator–prey system. Jiang and Rogers [18] imple-
mented piecewise constant arguments to study the competitive case, and Krawcewicz
and Rogers [19] investigated the cooperative case. Recently, Din [20–22] applied piece-
wise constant arguments to various classes of predator–prey system and investigated bi-
furcation and chaos control for discrete models. All these investigations reveal dynamical
inconsistency between the discrete-time and continuous-time systems.

Keeping in view the dynamical consistency, Liu and Elaydi [2] studied competitive and
cooperative systems of prey–predator type, and Al-Kahby et al. [23] investigated the dy-
namics of some biological systems with implementation of Mickens type nonstandard fi-
nite difference methods [1]. Moreover, Roeger and Allen [24], and Roeger [25–27] dis-
cussed the dynamics of May-Leonard competitive models in discrete cases. Moghadas et
al. [28] proposed a nonstandard numerical scheme for a generalized Gause-type Lotka–
Volterra system. For further applications of nonstandard finite difference schemes to var-
ious classes of Lotka–Volterra models we refer to [29–35] and the references therein.
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Next, we consider the following Holling and Leslie type predator–prey model [36]:

x′(t) = x(t)
(

r
(

1 –
x(t)

k

)
–

αx(t)y(t)
x2(t) + β2

)
,

y′(t) = sy(t)
(

1 –
hy(t)
x(t)

)
,

(1)

where x and y represent prey and predator population densities, respectively. Further-
more, the growth rate for prey species is considered to be logistic with intrinsic growth
rate r and carrying capacity k, the consumption of prey is considered to be Holling type-III
functional response, β denotes the half-saturation constant, s is the intrinsic growth rate
for prey population, h represents the quantity of food which prey provides for the conver-
sion of predator birth, and y/x denotes the Leslie–Gower term which measures the loss in
the predator population due to rarity of its favorite food. Moreover, all parameters r, k, α,
β , s, h are positive constants.

He and Lai [6] investigated stability, period-doubling bifurcation, Neimark–Sacker bi-
furcation and chaos control for a discrete counterpart of (1) with application of Euler
forward approximation. Consequently, their investigation reveals the dynamical inconsis-
tency between the discrete-time and continuous-time system because there is no chance
of flip bifurcation in system (1). Keeping in view the dynamical consistency of model (1),
the following discrete-time counterpart of (1) is proposed by implementing a Mickens
type nonstandard finite difference scheme:

xn+1 – xn

δ
= rxn –

xnxn+1

k
–

αxn+1xnyn

x2
n + β2 ,

yn+1 – yn

δ
= syn –

shynyn+1

xn
,

(2)

where δ > 0 is step size for nonstandard finite difference method. Moreover, system (2)
can be transformed into the following explicit form:

xn+1 =
(1 + δr)xn

1 + δr
k xn + αδxnyn

x2
n+β2

,

yn+1 =
(1 + sδ)yn

1 + shδyn
xn

.
(3)

The remaining paper is organized as follows. In Sect. 2, dynamical behavior including
positivity, boundededness and persistence of solutions, existence of equilibria and their
stability for model (1) is carried out. In Sect. 3, we prove persistence of solutions, and a
stability analysis of steady states for system (3) is also discussed. Neimark–Sacker bifurca-
tion is investigated in Sect. 4 for model (3). Finally, numerical investigations are provided
in Sect. 5.

2 Dynamics of system (1)
First, we discuss positivity, boundedness and permanence of solutions of system (1).

Lemma 2.1 All solutions of system (1) are positive and bounded with positive initial con-
ditions. Moreover, assume that αk2 < rhβ2, then system (1) is permanent.
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Proof Take into account system (1) with positive initial values, that is, x(0) = x0 > 0 and
y(0) = y0 > 0. Then from system (1) with positive initial values it follows that

x(t) = x0 exp

(∫ t

0

(
r
(

1 –
x(ξ )

k

)
–

αx(ξ )y(ξ )
x2(ξ ) + β2

)
dξ

)
> 0 (4)

and

y(t) = y0 exp

(∫ t

0
s
(

1 –
hy(ξ )
x(ξ )

)
dξ

)
> 0. (5)

Consider the following set:

S :=
{

(x, y) ∈R
2 : x > 0, y > 0

}
.

