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Abstract
This paper is committed to investigating outer-synchronization of fractional-order
neural networks with deviating argument via centralized and decentralized
data-sampling approaches. Considering the low cost and high reliability of
data-sampling control, we adopt two categories of control strategies with principles
of centralized and decentralized data-sampling to synchronize fractional-order neural
networks with deviating argument. Several sufficient criteria are proposed to realize
outer-synchronization by data-sampling control design in two complex coupled
networks. It is noteworthy that, based on centralized and decentralized
data-sampling methods, the synchronization theory of fractional systems and
differential equation with deviating argument, the sampling time points are very well
selected in control systems. An example is performed to illustrate the advantage of
the presented theoretical analysis and results.
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Centralized and decentralized data-sampling principles

1 Introduction
Lately, fractional calculus has shown interest and importance, mainly on account of its nu-
merous application in the domains of physics, engineering and science [1–3]. It is learned
that fractional calculus has been an explored area of mathematical studies and not less
than 300 years’ history. In contemporary, in respect that fractional-order model describes
the behavior of real-world situations more precisely than integer-order model, a good deal
of the practical processes are identified and depicted in terms of fractional-order models.
In truth, the design of fractional-order dynamics has gone beyond the capabilities of tra-
ditional integer-order models. Comparing with conventional systems, the distinguished
superiority of fractional-order systems is that many degrees of freedom and general com-
putation ability can be shown better. Besides, fractional-order model has infinite memory
and hereditary characteristics of diverse processes with potential ability. It is exactly be-
cause of the practicability of fractional-order systems that the analysis and synthesis with
respect to fractional-order dynamics has gained so much attention. For instance, for a
fractional-order quaternion-valued neural network with delay, the novel results about the
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stability and bifurcation were researched through using the time delay as the bifurcation
parameter in [4]. In fractional-order non-autonomous neural networks, global asymp-
totical periodicity was studied by the property of fractional-order calculation in [5]. For
fractional-order bidirectional associative memory neural networks, global Mittag-Leffler
stabilization problem was investigated by some new analysis approaches of fractional cal-
culation in [6], and more interesting results were reported; see [7–9] and the references
therein.

As hybrid dynamical equations, the differential equations with deviating argument are
neither continuous-time nor merely discrete-time, but the coalition of continuous and dis-
crete equations. These novel equations combining the characteristics of differential and
difference equations were initiated in [10, 11], at that time, the stability of system cannot be
fully studied due to lack of effective tools. As the theory of differential equations develops,
a generalized concept about differential equations with deviating argument was presented
in [12, 13]. The main method is that the differential equations with deviating argument
are converted into their corresponding equivalent integral equations. So that these equa-
tions could be used to deal with issues that cannot be handled by discrete equations. As
we have learned, the differential equations with deviating argument have such a particu-
lar performance, during motion process, the argument can change the type of deviation.
Namely, differential equations with deviating argument unify delayed and advanced equa-
tions. Therefore, many open questions about systems with deviating argument are raised,
some heuristic results have been shown in the relevant literature [14, 15]. From another
perspective, the notion of retard corresponds to the past cases, and the notion of advance
corresponds to the future cases. It is well known that the influence of the past and future
events on current behavior is very significant in decision-making. So, it is worthwhile to
investigate differential equations with mixed type that can give rise to complex behavior.

Synchronization is a common and typical phenomenon in the real world. Over the last
few decades, the synchronization problem of complex control systems plays a fabulous
role in the fields of secure communication and control processing [16, 17]. To the best
of our knowledge, a mass of nodes and connections between nodes constitute a com-
plex network, in accordance of different intention of network nodes in diverse environ-
ment, the entire dynamic and topological characteristics of network nodes could lead to
complex behaviors of network. Then all sorts of different synchronization phenomenon
appear gradually, two of the more common ones are inner-synchronization and outer-
synchronization. We call it inner-synchronization if the synchronization occurs within a
network, by using the appropriate control schemes, all nodes inside a network will tend
to the identical behaviors. But, unlike inner-synchronization, outer-synchronization oc-
curs in two or more complex networks, through proper control design, all individuals
between two or more complex networks will realize identical behaviors. In real life, the
spread of many diseases between two communities can be explained by the phenomenon
of outer-synchronization between two networks, and some attractive results regarding
outer-synchronization have been introduced [18, 19]. However, outer-synchronization
based on deviating argument systems is seldom reported. Thus, it is important and es-
sential to study outer-synchronization.

Data-sampling control theory has been a hot topic due to the fact that data-sampling
control itself is high precision and high reliability in many practical applications [20, 21].
With the development of the high quality need of system performance, single-rate data-
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sampling control cannot meet the requirements and even increase the cost of the sys-
tem, a better design scheme called multi-rate data-sampling control has come into being
[22, 23]. Multi-rate data-sampling control with less conservativeness can achieve the con-
trol objectives that single-rate data-sampling control does not have, such as gain margin
improvement, simultaneously stability, strong stabilization, centralized and decentralized
control. To the best of our knowledge, data-sampling control based on the sampling sig-
nal is a significant concept related to discretization. Unlike continuous-time control that
always occupies the communication channels all the time, multi-rate data-sampling con-
trol only carried out at part of timing is reasonable and easier to implement, and has the
advantages of good versatility and effective interference suppression. According to the
characteristics of fractional-order system, it is found that centralized and decentralized
data-sampling control may be more appropriate for fractional-order system than other
control design [24, 25]. On the one hand, centralized and decentralized data-sampling
control approaches are relatively cheaper and simpler to operate. On the other hand, it is
feasible that centralized and decentralized data-sampling control approaches only need to
select the sampling time points instead of the entire time points in fractional-order system
with complex structures. In other words, once we can effectively solve the resource dis-
tribution problems with respect to centralized and decentralized data-sampling control,
then the data transmission and power consumption will be greatly reduced. Neverthe-
less, how to achieve the ultimate purpose of optimizing data acquisition is a challenging.
As a consequence, constructing high-efficiency, explored and analyzed information-based
data-sampling control is worth looking into.

With the discussion illustrated as earlier, we try to use centralized and decentralized
data-sampling as two kinds of better control schemes to explore outer-synchronization for
fractional-order systems with deviating argument. Primarily, we need to find the connec-
tion between the current state and the argument state in fractional-order systems due to
the particularity of the deviating argument. Moreover, according to the classifiable charac-
ter of data-sampling itself, we can divide data-sampling control into structure-dependent
and state-dependent sampling control to study outer-synchronization better in fractional-
order systems with deviating argument. As we have explored, centralized and decentral-
ized data-sampling methods are first attempt to address outer-synchronization problem
in deviating argument systems, and it can prove that the selection of the sampling time
points is effective and reasonable. Roughly stated, our main contributions of the paper
are summed up into two points: (1) It is the first time that centralized and decentralized
data-sampling methods are applied to fractional-order neural networks with deviating ar-
gument. (2) Several outer-synchronization criteria are first put forward in fractional-order
neural networks with deviating argument by utilizing centralized and decentralized data-
sampling control schemes.

The structure of the paper is composed of the following four parts. Some preliminaries
are stated from the five aspects in Sect. 2, namely: fractional calculus, model description,
definition and problem formulation, assumptions and mathematical notations, lemmas
and properties. In Sect. 3, several sufficient conditions about outer-synchronization main
results are put forward by centralized and decentralized data-sampling approaches, sepa-
rately. In Sect. 4, an example is shown to demonstrate the efficiency of the derived results.
At last, Sect. 5 summaries some relevant conclusions.
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2 Preliminaries
2.1 Fractional calculus
To facilitate the description of our model, some basic notions for fractional calculus are
recalled.

Fractional integral with order q > 0 of the function Q(t) is described by

RL
t0 D–q

t Q(t) =
1

Γ (q)

∫ t

t0

(t – s)q–1Q(s) ds,

where t ≥ t0, Γ (·) is the Gamma function, that is,

Γ (q) =
∫ ∞

t0

sq–1e–s ds.

The Caputo derivative with order q > 0 of the function Q(t) ∈ Cn+1([t0, +∞),R) is char-
acterized as

C
t0 Dq

t Q(t) =
1

Γ (n – q)

∫ t

t0

Q(n)(s)
(t – s)q–n+1 ds,

where t ≥ t0 and n is a positive integer satisfying n – 1 < q < n.
The one-parameter Mittag-Leffler function Eq(·) is given as

Eq(s) =
+∞∑
k=0

sk

Γ (kq + 1)
,

where q > 0, s is a complex number.

2.2 Model description
Throughout the paper, N and R+ represent the sets of natural and nonnegative real
numbers, separately, i.e., N = {0, 1, 2, . . .}, R+ = [0, +∞). Rn stands for the n-dimensional
real space. For a given real vector A = (A1,A2, . . . ,An)T ∈ Rn, the norm is defined by
‖A‖ =

∑n
i=1 αi|Ai|, where αi > 0. Choose two real-valued sequences {tk}, {�k}, k ∈ N , sat-

isfying tk < tk+1, tk ≤ �k ≤ tk+1 for all k ∈ N with tk → +∞ as k → +∞. Similarly, choose
the other two real-valued sequences {ti

k}, {ρk}, i = 1, 2, . . . , n, k ∈ N , satisfying ti
k < ti

k+1,
ti
k ≤ ρk ≤ ti

k+1 for all i = 1, 2, . . . , n, k ∈N with ti
k → +∞ as k → +∞.