Then all solutions of system (1) starting in S remain in S for every t ≥ 0. Next, due to
positivity of solutions and the first part (prey equation) of system (1) showing that x′(t) =
x(t)(r(1– x(t)

k )– αx(t)y(t)
x2(t)+β2 ) ≤ rx(t)(1– x(t)

k ), one has x(t) ≤ {x0, k} := M1 for all t ≥ 0. Similarly it
follows from the predator equation of system (1) that y′(t) = sy(t)(1 – hy(t)

x(t) ) ≤ sy(t)(1 – hy(t)
M1

).
Therefore, again one has y(t) ≤ {y0, M1

h } := M2 for all t ≥ 0. In other words, for sufficiently
large t we have limt→∞ sup x(t) ≤ k and limt→∞ sup y(t) ≤ k

h . Then, again from system (1),
it follows that x′(t) = x(t)(r(1 – x(t)

k ) – αx(t)y(t)
x2(t)+β2 ) ≥ x(t)(r(1 – x(t)

k ) – αk2

hβ2 ). Furthermore, sup-

pose that αk2 < rhβ2, then it follows that limt→∞ inf x(t) ≥ k(1 – αk2

hrβ2 ) := m1. Similarly, the
second part of system (1) shows that y′(t) = sy(t)(1 – hy(t)

x(t) ) ≥ sy(t)(1 – hy(t)
m1

), and therefore
limt→∞ inf y(t) ≥ m1

h . Consequently, we obtain permanence for system (1). �

For the investigation of steady states of system (1), the zero growth isoclines are com-
puted as follows:

x
(

r
(

1 –
x
k

)
–

αxy
x2 + β2

)
= 0,

sy
(

1 –
hy
x

)
= 0.

(6)

Then obviously one has (k, 0) as boundary equilibrium for system (1). In order to see the
dynamical behavior of system (1) at (k, 0), we first compute the Jacobian matrix of system
(1) at (k, 0) as follows:

J(k, 0) :=

(
–r – k2α

k2+β2

0 s

)
.

Then one can easily see that (k, 0) is a saddle point. Furthermore, the components of the
interior steady state (x∗, y∗) are given by

y∗ =
1
h

x∗,

where x∗ is a real root of the following cubic equation:

x3 +
(

αk – hkr
hr

)
x2 + β2x – kβ2 = 0.
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Denote � = 18bcd – 4b3d + b2c2 – 4c3 – 27d2, where b = αk–hkr
hr , c = β2 and d = –kβ2, then

some simple calculation shows that � = –4k4(hr–α)3β2+hk2r(–8h2r2–20hrα+α2)β4–4h3r3β6

h3r3 . Then
� < 0 if α < hr. Therefore, system (1) has a unique positive steady state if α < hr. Moreover,
the variational matrix at interior equilibrium (x∗, y∗) is computed as follows:

J
(
x∗, y∗) =

(
r – 2rx∗

k – 2x∗y∗αβ2

((x∗)2+β2)2 – (x∗)2α

(x∗)2+β2
s
h –s

)
.

According to the Routh–Hurwitz criterion (x∗, y∗) is a sink if and only if r – s – 2rx∗
k –

2x∗y∗αβ2

(x∗2+β2)2 < 0. Furthermore, system (1) undergoes a Hopf bifurcation at (x∗, y∗) as s varies in
a small neighborhood of s0 defined by

s0 = r –
2rx∗

k
–

2x∗y∗αβ2

(x∗2 + β2)2 .

Remark 2.1 There is no chance of flip bifurcation for system (1) about its positive equi-
librium.