We focus on the fractional-order neural networks with deviating argument governed by

C
t0 Dq

t zi(t) = –ai(t)zi(t) +
n∑

j=1

bij(t)fj
(
zj(t)

)

+
n∑

j=1

cij(t)gj
(
zj
(
γ (t)

))
+ νi(t), i = 1, 2, . . . , n, (1)

where 0 < q < 1, zi(t) means the state variable, γ (t) = �k , if t ∈ [tk , tk+1), k ∈ N , t ∈ R+,
similarly, γ (t) = ρk , if t ∈ [ti

k , ti
k+1), i = 1, 2, . . . , n, k ∈N , t ∈R+, the self-inhibition ai(t) > 0,

synaptic strengths bij(t), cij(t) and the bias νi(t) are piecewise continuous and bounded,
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the output functions fj(·) and gj(·) satisfy

0 ≤ fj(Z) – fj(Z)
Z – Z

≤ Lj, ∀Z,Z ∈R,Z 	= Z, (2)

0 ≤ gj(Z) – gj(Z)
Z – Z

≤ Hj, ∀Z,Z ∈R,Z 	= Z, (3)

in which Lj > 0 and Hj > 0, j = 1, 2, . . . , n.
Actually, consider system (1) on the [tk , tk+1), k ∈N , the identification function γ (t) = �k ,

k ∈ N , t ∈ R+, if tk ≤ t < �k , then system (1) is advanced due to γ (t) > t, if �k < t < tk+1,
then system (1) is retarded due to γ (t) < t. Similarly, consider the model (1) on the [ti

k , ti
k+1),

i = 1, 2, . . . , n, k ∈ N , the identification function γ (t) = ρk , k ∈ N , t ∈ R+, if ti
k ≤ t < ρk ,

then system (1) is advanced due to γ (t) > t, if ρk < t < ti
k+1, then system (1) is retarded due

to γ (t) < t. Taken together, system (1) is a mixed-type equation in accordance with the
property of identification function γ (t).

Consider the centralized data-sampling approach, (1) can be transformed into

C
t0 Dq

t zi(t) = –ai(t)zi(tk) +
n∑

j=1

bij(t)fj
(
zj(tk)

)

+
n∑

j=1

cij(t)gj
(
zj
(
γ (tk)

))
+ νi(t), i = 1, 2, . . . , n, (4)

where tk is the short form of tk(t) with k(t) = max{K : tK ≤ t}. In addition, 0 = t0 < t1 < · · · <
tk < · · · is consistent with all the neurons, which implies that all the neurons are sampled
at time tk .

Consider the decentralized data-sampling approach, (1) can be transformed into

C
t0 Dq

t zi(t) = –ai(t)zi
(
ti
k
)

+
n∑

j=1

bij(t)fj
(
zj
(
tj
k
))

+
n∑

j=1

cij(t)gj
(
zj
(
γ
(
tj
k
)))

+ νi(t), i = 1, 2, . . . , n, (5)

where ti
k is the short form of ti

k(t) with k(t) = max{K : ti
K

≤ t}. In addition, 0 = ti
0 < ti

1 < · · · <
ti
k < · · · is dispersed by i ∈ {1, 2, . . . , n}, which implies that the different kinds of neurons

are sampled at time ti
k .

Remark 2.1 To better understand the features of centralized and decentralized data-
sampling control, the general system (1) is first given. For the state variables z1(t), z2(t), . . . ,
zn(t), if all state variables z1(t), z2(t), . . . , zn(t) are sampled at time tk , then system (1) can
be rewritten as system (4) which represents centralized data-sampling model. If the state
variable z1(t) is sampled at time t1

k , the state variable z2(t) is sampled at time t2
k , the state

variable z3(t) is sampled at time t3
k and so on, then system (1) can be rewritten as system

(5) which represents decentralized data-sampling model.

Remark 2.2 From a physical standpoint, if at the same time point tk , each neuron spreads
the state to the corresponding out-neighbors. Meanwhile, every neuron receives the cor-
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responding in-neighbor state information, then it is a description about the phenomenon
of centralized data-sampling control. If when ever y neuron i renews its state, it transmits
the state to the corresponding out-neighbors at time ti

k . When its neighbor neuron j re-
news its state, the corresponding in-neighbor state information is received at time tj

k , then
it is a description about the phenomenon of decentralized data-sampling control.

Remark 2.3 In system (1), the state variables zi(t), zj(t) and zj(γ (t)) mean that all states are
related to the time t and the state zj(γ (t)) is also related to the deviating argument γ (t).
According to the properties of the deviating argument, it can be seen that system (1) is the
coalition of continuous equation and discrete equation. Namely, system (1) is of mixed
type. In system (4), the state variables zi(tk), zj(tk) and zj(γ (tk)) mean that all states are
related to the time tk and the state zj(γ (tk)) is also related to the deviating argument γ (tk),
it shows that the centralized data-sampling is at the same time and system (4) is a discrete
equation. Similarly, in system (5), the state variables zi(ti

k), zj(t
j
k) and zj(γ (tj

k)) mean that all
states are related to the time ti

k or tj
k , and the state zj(γ (tj

k)) is also related to the deviating
argument γ (tj

k), it shows that the decentralized data-sampling is at the different time and
system (5) is a discrete equation.

Remark 2.4 For systems (1), (4) and (5), it can be found that systems (4) and (5) are based
on system (1). By looking at the structure of systems (1), (4) and (5), it is clear that there
exist differences and connections between three systems. In particular, there is no change
in the bias νi(t) for systems (4) and (5) because the sampling time is always dependent on
the state. Hence, when the centralized and decentralized data-sampling approaches are
applied to a given system, the corresponding centralized and decentralized data-sampling
models can be obtained by analyzing the relationship between the state and the sampling
time.

Remark 2.5 In the model description, two different types of sequences are mentioned, one
is the real-valued sequence of deviating argument system, the other is the sampling time
sequence of data-sampling control. From the point of view of deviating argument system,
it is learned that the advance and retard are the characteristics of deviating argument sys-
tem, and this feature is mainly reflected in two real-valued sequences. It is easy to see that
the relationship of size between two real-valued sequences {tk} and {�k} is given, and the
relationship of size between other two real-valued sequences {ti

k} and {ρk} is given. More-
over, {tk} denotes the centralized sampling time sequence for data-sampling system (4)
and {ti

k} denotes the decentralized sampling time sequence for data-sampling system (5).
That is to say, the sequences {tk} and {ti

k} represent not only the real-valued sequences of
deviating argument system, but also the sampling time sequences of data-sampling con-
trol. It can be found the real-valued sequence and the sampling time sequence are skillfully
combined in deviating argument system on the basis of property of the sampling time se-
quence. Indeed, the centralized and decentralized data-sampling strategies are used in
fractional-order systems with deviating argument for the first time.

2.3 Definition and problem formulation
This subsection gives the definition of outer-synchronization and provides problem for-
mulation about centralized and decentralized data-sampling schemes.
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Definition 2.1 Consider any two trajectories x(t) and x̄(t) of (1) with initial values x(0) and
x̄(0), separately. System (1) can realize outer-synchronization if there exists some control
design such that

lim
t→+∞

∥∥x(t) – x̄(t)
∥∥ = 0.

Remark 2.6 Review the classical synchronization, take the drive-response synchroniza-
tion for example, the drive system C

t0 Dq
t x(t) = F(t, x) is an uncontrolled system without

the controller, and C
t0 Dq

t y(t) = G(t, y, w(t)) represents the response system which possesses
the controller w(t). In a nutshell, if limt→+∞ ‖y(t) – x(t)‖ = 0, then the drive-response
systems can realize synchronization. But for outer-synchronization, it is not difficult to
discover that the realization of the outer-synchronization is closely related to the be-
haviors of any two trajectories of system (1) by Definition 2.1. To be specific, based on
some control design, if limt→+∞ ‖xi(t) – xj(t)‖ = 0, then system (1) can realize outer-
synchronization. It is obvious that the difference between them is the features of basic con-
cepts. Namely, limt→+∞ ‖y(t) – x(t)‖ = 0 means y(t) → x(t), but limt→+∞ ‖xi(t) – xj(t)‖ = 0
means x1(t) → x2(t) → x3(t) · · · → xn(t).

Let x(t) and x̄(t) be two trajectories of (1) with initial values x(0) and x̄(0), separately.
Denoting y(t) = (y1(t), y2(t), . . . , yn(t))T with yi(t) = xi(t) – x̄i(t), it follows that

C
t0 Dq

t yi(t) = –ai(t)yi(t) +
n∑

j=1

bij(t)�j(t)

+
n∑

j=1

cij(t)�j
(
γ (t)

)
, i = 1, 2, . . . , n, (6)

where �j(t) = fj(xj(t)) – fj(x̄j(t)), �j(γ (t)) = gj(xj(γ (t))) – gj(x̄j(γ (t))), j = 1, 2, . . . , n, for all t ∈
R+.

In the centralized data-sampling strategy, let z(t) and z̄(t) be two trajectories of (4) with
initial values z(0) and z̄(0), separately. Denoting u(t) = (u1(t), u2(t), . . . , un(t))T with ui(t) =
zi(t) – z̄i(t), we have

C
t0 Dq

t ui(t) = –ai(t)ui(tk) +
n∑

j=1

bij(t)pj(tk)

+
n∑

j=1

cij(t)hj
(
γ (tk)

)
, i = 1, 2, . . . , n, (7)

where pj(t) = fj(zj(t)) – fj(z̄j(t)), hj(γ (t)) = gj(zj(γ (t))) – gj(z̄j(γ (t))), j = 1, 2, . . . , n, for all t ∈
[tk , tk+1), k ∈N .

Under centralized data-sampling method with structure-dependent, if system (4) can
reach outer-synchronization, then control scheme needs to be designed on the basis of
the system structure of (7) satisfying

lim
t→+∞

∥∥u(t)
∥∥ = 0.
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Under centralized data-sampling method with state-dependent, consider the state mea-
surement error of system (4)

ri(t) = ui(tk) – ui(t), i = 1, 2, . . . , n, (8)

where t ∈ [tk , tk+1), k ∈ N , if system (4) can reach outer-synchronization, then control
scheme needs to be designed on the basis of the state measurement error (8) satisfying

lim
t→+∞

∥∥u(t)
∥∥ = 0.