Proof According to the necessary condition for the existence of the flip bifurcation, the
determinant of the Jacobian matrix J(x∗, y∗) must be zero, that is, 2rx∗

k + 2x∗y∗αβ2

(x∗2+β2)2 + x∗2α

h(x∗2+β2) –
r = 0. But zero growth isoclines for positive steady state satisfy r = rx∗

k + αx∗y∗
x∗2+β2 and x∗ = hy∗.

Putting in these values, we have det J(x∗, y∗) = rx∗
k + 2x∗y∗αβ2

(x∗2+β2)2 > 0. �

3 Dynamics of system (3)
In this section, first of all we prove that system (3) is also permanent with similar para-
metric conditions to that for system (1).

Lemma 3.1 Assume that αk2 < rhβ2, then system (3) is permanent.

Proof Assume that x0 > 0 and y0 > 0, then every solution {(xn, yn)} of system (3) satisfies
xn > 0 and yn > 0 for all n ≥ 0. Keeping in view the positivity of solutions of system (3), we
have from this system xn+1 = (1+δr)xn

1+ δr
k xn+ αδxnyn

x2n+β2
≤ (1+δr)xn

1+ δr
k xn

and due to a comparison argument

we have limn→∞ sup xn ≤ k for all n ≥ 0. Similarly from the predator equation of system
(3) we have yn+1 = (1+sδ)yn

1+ sδyn
xn

≤ (1+sδ)yn
1+ shδyn

k
, and again by a simple comparison argument one has

limn→∞ sup yn ≤ k
h for all n ≥ 0. Now considering again the first equation of system (3) we

obtain xn+1 = (1+δr)xn
1+ δr

k xn+ αδxnyn
x2n+β2

≥ (1+δr)xn

1+ δr
k xn+ αδk2

hβ2
. Moreover, if we suppose that αk2 < rhβ2, then

again a comparison argument shows that limn→∞ inf xn ≥ k(1 – αk2

hrβ2 ) = m1 for all n ≥ 0.
On the other hand, the second equation of system (3) gives yn+1 = (1+sδ)yn

1+ sδyn
xn

≥ (1+sδ)yn
1+ shδyn

m1

and

it follows that limn→∞ inf yn ≥ m1
h for all n ≥ 0. Consequently, we obtain permanence for

system (3). �

Next, we see the dynamics of model (3) at its steady states. First, the variational matrix
of system (3) at boundary equilibrium (k, 0) is computed as follows:

V (k, 0) =

(
1 – rδ

1+rδ – k2αδ

(k2+β2)(1+rδ)
0 1 + sδ

)
.
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The eigenvalues of V (k, 0) are given by λ1 = 1 – rδ
1+rδ and λ2 = 1 + sδ. Now, it is easy to

observe that |λ2| > 1 and |λ1| < 1 for all r, δ > 0. Therefore, (k, 0) is a saddle point for system
(3). Furthermore, the variational matrix V (x∗, y∗) of system (3) at positive steady state is
computed as follows:

V
(
x∗, y∗) =

⎛
⎝ 1+ 2αδx∗3y∗

(x∗2+β2)2
1+δr – αδx∗2

(1+rδ)(x∗2+β2)
sδ

h(1+sδ)
1

1+sδ

⎞
⎠ .

Furthermore, the characteristic polynomial of V (x∗, y∗) is computed as follows:

P(λ) = λ2 –
(

1
1 + rδ

+
2αδx∗3y∗

(x∗2 + β2)2(1 + rδ)
+

1
1 + sδ

)
λ

+
sαδ2x∗2(x∗2 + β2) + h((x∗2 + β2)2 + 2αδx∗3y∗)

h(x∗2 + β2)2(1 + rδ)(1 + sδ)
. (7)

Moreover, due to some simple calculations, it follows from (7) that

P(1) =
sδ2(αx∗2(x∗2 + β2) + h(r(x∗2 + β2)2 – 2αx∗3y∗))

h(x∗2 + β2)2(1 + rδ)(1 + sδ)
,

P(–1) =
sαδ2x∗2(x∗2 + β2) + h(2 + sδ)(2(x∗2 + β2)2 + δ(2αx∗3y∗ + r(x∗2 + β2)2))

h(x∗2 + β2)2(1 + rδ)(1 + sδ)

> 0

(8)

and

P(0) =
sαδ2x∗2(x∗2 + β2) + h((x∗2 + β2)2 + 2αδx∗3y∗)

h(x∗2 + β2)2(1 + rδ)(1 + sδ)
.

From (8) it follows that P(1) > 0 if and only if αx∗2(x∗2 + β2) + hr(x∗2 + β2)2 –
2αhx∗3y∗ > 0. Keeping in view the relation x∗ = hy∗ and the existence condition hr > α

for a unique positive equilibrium point, we have

αx∗2(x∗2 + β2) + hr
(
x∗2 + β2)2 – 2αhx∗3y∗

= αx∗4 + αβ2x∗2 + hrx∗4 + 2hrβ2x∗2 + hrβ4 – 2αx∗4

= (hr – α)x∗4 + β2(α + 2hr)x∗2 + hrβ4 > 0.

Lemma 3.2 Assume that α < hr, then the unique positive steady state (x∗, y∗) of system (3)
is locally asymptotically stable if the following condition holds true:

sαδ2x∗2(x∗2 + β2) + h
((

x∗2 + β2)2 + 2αδx∗3y∗) < h
(
x∗2 + β2)2(1 + rδ)(1 + sδ).

Remark 3.1 Since P(–1) > 0, therefore there is no chance of period-doubling bifurcation
for system (3) at its positive equilibrium.
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4 Neimark–Sacker bifurcation
A Hopf (Neimark–Sacker) bifurcation is the production of a closed invariant curve from a
steady state in dynamical systems with iterated maps, when the steady state (fixed point)
changes stability via a pair of complex eigenvalues with unit modulus. Recently, many it-
erated maps have been studied for existence and direction of Neimark–Sacker bifurcation
(cf. [37–50]).

In order to study the Neimark–Sacker bifurcation in system (3) at its positive steady state
(x∗, y∗), we choose s as bifurcation parameter and system (3) is described by the following
map:

(
u
v

)
→

⎛
⎝

(1+δr)u
1+ δr

k u+ αδuv
u2+β2

(1+sδ)v
1+ shδv

u

⎞
⎠ . (9)

We assume that

s ≡ s1 =
h(2αx∗3y∗ – r(x∗2 + β2)2)

(x∗2 + β2)(h(x∗2 + β2)(1 + rδ) – αδx∗2)
(10)

and

∣∣∣∣ 1
1 + rδ

+
2αδx∗3y∗

(x∗2 + β2)2(1 + rδ)
+

1
1 + s1δ

∣∣∣∣ < 2. (11)

Keeping in view (10) and (11), we define the following set:

SNB =
{

(r, k,α,β , s1, h) ∈ R
6
+ : (10) and (11) hold true

}
.

Suppose that (r, k,α,β , s1, h) ∈ SNB, then the map (9) can be written as follows:

(
u
v

)
→

⎛
⎝

(1+δr)u
1+ δr

k u+ αδuv
u2+β2

(1+(s1+s̃)δ)v
1+ (s1+s̃)hδv

u

⎞
⎠ , (12)

where s̃ is small perturbation in s. Next, we take x = u – x∗ and y = v – y∗, where (x∗, y∗) is
a unique positive fixed point of map (12), then one has the following map with fixed point
at (0, 0):

(
x
y

)
→

⎛
⎜⎝

(1+δr)(x+x∗)
1+ δr

k (x+x∗)+ αδ(x+x∗)(y+y∗)
(x+x∗)2+β2

(1+(s1+s̃)δ)(y+y∗)
1+ (s1+s̃)hδ(y+y∗)

x+x∗

⎞
⎟⎠ . (13)