In the decentralized data-sampling strategy, let z(t) and z̄(t) be two trajectories of (5)
with initial values z(0) and z̄(0), separately. Denoting u(t) = (u1(t), u2(t), . . . , un(t))T with
ui(t) = zi(t) – z̄i(t), we have

C
t0 Dq

t ui(t) = –ai(t)ui
(
ti
k
)

+
n∑

j=1

bij(t)pj
(
tj
k
)

+
n∑

j=1

cij(t)hj
(
γ
(
tj
k
))

, i = 1, 2, . . . , n, (9)

where pj(t) = fj(zj(t)) – fj(z̄j(t)), hj(γ (t)) = gj(zj(γ (t))) – gj(z̄j(γ (t))), j = 1, 2, . . . , n, for all t ∈
[tj

k , tj
k+1), k ∈N .

Under decentralized data-sampling method with state-dependent, consider the state
measurement error of system (5)

ri(t) = ui
(
ti
k
)

– ui(t), i = 1, 2, . . . , n, (10)

where t ∈ [ti
k , ti

k+1), k ∈ N , if system (5) can reach outer-synchronization, then control
scheme needs to be designed on the basis of the state measurement error (10) satisfying

lim
t→+∞

∥∥u(t)
∥∥ = 0.

Remark 2.7 It follows from Definition 2.1 that whether the system can realize outer-
synchronization, the first thing that should be considered is the any two solutions of the
system. Clearly, system (6) is derived in accordance with the two solutions of system (1).
For the outer-synchronization problem of deviating argument system, it is convenient to
find the relation of the current state and the deviating argument state according to system
(6). Without doubt, the realization of outer-synchronization in deviating argument system
is closely related to the analysis of system (6).

Remark 2.8 Focus on the centralized data-sampling control, system (7) is derived in ac-
cordance with the two solutions of system (4), meanwhile the structure-dependent and
state-dependent centralized data-sampling methods are described, separately. Just as its
name implies, the structure-dependent data-sampling is on the basis of the structure of
the system itself, and the state-dependent data-sampling is on the basis of the observa-
tion measurement error of the system. It is clear that the observation measurement error
is the difference between the state of centralized data-sampling time and the state of the
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current moment. Similarly, focusing on the decentralized data-sampling control, system
(9) is derived in accordance with the two solutions of system (5) and the state-dependent
centralized data-sampling method is described. It is clear that the observation measure-
ment error is the difference between the state of decentralized data-sampling time and the
state of the current moment.

2.4 Assumptions and mathematical notations
Without loss of generality, supposing that the existence and uniqueness of solutions can
be guaranteed for systems (1), (4) and (5), more and more detailed discussions are given
in [14, Theorem 1]. For simplicity, some assumptions and mathematical notations are rec-
ommended which need to be used in the latter case.

Two assumptions are made.

Assumption 2.1 For the sequence {tk}, there exists a constant υ > 0 satisfying tk+1 – tk ≤
υ , k ∈N .

Assumption 2.2 For the sequence {ti
k}, there exists a constant ϕ > 0 satisfying ti

k+1 – ti
k ≤

ϕ, i = 1, 2, . . . , n, k ∈N .

Throughout this paper, let αi > 0 be positive constants for i = 1, 2, . . . , n, defining the
following mathematical notations:

ε =
φq

Γ (q + 1)
, (11)

μ1 = max
1≤j≤n

sup
t∈R+

{
aj(t) + b+

jj (t)Lj +
n∑

i=1,i	=j

αi

αj

∣∣bij(t)
∣∣Lj

}
, (12)

μ2 = max
1≤j≤n

sup
t∈R+

{
c+

jj (t)Hj +
n∑

i=1,i	=j

αi

αj

∣∣cij(t)
∣∣Hj

}
, (13)

δ = (1 + εμ2)Eq
(
μ1φ

q), (14)

σ =
1

1 – ε(μ1δ + μ2)
> 0, (15)

P = max
1≤i≤n

sup
t∈R+

{
ai(t) – b–

ii(t)Li
}

, (16)

Q = max
1≤j≤n

sup
t∈R+

{
aj(t) +

n∑
i=1

αi

αj

∣∣bij(t)
∣∣Lj + σ c+

jj(t)Hj

+ σ

n∑
i=1,i	=j

αi

αj

∣∣cij(t)
∣∣Hj

}
, (17)

ηj(α, t) = aj(t) – b+
jj (t)Lj –

n∑
i=1,i	=j

αi

αj

∣∣bij(t)
∣∣Lj – σ c+

jj(t)Hj

– σ

n∑
i=1,i	=j

αi

αj

∣∣cij(t)
∣∣Hj, (18)
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where φ = max{υ,ϕ}, b–
ii(t) = min{bii(t), 0}, b+

ii(t) = max{bii(t), 0}, c–
ii(t) = min{cii(t), 0},

c+
ii(t) = max{cii(t), 0}. Additionally, by the boundedness of parameters σ , ai(t), bij(t) and

cij(t), there must exist a positive constant U satisfying

max
1≤j≤n

sup
t∈R+

ηj(α, t) ≤ U .

Remark 2.9 Taking into account the realization of dynamic behavior for ideal system, both
of Assumption 2.1 and Assumption 2.2 restrict the variation range of the deviating argu-
ment function.

Remark 2.10 In order to ensure that parameters Q and ηj(α, t) are reasonable in our sys-
tem, we demand the parameter σ to be bigger than 0. It is need to point out that the
upper bound of the parameter σ can be derived from the boundedness of parameters ε,
μ1, μ2, δ. In addition, if no otherwise specified, each mathematical notation that appears
in this subsection has only one meaning.

2.5 Lemmas and properties
In this section, we put forward some relevant lemmas, which are utilized for our main
results later. Especially, the connection between the current state and the state with de-
viating argument for all t ∈ R+ is given, it is crucial to deal with outer-synchronization
problem in our system.

Lemma 2.1 ([9]) Assume q > 0, B(t) is a nonnegative function locally integrable on [a, b),
H (t) is a nonnegative, nondecreasing, continuous and bounded function on [a, b), assume
G(t) is nonnegative and locally integrable on [a, b) with

G(t) ≤ B(t) + H (t)
∫ t

0
(t – s)q–1G(s) ds, t ∈ [a, b),

then

G(t) ≤ B(t) +
∫ t

0

+∞∑
k=1

[
[H (t)Γ (q)]k

Γ (kq)
(t – s)kq–1B(s)

]
ds, t ∈ [a, b).

Additionally, B(t) is a nondecreasing function on [a, b), then

G(t) ≤ B(t)Eq
(
H (t)Γ (q)tq), t ∈ [a, b).

Lemma 2.2 Let Assumption 2.1 hold, consider the state y(t) of system (6), then, for all
t ∈R+,

∥∥y
(
γ (t)

)∥∥ ≤ σ
∥∥y(t)

∥∥. (19)

Proof Fix k ∈N , for t ∈ [tk , tk+1), it follows that

yi(t) = yi(�k) +
1

Γ (q)

∫ t

�k

[
–ai(s)yi(s) +

n∑
j=1

bij(s)�j(s)
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+
n∑

j=1

cij(s)�j(�k)

]
(t – s)q–1 ds

= yi(�k) +
1

Γ (q)

∫ t

�k

[
–ai(s)yi(s) + bii(s)di(s)yi(s)

+
n∑

j=1,j 	=i

bij(s)dj(s)yj(s) + cii(s)ei(�k)yi(�k)

+
n∑

j=1,j 	=i

cij(s)ej(�k)yj(�k)

]
(t – s)q–1 ds, i = 1, 2, . . . , n, (20)

with

di(t) =

⎧⎨
⎩

�i(t)
yi(t) , yi(t) 	= 0,

0, yi(t) = 0,
ei(�k) =

⎧⎨
⎩

�i(�k )
yi(�k ) , yi(�k) 	= 0,

0, yi(�k) = 0.

From (20), on the basis of the definition of the norm in this paper,

∥∥y(t)
∥∥ ≤

n∑
i=1

αi
∣∣yi(�k)

∣∣ +
1

Γ (q)

n∑
i=1

αi

[∫ t

�k

(
ai(s)

∣∣yi(s)
∣∣ +

∣∣bii(s)di(s)yi(s)
∣∣

+
n∑

j=1,j 	=i

∣∣bij(s)dj(s)yj(s)
∣∣ +

∣∣cii(s)ei(�k)yi(�k)
∣∣

+
n∑

j=1,j 	=i

∣∣cij(s)ej(�k)yj(�k)
∣∣
)

(t – s)q–1 ds

]
. (21)

By (2) and (3), clearly, 0 ≤ di(t) ≤ Li and 0 ≤ ei(�k) ≤ Hi for all i = 1, 2, . . . , n, t ∈ R+,
which means

b–
ii(s)Li ≤ bii(s)di(s) ≤ b+

ii(s)Li, (22)

c–
ii(s)Hi ≤ cii(s)ei(�k) ≤ c+

ii(s)Hi. (23)

Substituting (22) and (23) into (21), it follows that

∥∥y(t)
∥∥ ≤

n∑
i=1

αi
∣∣yi(�k)

∣∣ +
1

Γ (q)

n∑
i=1

αi

[∫ t

�k

(
ai(s)

∣∣yi(s)
∣∣ + b+

ii(s)Li
∣∣yi(s)

∣∣

+
n∑

j=1,j 	=i

∣∣bij(s)
∣∣Lj

∣∣yj(s)
∣∣ + c+

ii(s)Hi
∣∣yi(�k)

∣∣

+
n∑

j=1,j 	=i

∣∣cij(s)
∣∣Hj

∣∣yj(�k)
∣∣
)

(t – s)q–1 ds

]

≤ ∥∥y(�k)
∥∥ +

1
Γ (q)

n∑
j=1

(
c+

jj (s)Hj +
n∑

i=1,i	=j

αi

αj

∣∣cij(s)
∣∣Hj

)
αj

∣∣yj(�k)
∣∣



Cheng et al. Advances in Difference Equations        (2019) 2019:390 Page 12 of 31

·
∫ t

�k

(t – s)q–1 ds +
1

Γ (q)

n∑
j=1

[∫ t

�k

(
aj(s) + b+

jj (s)Lj

+
n∑

i=1,i	=j

αi

αj

∣∣bij(s)
∣∣Lj

)
αj

∣∣yj(s)
∣∣(t – s)q–1 ds

]

≤ ∥∥y(�k)
∥∥ +

υq

Γ (q + 1)
μ2

∥∥y(�k)
∥∥ +

1
Γ (q)

∫ t

�k

μ1
∥∥y(s)

∥∥(t – s)q–1 ds

≤ ∥∥y(�k)
∥∥ + εμ2

∥∥y(�k)
∥∥ +

μ1

Γ (q)

∫ t

�k

(t – s)q–1∥∥y(s)
∥∥ds.