An application of Taylor expansion about (0, 0) shows that

(
x
y

)
→

(
a11 a12

a21 a22

)(
x
y

)
+

(
f (x, y)
g(x, y)

)
, (14)
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where

(
a11 a12

a21 a22

)
=

⎛
⎝ 1+ 2αδx∗3y∗

(x∗2+β2)2
1+δr – αδx∗2

(1+rδ)(x∗2+β2)
(s1+s̃)δ

h(1+(s1+s̃)δ)
1

1+(s1+s̃)δ

⎞
⎠ ,

f (x, y) = a13x2 + a14xy + a15y2 + a16x3 + a17x2y + a18xy2 + a19y3 + O
((|x| + |y|)4),

g(x, y) = –
(

(s1 + s̃)y∗δ
(x∗ + (s1 + s̃)x∗δ)2

)
x2 +

(
2(s1 + s̃)δ

x∗(1 + (s1 + s̃)δ)2

)
xy

–
(

h(s1 + s̃)δ
x∗(1 + (s1 + s̃)δ)2

)
y2 +

(
(s1 + s̃)y∗δ

(x∗ + (s1 + s̃)x∗δ)3

)
x3

+
(

(s1 + s̃)δ(–2 + (s1 + s̃)δ)
x∗2(1 + (s1 + s̃)δ)3

)
x2y +

(
h(s1 + s̃)δ(1 – 2(s1 + s̃)δ)

x∗2(1 + (s1 + s̃)δ)3

)
xy2

+
(

h2(s1 + s̃)2δ2

x∗2(1 + (s1 + s̃)δ)3

)
y3 + O

((|x| + |y|)4),

a13 =
k2δ(1 + rδ)(–rx∗6 – 3rx∗4β2 + 3kx∗2y∗αβ2 – 3rx∗2β4 – ky∗αβ4)

(kx∗2 + kβ2 + rx∗3δ + kx∗y∗αδ + rx∗β2δ)3

+
k2δ(1 + rδ)(–rβ6 – 3rx∗5y∗αδ + kx∗3y∗2α2δ + rx∗3y∗αβ2δ)

(kx∗2 + kβ2 + rx∗3δ + kx∗y∗αδ + rx∗β2δ)3 ,

a14 = –
2k2αδ(1 + rδ)(–rx∗4(x∗2 + β2)δ + kx∗(x∗2β2 + β4 + x∗3y∗αδ))

(rx∗(x∗2 + β2)δ + k(x∗2 + β2 + x∗y∗αδ))3 ,

a15 =
x∗3α2δ2

(x∗2 + β2)2(1 + rδ)2 ,

a16 =
k2δ(1 + rδ)(–4k2x∗3y∗αβ2 + 4k2x∗y∗αβ4 + r2x∗8δ – k2x∗4y∗2α2δ)

(kx∗2 + kβ2 + rx∗3δ + kx∗y∗αδ + rx∗β2δ)4

+
k2δ(1 + rδ)(4r2x∗6β2δ – 14krx∗4y∗αβ2δ + 6r2x∗4β4δ + 4krx∗2y∗αβ4δ)

(kx∗2 + kβ2 + rx∗3δ + kx∗y∗αδ + rx∗β2δ)4

+
k2δ(1 + rδ)(k2y∗2α2β4δ + 4r2x∗2β6δ + 2kry∗αβ6δ + r2β8δ)

(kx∗2 + kβ2 + rx∗3δ + kx∗y∗αδ + rx∗β2δ)4

+
k2δ(1 + rδ)(4r2x∗7y∗αδ2 – 4krx∗5y∗2α2δ2 – 4r2x∗5y∗αβ2δ2)

(kx∗2 + kβ2 + rx∗3δ + kx∗y∗αδ + rx∗β2δ)4 ,

a17 =
k2δ(1 + rδ)(3kx∗2αβ2 – kαβ4 – 3rx∗5αδ + 2kx∗3y∗α2δ + rx∗3αβ2δ)

(kx∗2 + kβ2 + rx∗3δ + kx∗y∗αδ + rx∗β2δ)3

+
3k3x∗αδ2(1 + rδ)(rx∗6 + 3rx∗4β2 – 3kx∗2y∗αβ2 + 3rx∗2β4 + ky∗αβ4)

(kx∗2 + kβ2 + rx∗3δ + kx∗y∗αδ + rx∗β2δ)4

+
3k3x∗αδ2(1 + rδ)(rβ6 + 3rx∗5y∗αδ – kx∗3y∗2α2δ – rx∗3y∗αβ2δ)

(kx∗2 + kβ2 + rx∗3δ + kx∗y∗αδ + rx∗β2δ)4 ,

a18 =
k3α2δ2(1 + rδ)(–kx∗6 + 2kx∗4β2 + 3kx∗2β4 – 4rx∗7δ + 2kx∗5y∗αδ – 4rx∗5β2δ)

(kx∗2 + kβ2 + rx∗3δ + kx∗y∗αδ + rx∗β2δ)4 ,

and

a19 = –
x∗4α3δ3

(x∗2 + β2)3(1 + rδ)3 .
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Moreover, the characteristic polynomial for
( a11 a12

a21 a22

)
is computed as follows:

P(ρ) = ρ2 –
(

1
1 + rδ

+
2αδx∗3y∗

(x∗2 + β2)2(1 + rδ)
+

1
1 + (s1 + s̃)δ

)
ρ

+
(s1 + s̃)αδ2x∗2(x∗2 + β2) + h((x∗2 + β2)2 + 2αδx∗3y∗)

h(x∗2 + β2)2(1 + rδ)(1 + (s1 + s̃)δ)
. (15)

Assume that ρ(s̃) and ρ(s̃) are complex conjugate roots of (15), then we have

ρ(s̃) =
p(s̃) + i

√
4q(s̃) – p2(s̃)
2

,

where

p(s̃) :=
1

1 + rδ
+

2αδx∗3y∗

(x∗2 + β2)2(1 + rδ)
+

1
1 + (s1 + s̃)δ

and

q(s̃) :=
(s1 + s̃)αδ2x∗2(x∗2 + β2) + h((x∗2 + β2)2 + 2αδx∗3y∗)

h(x∗2 + β2)2(1 + rδ)(1 + (s1 + s̃)δ)
.

Furthermore, one has

∣∣ρ(s̃)
∣∣ =

√
(s1 + s̃)αδ2x∗2(x∗2 + β2) + h((x∗2 + β2)2 + 2αδx∗3y∗)

h(x∗2 + β2)2(1 + rδ)(1 + (s1 + s̃)δ)
.

Moreover, it follows that |ρ(0)| = 1, but ρ i(0) 
= 1 for all i = 1, 2, 3, 4 if and only if

1
1 + rδ

+
2αδx∗3y∗

(x∗2 + β2)2(1 + rδ)
+

1
1 + s1δ


= –2, –1, 0, 2. (16)

Since (r, k,α,β , s1, h) ∈ SNB, we have 0 < 1
1+rδ + 2αδx∗3y∗

(x∗2+β2)2(1+rδ) + 1
1+s1δ

< 2. Thus condition (16)
is automatically satisfied. Moreover, we assume that the following condition is satisfied:

(
d|ρ(s̃)|

ds̃

)
s̃=0

= –
δ(x∗2αδ – h(x∗2 + β2)(1 + rδ))2

2h(1 + rδ)(h(x∗2 + β2)2 – x∗2α(x∗2 – 2hx∗y∗ + β2)δ)

= 0. (17)

The following similarity transformation is considered in order to convert the linear part
of (14) into its canonical form at s̃ = 0:

(
x
y

)
=

(
a12 0

ϑ – a11 –ϕ

)(
w
z

)
, (18)

where

ϑ :=
p(0)

2
, ϕ :=

√
4q(0) – p2(0)

2
,



Shabbir et al. Advances in Difference Equations        (2019) 2019:381 Page 10 of 17

and

a12 = –
αδx∗2

(1 + rδ)(x∗2 + β2)
, a11 =

1 + 2αδx∗3y∗
(x∗2+β2)2

1 + δr
.