Using Lemma 2.1, then

∥∥y(t)
∥∥ ≤ (1 + εμ2)

∥∥y(�k)
∥∥Eq

(
μ1υ

q) ≤ δ
∥∥y(�k)

∥∥.

Similarly, for t ∈ [tk , tk+1), we obtain

∥∥y(�k)
∥∥ ≤ ∥∥y(t)

∥∥ + εμ2
∥∥y(�k)

∥∥ +
μ1

Γ (q)

∫ t

�k

(t – s)q–1δ
∥∥y(�k)

∥∥ds

≤ ∥∥y(t)
∥∥ + ε(μ2 + μ1δ)

∥∥y(�k)
∥∥,

and thus

∥∥y(�k)
∥∥ ≤ 1

1 – ε(μ1δ + μ2)
∥∥y(t)

∥∥ = σ
∥∥y(t)

∥∥,

where the parameters ε, μ1, μ2, δ, σ are defined in (11)–(15). Hence, Lemma 2.2 is true
for t ∈R+. �

Lemma 2.3 ([5]) Given 0 < q < 1. If Q(t) ∈ C1[t0, +∞), then

C
t0 Dq

t
∣∣Q(t)

∣∣ ≤ sgn
(
Q(t)

)C
t0 Dq

t Q(t), t ≥ t0,

where

C
t0 Dq

t
∣∣Q(t)

∣∣ =
1

Γ (1 – q)

∫ t

t0

d
ds |Q(s)|
(t – s)q ds.

Lemma 2.4 Let Assumption 2.2 hold, consider the state y(t) of system (6), then, for all
t ∈R+,

∥∥y
(
γ (t)

)∥∥ ≤ σ
∥∥y(t)

∥∥. (24)

Proof Fix k ∈N , for t ∈ [ti
k , ti

k+1), i = 1, 2, . . . , n, we have

yi(t) = yi(ρk) +
1

Γ (q)

∫ t

ρk

[
–ai(s)yi(s) +

n∑
j=1

bij(s)�j(s)



Cheng et al. Advances in Difference Equations        (2019) 2019:390 Page 13 of 31

+
n∑

j=1

cij(s)�j(ρk)

]
(t – s)q–1 ds

= yi(ρk) +
1

Γ (q)

∫ t

ρk

[
–ai(s)yi(s) + bii(s)di(s)yi(s)

+
n∑

j=1,j 	=i

bij(s)dj(s)yj(s) + cii(s)ei(ρk)yi(ρk)

+
n∑

j=1,j 	=i

cij(s)ej(ρk)yj(ρk)

]
(t – s)q–1 ds, i = 1, 2, . . . , n, (25)

with

di(t) =

⎧⎨
⎩

�i(t)
yi(t) , yi(t) 	= 0,

0, yi(t) = 0,
ei(ρk) =

⎧⎨
⎩

�i(ρk )
yi(ρk ) , yi(ρk) 	= 0,

0, yi(ρk) = 0.

From (25), on the basis of the definition of the norm in this paper,

∥∥y(t)
∥∥ ≤

n∑
i=1

αi
∣∣yi(ρk)

∣∣ +
1

Γ (q)

n∑
i=1

αi

[∫ t

ρk

(
ai(s)

∣∣yi(s)
∣∣ +

∣∣bii(s)di(s)yi(s)
∣∣

+
n∑

j=1,j 	=i

∣∣bij(s)dj(s)yj(s)
∣∣ +

∣∣cii(s)ei(ρk)yi(ρk)
∣∣

+
n∑

j=1,j 	=i

∣∣cij(s)ej(ρk)yj(ρk)
∣∣
)

(t – s)q–1 ds

]
. (26)

By (2) and (3), clearly, 0 ≤ di(t) ≤ Li and 0 ≤ ei(ρk) ≤ Hi for all i = 1, 2, . . . , n, t ∈ R+,
which implies

b–
ii(s)Li ≤ bii(s)di(s) ≤ b+

ii(s)Li, (27)

c–
ii(s)Hi ≤ cii(s)ei(ρk) ≤ c+

ii(s)Hi. (28)

Substituting (27) and (28) into (26), it follows that

∥∥y(t)
∥∥ ≤

n∑
i=1

αi
∣∣yi(ρk)

∣∣ +
1

Γ (q)

n∑
i=1

αi

[∫ t

ρk

(
ai(s)

∣∣yi(s)
∣∣ + b+

ii(s)Li
∣∣yi(s)

∣∣

+
n∑

j=1,j 	=i

∣∣bij(s)
∣∣Lj

∣∣yj(s)
∣∣ + c+

ii(s)Hi
∣∣yi(ρk)

∣∣

+
n∑

j=1,j 	=i

∣∣cij(s)
∣∣Hj

∣∣yj(ρk)
∣∣
)

(t – s)q–1 ds

]

≤ ∥∥y(ρk)
∥∥ +

ϕq

Γ (q + 1)
μ2

∥∥y(ρk)
∥∥ +

1
Γ (q)

∫ t

ρk

μ1
∥∥y(s)

∥∥(t – s)q–1 ds

≤ ∥∥y(ρk)
∥∥ + εμ2

∥∥y(ρk)
∥∥ +

μ1

Γ (q)

∫ t

ρk

(t – s)q–1∥∥y(s)
∥∥ds.
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Using Lemma 2.1, then

∥∥y(t)
∥∥ ≤ (1 + εμ2)

∥∥y(ρk)
∥∥Eq

(
μ1ϕ

q) ≤ δ
∥∥y(ρk)

∥∥.

Similarly, for t ∈ [ti
k , ti

k+1), i = 1, 2, . . . , n, it follows that

∥∥y(ρk)
∥∥ ≤ ∥∥y(t)

∥∥ + εμ2
∥∥y(ρk)

∥∥ +
μ1

Γ (q)

∫ t

ρk

(t – s)q–1δ
∥∥y(ρk)

∥∥ds

≤ ∥∥y(t)
∥∥ + ε(μ2 + μ1δ)

∥∥y(ρk)
∥∥,

and thus

∥∥y(ρk)
∥∥ ≤ 1

1 – ε(μ1δ + μ2)
∥∥y(t)

∥∥ = σ
∥∥y(t)

∥∥,

where the parameters ε, μ1, μ2, δ, σ are defined in (11)–(15). Hence, (24) holds. �

Remark 2.11 Lemma 2.1 states the integral form of Gronwall inequality with generalized
type, which can deal with the cross-term on both sides of the inequality very well, so it is
often utilized for fractional-order systems. In addition, the idea of proof about Lemma 2.2
and Lemma 2.4 is similar to [14, Theorem 3], the difference is that the self-inhibition ai(t),
synaptic strengths bij(t) and cij(t) possess piecewise continuity and boundedness in our
system.

3 Main results
For all detailed introduction and explanation in previous preliminaries, in this section, the
design methods of centralized and decentralized data-sampling are come up with so as to
predict the sampling time points. These two kinds of control design can ensure to realize
outer-synchronization in the corresponding systems.

For the sake of narrative, the control schemes are first used to deal with outer-
synchronization problem, and then the theoretical results are reviewed and analyzed.

3.1 Structure-dependent and state-dependent centralized data-sampling
approach

Theorem 3.1 Supposing 0 < ξ < 1 and ζ > 0 to be constants with Pξ ≤ ζ and Uξ ≤ ζ (2–ξ ).
Let αi > 0 be positive constants to gratify ηj(α, t) ≥ ζ for all i = 1, 2, . . . , n, j = 1, 2, . . . , n and
t ∈R+. Set tk+1 as a time point satisfying

tk+1 = sup
θ≥tk

{
θ : min

1≤j≤n

(
1

Γ (q)

∫ t

tk

(t – s)q–1ηj(α, s) ds
)

≤ ξ ,∀t ∈ (tk , θ ]
}

(29)

for k ∈N . Then system (4) is said to be outer-synchronized.

Proof From ηj(α, t) ≥ ζ and positive upper bound U , we can get for all j = 1, 2, . . . , n and
t ∈R+

ζ

Γ (q)

∫ t

tk

(t – s)q–1 ds ≤ 1
Γ (q)

∫ t

tk

(t – s)q–1ηj(α, s) ds

≤ U
Γ (q)

∫ t

tk

(t – s)q–1 ds.
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By computing, for all j = 1, 2, . . . , n and t ∈ [tk , tk+1), it results in

ζ (t – tk)q

Γ (q + 1)
≤ 1

Γ (q)

∫ t

tk

(t – s)q–1ηj(α, s) ds ≤ U(t – tk)q

Γ (q + 1)
.

On the basis of system (7), the state u(t) will not update until

min
1≤j≤n

(
1

Γ (q)

∫ t

tk

(t – s)q–1ηj(α, s) ds
)

= ξ (30)

at time point t = tk+1. Then it yields ζ (tk+1 – tk)q/Γ (q + 1) ≤ ξ ≤ U(tk+1 – tk)q/Γ (q + 1),
which means

ξ

U
≤ (tk+1 – tk)q

Γ (q + 1)
≤ ξ

ζ
, (31)

for k ∈N . Furthermore, noticing that

1
Γ (q)

∫ tk+1

tk

(tk+1 – s)q–1ηj(α, s) ds ≤ Uξ

ζ
≤ 2 – ξ . (32)

Together with (30), we can derive

ξ ≤ 1
Γ (q)

∫ tk+1

tk

(tk+1 – s)q–1ηj(α, s) ds ≤ 2 – ξ ,

for k ∈ N . According to the definition of the norm in the paper, then we focus on ui(t)
(i = 1, 2, . . . , n) of system (7) at time t = tk+1,

∥∥u(tk+1)
∥∥ =

n∑
i=1

αi
∣∣ui(tk+1)

∣∣

=
n∑

i=1

αi

∣∣∣∣∣ui(tk) +
1

Γ (q)

∫ tk+1

tk

(tk+1 – s)q–1

[
–ai(s)ui(tk)

+
n∑

j=1

bij(s)pj(tk) +
n∑

j=1

cij(s)hj
(
γ (tk)

)]
ds

∣∣∣∣∣

=
n∑

i=1

αi

∣∣∣∣∣ui(tk) +
1

Γ (q)

∫ tk+1

tk

(tk+1 – s)q–1

[
–ai(s)ui(tk)

+ bii(s)mi(tk)ui(tk) +
n∑

j=1,j 	=i

bij(s)mj(tk)uj(tk)

+ cii(s)ni
(
γ (tk)

)
ui

(
γ (tk)

)
+

n∑
j=1,j 	=i

cij(s)nj
(
γ (tk)

)
uj

(
γ (tk)

)]
ds

∣∣∣∣∣

=
n∑

i=1

αi

∣∣∣∣∣ui(tk)
{

1 –
1

Γ (q)

∫ tk+1

tk

(tk+1 – s)q–1[ai(s)

– bii(s)mi(tk)
]

ds
}

+
1

Γ (q)

∫ tk+1

tk

(tk+1 – s)q–1
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·
[ n∑

j=1,j 	=i

bij(s)mj(tk)uj(tk) + cii(s)ni
(
γ (tk)

)
ui

(
γ (tk)

)

+
n∑

j=1,j 	=i

cij(s)nj
(
γ (tk)

)
uj

(
γ (tk)

)]
ds

∣∣∣∣∣, (33)

with

mi(tk) =

⎧⎨
⎩

pi(tk )
ui(tk ) , ui(tk) 	= 0,

0, ui(tk) = 0,
ni

(
γ (tk)

)
=

⎧⎨
⎩

hi(γ (tk ))
ui(γ (tk )) , ui(γ (tk)) 	= 0,

0, ui(γ (tk)) = 0.

By (2) and (3), clearly, 0 ≤ mi(tk) ≤ Li, 0 ≤ ni(γ (tk)) ≤ Hi for all i = 1, 2, . . . , n, t ∈R+, and

b–
ii(s)Li ≤ bii(s)mi(tk) ≤ b+

ii(s)Li, (34)

c–
ii(s)Hi ≤ cii(s)ni

(
γ (tk)

) ≤ c+
ii(s)Hi. (35)

Observe that Pξ ≤ ζ , then, for any t ∈ [tk , tk+1],

1
Γ (q)

∫ tk+1

tk

(tk+1 – s)q–1[ai(s) – bii(s)mi(tk)
]

ds

≤ P
Γ (q)

∫ tk+1

tk

(tk+1 – s)q–1 ds ≤ Pξ

ζ
≤ 1,

which leads to

1 –
1

Γ (q)

∫ tk+1

tk

(tk+1 – s)q–1[ai(s) – bii(s)mi(tk)
]

ds ≥ 0. (36)

From (33) and (36),

∥∥u(tk+1)
∥∥ ≤

n∑
i=1

αi
∣∣ui(tk)

∣∣
{

1 –
1

Γ (q)

∫ tk+1

tk

(tk+1 – s)q–1[ai(s)

– bii(s)mi(tk)
]

ds
}

+
1

Γ (q)

n∑
i=1

αi

{∫ tk+1

tk

(tk+1 – s)q–1

·
[ n∑

j=1,j 	=i

∣∣bij(s)mj(tk)uj(tk)
∣∣ +

∣∣cii(s)ni
(
γ (tk)

)
ui

(
γ (tk)

)∣∣

+
n∑

j=1,j 	=i

∣∣cij(s)nj
(
γ (tk)

)
uj

(
γ (tk)

)∣∣
]

ds

}

≤
n∑

j=1

αj
∣∣uj(tk)

∣∣
{

1 –
1

Γ (q)

∫ tk+1

tk

(tk+1 – s)q–1[aj(s)

– b+
jj (s)Lj

]
ds

}
+

1
Γ (q)

n∑
j=1

αj

{∫ tk+1

tk

(tk+1 – s)q–1

·
[ n∑

i=1,i	=j

αi

αj

∣∣bij(s)
∣∣Lj

∣∣uj(tk)
∣∣ + c+

jj (s)Hj
∣∣uj

(
γ (tk)

)∣∣
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+
n∑

i=1,i	=j

αi

αj

∣∣cij(s)
∣∣Hj

∣∣uj
(
γ (tk)

)∣∣
]

ds

}

≤
n∑

j=1

αj
∣∣uj(tk)

∣∣
{

1 –
1

Γ (q)

∫ tk+1

tk

(tk+1 – s)q–1

[
aj(s) – b+

jj(s)Lj

–
n∑

i=1,i	=j

αi

αj

∣∣bij(s)
∣∣Lj

]
ds

}
+

n∑
j=1

αj
∣∣uj

(
γ (tk)

)∣∣ 1
Γ (q)

·
∫ tk+1

tk

(tk+1 – s)q–1

[
c+

jj (s)Hj +
n∑

i=1,i	=j

αi

αj

∣∣cij(s)
∣∣Hj

]
ds.

Through Lemma 2.2, then

∥∥u(tk+1)
∥∥ ≤ ∥∥u(tk)

∥∥
{

1 –
1

Γ (q)

∫ tk+1

tk

(tk+1 – s)q–1

[
aj(s) – b+

jj (s)Lj

–
n∑

i=1,i	=j

αi

αj

∣∣bij(s)
∣∣Lj

]
ds

}
+ σ

∥∥u(tk)
∥∥ 1
Γ (q)

∫ tk+1

tk

(tk+1 – s)q–1

·
[

c+
jj (s)Hj +

n∑
i=1,i	=j

αi

αj

∣∣cij(s)
∣∣Hj

]
ds

≤ ∥∥u(tk)
∥∥
{

1 –
1

Γ (q)

∫ tk+1

tk

(tk+1 – s)q–1ηj(α, s) ds
}

≤ (1 – ξ )
∥∥u(tk)

∥∥,

which implies

lim
tk→+∞

∥∥u(tk)
∥∥ = 0.

Recalling system (7), we have

lim
t→+∞

∥∥u(t)
∥∥ = lim

t→+∞

n∑
i=1

αi
∣∣ui(t) – ui(tk) + ui(tk)

∣∣

= lim
t→+∞

∥∥u(tk)
∥∥ + lim

t→+∞

n∑
i=1

αi

∣∣∣∣∣
1

Γ (q)

∫ t

tk

(t – s)q–1

·
[

–ai(s)ui(tk) +
n∑

j=1

bij(s)pj(tk) +
n∑

j=1

cij(s)hj
(
γ (tk)

)]
ds

∣∣∣∣∣

≤ lim
t→+∞

∥∥u(tk)
∥∥ + lim

t→+∞
1

Γ (q)

n∑
i=1

αi

∫ t

tk

(t – s)q–1

[
ai(s)

∣∣ui(tk)
∣∣

+
n∑

j=1

∣∣bij(s)
∣∣Lj

∣∣uj(tk)
∣∣ + c+

ii(s)Hi
∣∣ui

(
γ (tk)

)∣∣

+
n∑

j=1,j 	=i

∣∣cij(s)
∣∣Hj

∣∣uj
(
γ (tk)

)∣∣
]

ds
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≤ lim
t→+∞

∥∥u(tk)
∥∥ + lim

t→+∞

n∑
j=1

αj
∣∣uj(tk)

∣∣ 1
Γ (q)

∫ t

tk

(t – s)q–1

[
aj(s)

+
n∑

j=1

αi

αj

∣∣bij(s)
∣∣Lj

]
ds + lim

t→+∞

n∑
j=1

αj
∣∣uj

(
γ (tk)

)∣∣ 1
Γ (q)

·
∫ t

tk

(t – s)q–1

[
c+

jj (s)Hj +
n∑

i=1,i	=j

αi

αj

∣∣cij(s)
∣∣Hj

]
ds

≤ lim
t→+∞

∥∥u(tk)
∥∥ + lim

t→+∞
∥∥u(tk)

∥∥ 1
Γ (q)

∫ t

tk

(t – s)q–1

[
aj(s)

+
n∑

j=1

αi

αj

∣∣bij(s)
∣∣Lj

]
ds + lim

t→+∞σ
∥∥u(tk)

∥∥ 1
Γ (q)

∫ t

tk

(t – s)q–1

·
[

c+
jj (s)Hj +

n∑
i=1,i	=j

αi

αj

∣∣cij(s)
∣∣Hj

]
ds

≤ lim
t→+∞

∥∥u(tk)
∥∥ + lim

t→+∞ Q
∥∥u(tk)

∥∥ 1
Γ (q)

∫ t

tk

(t – s)q–1 ds

≤ lim
t→+∞

∥∥u(tk)
∥∥ + Q lim

t→+∞
(t – tk)q

Γ (q + 1)
∥∥u(tk)

∥∥ = 0,

where Q is defined in (17). It can be claimed that system (4) can realize outer-synchroni-
zation. �

Remark 3.1 From inequality (31), we can get

[
Γ (q + 1)ξ

U

] 1
q

≤ tk+1 – tk ≤
[

Γ (q + 1)ξ
ζ

] 1
q

for all k ∈N , so the exclusion of Zeno behavior has been confirmed for rule (29).