Then from transformation (18) it follows that

(
w
z

)
=

(
1

a12
0

ϑ–a11
ϕa12

– 1
ϕ

)(
x
y

)
. (19)

Assuming s̃ = 0, then from (18) and (19) we obtain the following normal form for the map
(14):

(
w
z

)
→

(
ϑ –ϕ

ϕ ϑ

)(
w
z

)
+

(
F(w, z)
G(w, z)

)
, (20)

where

F(w, z) :=
1

a12
f
(
a12w, (ϑ – a11)w – ϕz

)

and

G(w, z) :=
(

ϑ – a11

ϕa12

)
f
(
a12w, (ϑ – a11)w – ϕz

)
–

1
ϕ

g
(
a12w, (ϑ – a11)w – ϕz

)
.

Taking into account the bifurcation theory of normal forms (cf. [51–55]) the first Lyapunov
exponent at (w, z) = (0, 0) is computed as follows:

L = – Re

(
(1 – 2ρ(0))ρ(0)2

1 – ρ(0)
τ20τ11

)
–

1
2
|τ11|2 – |τ02|2 + Re

(
ρ(0)τ21

)
,

where

τ20 =
1
8
[
Fww – Fzz + 2Gwz + i(Gww – Gzz – 2Fwz)

]
,

τ11 =
1
4
[
Fww + Fzz + i(Gww + Gzz)

]
,

τ02 =
1
8
[
Fww – Fzz – 2Gwz + i(Gww – Gzz + 2Fwz)

]
,

and

τ21 =
1

16
[
Fwww + Fwzz + Gwwz + Gzzz + i(Gwww + Gwzz – Fwwz – Fzzz)

]
.

Due to the aforementioned computations, we have the following theorem.

Theorem 4.1 Suppose that (10), (11) and (17) hold true and L 
= 0, then the positive steady
state (x∗, y∗) of model (3) undergoes a Neimark–Sacker bifurcation when the bifurcation
parameter s varies in a small neighborhood of s1 defined in (10). Furthermore, if L < 0, then
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an attracting invariant closed curve bifurcates from the equilibrium point for s > s1, and
if L > 0, then a repelling invariant closed curve bifurcates from the equilibrium point for
s < s1.

5 Numerical simulation and discussion
In order to dynamical consistency between (1) and (3), we take r = 1.2, k = 1.5, α = 0.45,
β = 0.2 and h = 0.5 for both systems (1) and (3), then both systems (1) and (3) have unique
positive steady state (x∗, y∗) = (0.519983, 1.03997). Next, we take s = 0.18 for system (1),

Figure 1 Plots for system (1) with r = 1.2, k = 1.5, α = 0.45, β = 0.2, h = 0.5, s = 0.18 and (x0, y0) = (0.52, 1.04)
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Figure 2 Plots for system (1) with r = 1.2, k = 1.5, α = 0.45, β = 0.2, h = 0.5, s = 0.1659505778939415 and
(x0, y0) = (0.52, 1.04)

then the equilibrium point (x∗, y∗) = (0.519983, 1.03997) is locally asymptotically stable
and plots are depicted in Fig. 1. Furthermore, at s0 = 0.1659505778939415 system (1) un-
dergoes Hopf bifurcation at its positive steady state (x∗, y∗) = (0.519983, 1.03997) and plots
are depicted in Fig. 2.