Theorem 3.2 Given that ψ(t) = (ψ1(t),ψ2(t), . . . ,ψn(t))T is a positive and continuous func-
tion on [t0, +∞). Set tk+1 as a time point satisfying

tk+1 = sup
θ≥tk

{
θ :

∥∥r(t)
∥∥ ≤ ψ(t),∀t ∈ (tk , θ ]

}
(37)

for all k ∈ N , where r(t) = (r1(t), r2(t), . . . , rn(t))T is defined in (8). Let αi > 0 be positive
constants to gratify min1≤j≤n ηj(α, t) ≥ V for i = 1, 2, . . . , n, some V > 0 and all t ≥ t0,
supt≥t0 (1/Γ (q))

∫ t
t0

(t – s)q–1ψ(s) ds < +∞, then system (4) is said to be outer-synchronized.

Proof By Lemma 2.3, from (7) we can derive

C
tk

Dq
t
∥∥u(t)

∥∥ =
n∑

i=1

αi
C
tk

Dq
t
∣∣ui(t)

∣∣ ≤
n∑

i=1

sgn
(
ui(t)

)
αi

C
tk

Dq
t ui(t)

≤
n∑

i=1

sgn
(
ui(t)

)
αi

{
–ai(t)ui(tk) +

n∑
j=1

bij(t)pj(tk)
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+
n∑

j=1

cij(t)hj
(
γ (tk)

)}

≤
n∑

i=1

sgn
(
ui(t)

)
αi

{
–ai(t)

[
ui(tk) – ui(t) + ui(t)

]

+
n∑

j=1

bij(t)mj(tk)
[
uj(tk) – uj(t) + uj(t)

]

+
n∑

j=1

cij(t)nj
(
γ (tk)

)
uj

(
γ (tk)

)}

≤
n∑

i=1

sgn
(
ui(t)

)
αi

{
–ai(t)ri(t) – ai(t)ui(t)

+
n∑

j=1

bij(t)mj(tk)rj(t) + bii(t)mi(tk)ui(t)

+
n∑

j=1,j 	=i

bij(t)mj(tk)uj(t) + cii(t)ni
(
γ (tk)

)
ui

(
γ (tk)

)

+
n∑

j=1,j 	=i

cij(t)nj
(
γ (tk)

)
uj

(
γ (tk)

)}

≤
n∑

j=1

αj
∣∣rj(t)

∣∣
{

aj(t) +
n∑

i=1

αi

αj

∣∣bij(t)
∣∣Lj

}
–

n∑
j=1

αj
∣∣uj(t)

∣∣
{

aj(t)

– b+
jj(t)Lj –

n∑
i=1,i	=j

αi

αj

∣∣bij(t)
∣∣Lj

}
+

n∑
j=1

αj
∣∣uj

(
γ (tk)

)∣∣

·
{

c+
jj (t)Hj +

n∑
i=1,i	=j

αi

αj

∣∣cij(t)
∣∣Hj

}
, (38)

with

mi(tk) =

⎧⎨
⎩

pi(tk )
ui(tk ) , ui(tk) 	= 0,

0, ui(tk) = 0,
ni

(
γ (tk)

)
=

⎧⎨
⎩

hi(γ (tk ))
ui(γ (tk )) , ui(γ (tk)) 	= 0,

0, ui(γ (tk)) = 0.

Through Lemma 2.2, it follows from (37) and (38) that

C
tk

Dq
t
∥∥u(t)

∥∥ ≤ ∥∥r(t)
∥∥
{

aj(t) +
n∑

i=1

αi

αj

∣∣bij(t)
∣∣Lj

}
–

∥∥u(t)
∥∥
{

aj(t) – b+
jj(t)Lj

–
n∑

i=1,i	=j

αi

αj

∣∣bij(t)
∣∣Lj

}
+ σ

n∑
j=1

αj
∣∣uj(tk) – uj(t) + uj(t)

∣∣

·
{

c+
jj (t)Hj +

n∑
i=1,i	=j

αi

αj

∣∣cij(t)
∣∣Hj

}
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≤ ∥∥r(t)
∥∥
{

aj(t) +
n∑

i=1

αi

αj

∣∣bij(t)
∣∣Lj

}
–

∥∥u(t)
∥∥
{

aj(t) – b+
jj(t)Lj

–
n∑

i=1,i	=j

αi

αj

∣∣bij(t)
∣∣Lj

}
+ σ

(∥∥r(t)
∥∥ +

∥∥u(t)
∥∥)

·
{

c+
jj (t)Hj +

n∑
i=1,i	=j

αi

αj

∣∣cij(t)
∣∣Hj

}

≤ ∥∥r(t)
∥∥
{

aj(t) +
n∑

i=1

αi

αj

∣∣bij(t)
∣∣Lj + σ c+

jj(t)Hj

+ σ

n∑
i=1,i	=j

αi

αj

∣∣cij(t)
∣∣Hj

}
–

∥∥u(t)
∥∥
{

aj(t) – b+
jj (t)Lj

–
n∑

i=1,i	=j

αi

αj

∣∣bij(t)
∣∣Lj – σ c+

jj(t)Hj – σ

n∑
i=1,i	=j

αi

αj

∣∣cij(t)
∣∣Hj

}

≤ –V
∥∥u(t)

∥∥ + Qψ(t), (39)

where Q is defined in (17). On the other hand, by (39),

∥∥u(t)
∥∥ ≤ ∥∥u(t0)

∥∥ +
1

Γ (q)

∫ t

t0

(t – s)q–1[–V
∥∥u(s)

∥∥ + Qψ(s)
]

ds

≤ ∥∥u(t0)
∥∥ –

1
Γ (q)

∫ t

t0

(t – s)q–1V
∥∥u(s)

∥∥ds + Qε, (40)

for s ∈ [tk , t), t ∈ [tk , tk+1), in which (1/Γ (q))
∫ t

t0
(t – s)q–1ψ(s) ds ≤ ε < +∞.

Utilizing Lemma 2.1, from (40), we obtain

lim
t→+∞

∥∥u(t)
∥∥ ≤ lim

t→+∞
[
Qε +

∥∥u(t0)
∥∥]

Eq
(
–V (t – t0)q) = 0,

where t ≥ t0. Namely, based on the centralized data-sampling time sequence {tk} for k ∈
N , it concluded that ‖u(t)‖ converges to 0. Hence, outer-synchronization can be realized
for system (4). �

3.2 State-dependent decentralized data-sampling approach
Theorem 3.3 Given that λ(t) = (λ1(t),λ2(t), . . . ,λn(t))T is a positive and continuous func-
tion on [t0, +∞), set tk+1 as a time point satisfying

tk+1 = sup
θ≥tk

{
θ :

∣∣ri(t)
∣∣ ≤ λi(t),∀t ∈ (ti

k , θ ]
}

(41)

for i = 1, 2, . . . , n and all k ∈ N , where r(t) = (r1(t), r2(t), . . . , rn(t))T is defined in (10). Let
αi > 0 be positive constants obeying min1≤j≤n ηj(α, t) ≥ W for i = 1, 2, . . . , n, some W > 0 and
all t ≥ t0, supt≥t0 (1/Γ (q))

∫ t
t0

(t – s)q–1‖λ(s)‖ds < +∞, then system (5) is said to be outer-
synchronized.
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Proof From Lemma 2.3 and (9) we can derive

C
tk

Dq
t
∥∥u(t)

∥∥ =
n∑

i=1

αi
C
tk

Dq
t
∣∣ui(t)

∣∣ ≤
n∑

i=1

sgn
(
ui(t)

)
αi

C
tk

Dq
t ui(t)

≤
n∑

i=1

sgn
(
ui(t)

)
αi

{
–ai(t)ui

(
ti
k
)

+
n∑

j=1

bij(t)pj
(
tj
k
)

+
n∑

j=1

cij(t)hj
(
γ
(
tj
k
))}

≤
n∑

i=1

sgn
(
ui(t)

)
αi

{
–ai(t)

[
ui

(
ti
k
)

– ui(t) + ui(t)
]

+
n∑

j=1

bij(t)mj
(
tj
k
)[

uj
(
tj
k
)

– uj(t) + uj(t)
]

+
n∑

j=1

cij(t)nj
(
γ
(
tj
k
))

uj
(
γ
(
tj
k
))}

≤
n∑

i=1

sgn
(
ui(t)

)
αi

{
–ai(t)ri(t) – ai(t)ui(t)

+
n∑

j=1

bij(t)mj
(
tj
k
)
rj(t) + bii(t)mi

(
ti
k
)
ui(t)

+
n∑

j=1,j 	=i

bij(t)mj
(
tj
k
)
uj(t) + cii(t)ni

(
γ
(
ti
k
))

ui
(
γ
(
ti
k
))

+
n∑

j=1,j 	=i

cij(t)nj
(
γ
(
tj
k
))

uj
(
γ
(
tj
k
))}

≤
n∑

j=1

αj
∣∣rj(t)

∣∣
{

aj(t) +
n∑

i=1

αi

αj

∣∣bij(t)
∣∣Lj

}
–

n∑
j=1

αj
∣∣uj(t)

∣∣
{

aj(t)

– b+
jj(t)Lj –

n∑
i=1,i	=j

αi

αj

∣∣bij(t)
∣∣Lj

}
+

n∑
j=1

αj
∣∣uj

(
γ
(
tj
k
))∣∣

·
{

c+
jj (t)Hj +

n∑
i=1,i	=j

αi

αj

∣∣cij(t)
∣∣Hj

}
, (42)

with

mj
(
tj
k
)

=

⎧⎪⎨
⎪⎩

pj(t
j
k )

uj(t
j
k )

, uj(t
j
k) 	= 0,

0, uj(t
j
k) = 0,

nj
(
γ
(
tj
k
))

=

⎧⎪⎨
⎪⎩

hj(γ (tj
k ))

uj(γ (tj
k ))

, uj(γ (tj
k)) 	= 0,

0, uj(γ (tj
k)) = 0.