Furthermore, we take the step size δ = 0.1 and s = 0.18 for system (3), then the equi-
librium point (x∗, y∗) = (0.519983, 1.03997) is locally asymptotically stable and plots are
depicted in Fig. 3. In order to discuss the bifurcating behavior of the discrete-time model
(3), we select δ = 0.1 and s ∈ [0.05, 0.25]. Then model (3) undergoes a Neimark–Sacker
bifurcation at s1 = 0.15932296370369736. Moreover, at r = 1.2, k = 1.5, α = 0.45, β = 0.2,
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Figure 3 Plots for system (3) with r = 1.2, k = 1.5, α = 0.45, β = 0.2, h = 0.5, s = 0.18, δ = 0.1 and
(x0, y0) = (0.52, 1.04)

h = 0.5, δ = 0.1 and s = 0.15932296370369736 the variational matrix for model (3) is given
as follows:

V (0.519983, 1.03997) =

(
1.01482 –0.0350006

0.0313649 0.984318

)
.

With some simple computation one can obtain the eigenvalues for V (0.519983, 1.03997),
λ1 = 0.999567 – 0.0294149i and λ2 = 0.999567 + 0.0294149i such that |λ1,2| = 1. Moreover,
bifurcation diagrams for model (3) are given in Fig. 4. On the other hand, some phase por-
traits for model (3) are depicted in Fig. 5. Since we have chosen exactly similar parametric
values for both continuous and discrete models except the step size δ = 0.1 for the discrete
model. In this case, the absolute difference between s0 and s1 is 0.00662761. The variation
between |s0 – s1| and δ is given in Table 1. From Table 1 it is obvious that for smaller step
size δ the critical values of bifurcation parameter s for the emergence of a Hopf bifurca-
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Figure 4 Bifurcation diagrams for system (3) with r = 1.2, k = 1.5, α = 0.45, β = 0.2, h = 0.5, δ = 0.1,
s ∈ [0.05, 0.25] and (x0, y0) = (0.52, 1.04)

tion and a Neimark–Sacker bifurcation are nearly identical, that is, |s0 – s1| → 0 as δ → 0.
Furthermore, since system (1) is independent of δ, s0 is taken as s0 = 0.1659505778939415
in Table 1. Arguing as in [6], if we implement Euler forward approximation to system (1)
with the aforementioned parametric values and step size δ = 0.1, then this discrete-time
model undergoes a Neimark–Sacker bifurcation at s1 = 0.17688307136658987 and thus
we have |s0 – s1| = 0.0109325.

6 Concluding remarks
A dynamically consistent nonstandard finite difference scheme is proposed for a class of
predator–prey models with implementation of Holling type-III functional response. Our
investigations reveal that the discrete-time model has totally identical dynamical behavior
to its continuous counterpart. Particularly, positivity, boundedness and persistence of so-
lutions are preserved for the discrete model. The topological classification for both steady
states are preserved. Furthermore, our proposed nonstandard finite difference scheme is
also bifurcation preserving, that is, the continuous system undergoes a Hopf bifurcation
and there is no chance of flip bifurcation, on the other hand, the discrete-time model un-
dergoes a Neimark–Sacker bifurcation at its positive fixed point and there is no chance
of a period-doubling bifurcation for this system. A discrete counterpart of the contin-
uous predator–prey model is discussed in [6] with implementation of an Euler forward
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Figure 5 Phase portraits of system (3) for r = 1.2, k = 1.5, α = 0.45, β = 0.2, h = 0.5, δ = 0.1(x0, y0) = (0.52, 1.04)
and with different values of s

Table 1 Variation of s1 and |s1 – s0| with different values of δ

δ s1 |s1 – s0|
0.0000001 0.16595057099062765 6.90331× 10–9

0.0001 0.1659436748673543 6.90303× 10–6

0.01 0.16526310630603203 0.000687472
0.1 0.15932296370369736 0.00662761
0.5 0.13737709529521447 0.0285735
0.8 0.12451377569181231 0.0414368
0.95 0.11894505878486634 0.0470055
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approximation. According to these investigations the discrete-time model undergoes a
period-doubling bifurcation at its positive fixed point and therefore the Euler method
does not seem to be bifurcation preserving.
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