According to Lemma 2.4, it follows from (41) and (42) that

C
tk

Dq
t
∥∥u(t)

∥∥ ≤ ∥∥r(t)
∥∥
{

aj(t) +
n∑

i=1

αi

αj

∣∣bij(t)
∣∣Lj

}
–

∥∥u(t)
∥∥
{

aj(t) – b+
jj(t)Lj
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–
n∑

i=1,i	=j

αi

αj

∣∣bij(t)
∣∣Lj

}
+ σ

n∑
j=1

αj
∣∣uj

(
tj
k
)

– uj(t) + uj(t)
∣∣

·
{

c+
jj (t)Hj +

n∑
i=1,i	=j

αi

αj

∣∣cij(t)
∣∣Hj

}

≤ ∥∥r(t)
∥∥
{

aj(t) +
n∑

i=1

αi

αj

∣∣bij(t)
∣∣Lj

}
–

∥∥u(t)
∥∥
{

aj(t) – b+
jj(t)Lj

–
n∑

i=1,i	=j

αi

αj

∣∣bij(t)
∣∣Lj

}
+ σ

(∥∥r(t)
∥∥ +

∥∥u(t)
∥∥)

·
{

c+
jj (t)Hj +

n∑
i=1,i	=j

αi

αj

∣∣cij(t)
∣∣Hj

}

≤ –W
∥∥u(t)

∥∥ + Q
∥∥λ(t)

∥∥, (43)

where Q is defined in (17). On the other hand, by (43),

∥∥u(t)
∥∥ ≤ ∥∥u(t0)

∥∥ +
1

Γ (q)

∫ t

t0

(t – s)q–1[–W
∥∥u(s)

∥∥ + Q
∥∥λ(s)

∥∥]
ds

≤ ∥∥u(t0)
∥∥ –

1
Γ (q)

∫ t

t0

(t – s)q–1W
∥∥u(s)

∥∥ds + Qς , (44)

for s ∈ [ti
k , t), t ∈ [ti

k , ti
k+1), i = 1, 2, . . . , n, in which (1/Γ (q))

∫ t
t0

(t – s)q–1‖λ(s)‖ds ≤ ς < +∞.
Utilizing Lemma 2.1, from (44), we obtain

lim
t→+∞

∥∥u(t)
∥∥ ≤ lim

t→+∞
[
Qς +

∥∥u(t0)
∥∥]

Eq
(
–W (t – t0)q) = 0,

where t ≥ t0. Namely, based on the decentralized data-sampling time sequence {ti
k}

for i = 1, 2, . . . , n and k ∈ N , it concluded that ‖u(t)‖ converges to 0. Hence, outer-
synchronization can be realized for system (5). �

Remark 3.2 It is obvious that the weighting coefficient αi of the definition of the norm in
this paper is actually the adjustment coefficient αi with respect to centralized and decen-
tralized data-sampling control, and the selection of the adjustment coefficient αi is on the
basis of outer-synchronization criteria which are derived for data-sampling control sys-
tems (4) and (5). It can be seen in Theorem 3.1 that the parameter ηj(α, t) needs to satisfy
ηj(α, t) ≥ ζ according to the feature of structure-dependent centralized data-sampling, it
implies that the adjustment coefficient αi can be determined by the condition ηj(α, t) ≥ ζ .
In Theorem 3.2, the parameter ηj(α, t) needs to satisfy min1≤j≤n ηj(α, t) ≥ V according to
the feature of state-dependent centralized data-sampling, it implies that the adjustment
coefficient αi can be determined by the condition min1≤j≤n ηj(α, t) ≥ V . Similarly, in The-
orem 3.3, the parameter ηj(α, t) needs to satisfy min1≤j≤n ηj(α, t) ≥ W according to the
feature of state-dependent decentralized data-sampling, it implies that the adjustment co-
efficient αi can be determined by the condition min1≤j≤n ηj(α, t) ≥ W .

Remark 3.3 Three data-sampling control approaches are designed according to the type
of sampling time point in Theorems 3.1–3.3. Centralized data-sampling control schemes
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divided into structure-dependent and state-dependent are investigated in Theorem 3.1
and Theorem 3.2, separately, decentralized data-sampling control scheme with state-
dependent is studied in Theorem 3.3. Actually, structure-dependent data-sampling con-
trol design take full advantage of the property of its own structure, and state-dependent
data-sampling control design connects the characteristics of state measurement error.

Remark 3.4 It is clear to see that centralized data-sampling control method has one more
structure-dependent control rule than decentralized data-sampling control method be-
cause of the nature of fractional-order system about centralized data-sampling control.
Additionally, under the state-dependent control, the analysis of centralized and decentral-
ized data-sampling control approaches is similar. In view of the advantages of these two
kinds of control design, the sampling time points can be well found. So in the practical
application, the selection of centralized and decentralized data-sampling control schemes
will depend on the requirements of the designer.

Remark 3.5 Under state-dependent centralized data-sampling control as Theorem 3.2 and
state-dependent decentralized data-sampling control as Theorem 3.3, they imply that the
corresponding systems state possesses the strictly positive inter-event interval, and this
inter-event interval exists a common lower bound. Moreover, the exclusion of Zeno be-
havior can be confirmed. The main idea of proof about these conditions can be found in
[24, Theorem 5].

Remark 3.6 According to Lemma 2.2 and Lemma 2.4, it is easy to find the connection of
the argument state and the current state for all t ∈ R+. Namely, when t = tk or t = tj

k , this
connection of the argument state and the current state still holds for deviating argument
systems. So there is no doubt that this relation from Lemma 2.2 and Lemma 2.4 can be
utilized for Theorems 3.1–3.3. Moreover, in the process of our proof,

∑n
j=1 αj|uj(γ (tk))| =

σ
∑n

j=1 αj|uj(tk)| is used in Theorem 3.2 and
∑n

j=1 αj|uj(γ (tj
k))| = σ

∑n
j=1 αj|uj(t

j
k)| is used

in Theorem 3.3. Obviously, they are equivalent forms of the results of Lemma 2.2 and
Lemma 2.4 separately on the basis of the definition of the norm in the paper.

Remark 3.7 It is worth noting that only when the sampling time point is reached will the
data-sampling control take effect in Theorems 3.1–3.3. That is, the neighbors’ informa-
tion of the corresponding systems state is adopted only at tk or ti

k . Therefore, unlike the
control of continuous-time, three data-sampling control strategies of Theorems 3.1–3.3
have better energy saving.

Remark 3.8 As introduced in Theorems 3.1–3.3, it is shown that the analysis approaches
of outer-synchronization are different from the traditional lag synchronization, antici-
pated synchronization, cluster synchronization, pinning synchronization, distributed syn-
chronization and phase synchronization. In addition, Theorems 3.1–3.3 have such char-
acteristics about outer-synchronization, the realization of outer-synchronization for the
corresponding systems is strongly linked with the sampling time point. That is to say,
when the sampling time point is triggered, the corresponding systems can realize outer-
synchronization.
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Remark 3.9 This paper studies the case that fractional order q is based on 0 < q < 1. In
Theorem 3.1, it is easy to see that the realization of outer-synchronization on the basis of
structure-dependent centralized data-sampling control is not directly related to fractional
order 0 < q < 1, and there is no limit to the range of fractional order q in Lemma 2.2 that is
applied to Theorem 3.1. That is to say, if the range of fractional order q is not 0 < q < 1, the
main result under structure-dependent centralized data-sampling control is not affected
by the change of fractional order q. In Theorems 3.2 and 3.3, although the realization of
outer-synchronization on the basis of state-dependent centralized and decentralized data-
sampling control is not directly related to fractional order 0 < q < 1, but Lemma 2.3 used
to Theorems 3.2 and 3.3 is associated with fractional order 0 < q < 1. Lemma 2.3 shows
that fractional-order derivative with absolute value is no greater than the product of sign
function and fractional-order derivative itself under fractional order 0 < q < 1. In order to
explore whether this connection between fractional-order derivative with absolute value
and fractional-order derivative itself is still valid under other fractional orders, then take
fractional order 1 < q < 2 for example. According to the demonstration ideas of original
literature [5, Lemma 4.3] and [26, Theorem 2], it is inevitable to involve the calculation
of two-order difference with absolute value in the proving process when fractional or-
der q is 1 < q < 2. There is no doubt that d2

dt2 |Q(t)| = d
dt ( d

dt |Q(t)|) = d
dt (sgn(Q(t)) d

dt Q(t)) =
sgn(Q(t)) d2

dt2 Q(t) + d
dt Q(t) d

dt sgn(Q(t)). Because the sign function can be represented by
the unit step function, namely, sgn(Q(t)) = 2H(Q(t)) – 1, H(·) denotes the unit step func-
tion, and one-order difference of unit step function is Dirac delta function, then it has
d
dt Q(t) d

dt sgn(Q(t)) = 2δ(Q(t)) d
dt Q(t). What needs to be pointed out is that 2δ(Q(t)) d

dt Q(t)
needs to be dealt with to get the desired result better. Obviously, δ(Q(t)) cannot be elim-
inated due to the property of Dirac delta function. That is, it does not make sense that
fractional-order derivative with absolute value is no greater than the product of sign func-
tion and fractional-order derivative itself for fractional order 1 < q < 2, the same does not
bold true for other fractional orders. So if the range of fractional order q is not 0 < q < 1,
the main results under state-dependent centralized and decentralized data-sampling con-
trol cannot be derived. To sum up, based on the whole analysis framework in this paper,
when fractional order q is other different cases, the proposed criterion as Theorem 3.1
can be generalized, the proposed criteria as Theorems 3.2 and 3.3 cannot be generalized.

4 An illustrative example
In this section, for purpose of substantiating the effectiveness of the derived theoretical
results, a numerical example is put forward through computer simulation.

Example 4.1 We focus on the fractional-order neural networks with deviating argument
given by

C
t0 Dq

t z1(t) = –a1(t)z1(t) + b11(t)f1
(
z1(t)

)
+ b12(t)f2

(
z2(t)

)

+ c11(t)g1

(
z1(γ (t))

2

)
+ c12(t)g2

(
z2(γ (t))

3

)
+ ν1(t),

C
t0 Dq

t z2(t) = –a2(t)z2(t) + b21(t)f1
(
z1(t)

)
+ b22(t)f2

(
z2(t)

)

+ c21(t)g1

(
z1(γ (t))

2

)
+ c22(t)g2

(
z2(γ (t))

3

)
+ ν2(t),

(45)
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where q = 1
2 , f1(Z) = f2(Z) = g1(Z) = g2(Z) = tanh(Z), t0 = 0, A = ( a1(t) 0

0 a2(t) ) =
( 0.9 0

0 0.9

)
, B =

( b11(t) b12(t)
b21(t) b22(t) ) =

( 0.03 –0.04
–0.05 –0.02

)
, C = ( c11(t) c12(t)

c21(t) c22(t) ) =
( 0.02 –0.03

–0.04 –0.01

)
, ν = ( ν1(t)

ν2(t) ) =
( 0.1

0.1

)
, two real-valued

sequences {tk} = k
9 , {�k} = 2k+1

18 , k ∈N , the identification function γ (t) = �k , if t ∈ [tk , tk+1),
k ∈ N , t ∈ R+, the other two real-valued sequences {ti

k} = ki

10 , {ρk} = 2k+1
20 , i = 1, 2, . . . , n,

k ∈N , the identification function γ (t) = ρk , if t ∈ [ti
k , ti

k+1), i = 1, 2, . . . , n, k ∈N , t ∈R+.
Clearly, L1 = L2 = 1, H1 = 1

2 , H2 = 1
3 , υ = 1

9 , ϕ = 1
10 , and let α1 = α2 = 1. By computing, we

can obtain

φ = max{υ,ϕ} =
1
9

,

ε =
φq

Γ (q + 1)
= 0.376,

μ1 = max
1≤j≤n

sup
t∈R+

{
aj(t) + b+

jj (t)Lj +
n∑

i=1,i	=j

αi

αj

∣∣bij(t)
∣∣Lj

}
= 0.98,

μ2 = max
1≤j≤n

sup
t∈R+

{
c+

jj (t)Hj +
n∑

i=1,i	=j

αi

αj

∣∣cij(t)
∣∣Hj

}
= 0.03,

δ = (1 + εμ2)Eq
(
μ1φ

q) = 1.5256,

σ =
1

1 – ε(μ1δ + μ2)
= 2.3443,

P = max
1≤i≤n

sup
t∈R+

{
ai(t) – b–

ii(t)Li
}

= 0.92,

Q = max
1≤j≤n

sup
t∈R+

{
aj(t) +

n∑
i=1

αi

αj

∣∣bij(t)
∣∣Lj + σ c+

jj(t)Hj

+ σ

n∑
i=1,i	=j

αi

αj

∣∣cij(t)
∣∣Hj

}
= 1.0503,

η1(α, t) = a1(t) – b+
11(t)L1 –

α2

α1

∣∣b21(t)
∣∣L1 – σ c+

11(t)H1

– σ
α2

α1

∣∣c21(t)
∣∣H1 = 0.7497,

η2(α, t) = a2(t) – b+
22(t)L2 –

α1

α2

∣∣b12(t)
∣∣L2 – σ c+

22(t)H2

– σ
α1

α2

∣∣c12(t)
∣∣H2 = 0.8366.

Choosing ξ = 0.7, ζ = 0.75, U = 0.84 to satisfy the following inequalities:

Pξ – ζ ≤ 0,

Uξ – ζ (2 – ξ ) ≤ 0,

according to Theorem 3.1, system (45) achieves outer-synchronization. The evolutive be-
haviors of z1(t) and z̄1(t), z2(t) and z̄2(t) at the sampling time points about Theorem 3.1
are described in Figs. 1 and 2, respectively. The release instants and release intervals at the
sampling time points are depicted in Fig. 3.



Cheng et al. Advances in Difference Equations        (2019) 2019:390 Page 26 of 31

Figure 1 Evolutive behavior of z1(t) and z̄1(t) at the sampling time points in Theorem 3.1

Figure 2 Evolutive behavior of z2(t) and z̄2(t) at the sampling time points in Theorem 3.1

Selecting ψ(t) = 1

(t+2)
1
2

, together with

sup
t≥0

1
Γ ( 1

2 )

∫ t

0
(t – s)q–1 1

(s + 2) 1
2

ds < +∞,

according to Theorem 3.2, system (45) achieves outer-synchronization. The evolutive be-
haviors of z1(t) and z̄1(t), z2(t) and z̄2(t) at the sampling time points about Theorem 3.2
are described in Figs. 4 and 5, respectively. The release instants and release intervals at the
sampling time points are depicted in Fig. 6.
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Figure 3 The release instants and release intervals at the sampling time points in Theorem 3.1

Figure 4 Evolutive behavior of z1(t) and z̄1(t) at the sampling time points in Theorem 3.2

Selecting λ1(t) = 1

(t+2)
1
2

, λ2(t) = 1

(t+3)
1
2

, together with

sup
t≥0

1
Γ ( 1

2 )

∫ t

0
(t – s)q–1 1

(s + 2) 1
2

ds < +∞,

sup
t≥0

1
Γ ( 1

2 )

∫ t

0
(t – s)q–1 1

(s + 3) 1
2

ds < +∞,

according to Theorem 3.3, system (45) achieves outer-synchronization. The evolutive be-
haviors of z1(t) and z̄1(t), z2(t) and z̄2(t) at the sampling time points about Theorem 3.3
are described in Figs. 7 and 8, respectively. The release instants and release intervals at the
sampling time points are depicted in Fig. 9.
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Figure 5 Evolutive behavior of z2(t) and z̄2(t) at the sampling time points in Theorem 3.2

Figure 6 The release instants and release intervals at the sampling time points in Theorem 3.2

Remark 4.1 The simulation results of nine figures show that there is no fundamental dis-
tinction about the performance of outer-synchronization with three data-sampling con-
trol design as Theorems 3.1–3.3. Moreover, the release intervals at the sampling time
points as Theorem 3.1 are comparatively minor for Fig. 3, and the release intervals at the
sampling time points as Theorem 3.2 are comparatively thin for Fig. 6.

Remark 4.2 Taking into account the conditions that parameters must satisfy, the range
of choices for the parameters is limited. For example, the parameter σ need to be bigger
than 0, parameters ηj(α, t) cannot be too small. It is noticeable that the values of parame-
ters ηj(α, t) are affected by the different values of the parameter σ . Namely, the parameter
σ is greater than 0, but parameters ηj(α, t) could be too small due to the influence of the
parameter σ . Sometimes all the parameters satisfy the conditions, but the figures can-
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Figure 7 Evolutive behavior of z1(t) and z̄1(t) at the sampling time points in Theorem 3.3

Figure 8 Evolutive behavior of z2(t) and z̄2(t) at the sampling time points in Theorem 3.3

not fully display the characteristics of data-sampling control. In order to better reflect the
figures about sampling time points, we selected one of the most representative numeri-
cal example by constantly adjusting parameters. It is clear to see that Figs. 1–3 show the
main results about Theorem 3.1, Figs. 4–6 show the main results about Theorem 3.2 and
Figs. 7–9 show the main results about Theorem 3.3. As a consequence, the exactness of
the derived results can be verified by Example 4.1.

5 Conclusion
The research of dynamic behavior of fractional-order systems by data-sampling con-
trol has attracted extensive attention, nevertheless, the control design about fractional-
order systems with deviating argument by data-sampling approaches has seldom be stud-
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Figure 9 The release instants and release intervals at the sampling time points in Theorem 3.3

ied. In this paper, we exploit outer-synchronization problem for fractional-order systems
with deviating argument via centralized and decentralized data-sampling approaches. Our
main theoretical results of the paper are that centralized and decentralized data-sampling
approaches with the structure-dependent and state-dependent are constructed to real-
ize outer-synchronization in deviating argument systems. Moreover, based on the data-
sampling control, the concept and property of deviating argument and the synchroniza-
tion theory of fractional-order systems, several sufficient criteria guaranteeing to reach
outer-synchronization for fractional-order neural networks with deviating argument are
shown, and the Zeno behavior has been excluded in the course of the proof.

Many room for improvement is open on the outer-synchronization criteria for fraction-
al-order systems with deviating argument. So future work about fractional-order systems
with deviating argument can be extended: (1) designing the outer-synchronization subject
to stochastic disturbance, (2) analyzing the outer-synchronization in uncertain environ-
ment. Indeed, those issues may be considerable research topics in the future.
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