
Baculikova and Dzurina Advances in Difference Equations        (2019) 2019:388 
https://doi.org/10.1186/s13662-019-2322-y

R E S E A R C H Open Access

Oscillation of fourth-order strongly
noncanonical differential equations with
delay argument
B. Baculikova1* and J. Dzurina1

*Correspondence:
blanka.baculikova@tuke.sk
1Department of Mathematics,
Faculty of Electrical Engineering and
Informatics, Technical University of
Košice, Košice, Slovakia

Abstract
The aim of this paper is to study oscillatory properties of the fourth-order strongly
noncanonical equation of the form

(r3(t)(r2(t)(r1(t)y′(t))′
)
′
)
′ + p(t)y(τ (t)) = 0,

where
∫ ∞ 1

ri (s)
ds < ∞, i = 1, 2, 3. Reducing possible classes of the nonoscillatory

solutions, new oscillatory criteria are established.
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1 Introduction
In the paper, we consider the fourth-order delay differential equation

(
r3(t)

(
r2(t)

(
r1(t)y′(t)

)′)′)′ + p(t)y
(
τ (t)

)
= 0, (E)

where ri ∈ C(4–i)(t0,∞), ri(t) > 0, i = 1, 2, 3, p(t) ∈ C(t0,∞), p(t) > 0, τ (t) ∈ C(t0,∞), τ (t) ≤
t, τ ′(t) > 0, and τ (t) → ∞ as t → ∞.

By a solution of Eq. (E) we mean all continuous functions y(t) for which

(
r3(t)

(
r2(t)

(
r1(t)y′(t)

)′)′)′ ∈ C
(
[Ty,∞)

)
, Ty ≥ t0,

exist and satisfy Eq. (E) on [Ty,∞). We consider only those solutions y(t) of (E) which
satisfy sup{|y(t)| : t ≥ T} > 0 for all T ≥ Ty. We assume that (E) possesses such a solution.
A solution of (E) is called oscillatory if it has arbitrarily large zeros on [Ty,∞) and other-
wise it is called nonoscillatory. Equation (E) is said to be oscillatory if all its solutions are
oscillatory.

Throughout the paper it is supposed that Eq. (E) is strongly noncanonical, that is,

∫ ∞ 1
ri(s)

ds < ∞, i = 1, 2, 3. (1.1)
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Fourth-order differential equations naturally appear in models concerning physical, bi-
ological, and chemical phenomena, such as, for instance, problems of elasticity, deforma-
tion of structures, or soil settlement, see, for example, [2]. In mechanical and engineering
problems, questions concerning the existence of oscillatory solutions play an important
role. During the past decades, there has been a constant interest in obtaining sufficient
conditions for oscillatory properties of different classes of fourth-order differential equa-
tions with deviating argument, see [2, 3, 6, 8–20].

In general, there are two approaches for the investigation of higher-order differential
equations with noncanonical operators. One method requires to find a canonical repre-
sentation of studied equation with closed form formulas for coefficients. For details, see
[1, 4, 5, 7]. The second approach is to establish the conditions that reduce the number of
possible classes of nonoscillatory solutions and consequently to find conditions for oscil-
lation of (E). Our method belongs to the second one and yields easily verifiable oscillation
criteria.

2 Preliminary results
Throughout the paper we assume that (1.1) holds, and so we can employ the notation

π i(t) =
∫ ∞

t

1
ri(s)

ds, π ij(t) =
∫ ∞

t

1
ri(s)

π j(s) ds

and

π ijk(t) =
∫ ∞

t

1
ri(s)

π jk(s) ds,

where i, j, k ∈ {1, 2, 3} are mutually different. To simplify the writing of quasi-derivatives,
we denote

L1y(t) = r1(t)y′(t), Li+1y(t) = ri+1(t)L′
iy(t), i = 1, 2, 3,

where formally r4(t) ≡ 1. We start with the following auxiliary results which are elemen-
tary but very useful.

Lemma 1 Let (1.1) hold. Then

π ij(t) + π ji(t) = π i(t)π j(t).

Proof Since

(
π i(t)π j(t)

)′ = –
π j(t)
ri(t)

–
π i(t)
rj(t)

,

an integration of this equality from t to ∞ yields

π i(t)π j(t) =
∫ ∞

t

1
ri(s)

π j(s) ds +
∫ ∞

t

1
rj(s)

π i(s) ds = π ij(t) + π ji(t). �
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Lemma 2 Let (1.1) hold. Then

π 123(t) + π 32(t)π 1(t) – π 3(t)π 12(t) = π 321(t).

Proof Proof of this lemma is similar to that of Lemma 1 and so it can be omitted. �

It follows from a generalization of lemma of Kiguradze [9] that the set of positive solu-
tions of (E) has the following structure.

Lemma 3 Assume that y(t) is a positive solution of (E). Then y(t) satisfies one of the fol-
lowing conditions:

(N1): L1y(t) > 0, L2y(t) > 0, L3y(t) > 0, L4y(t) < 0,
(N2): L1y(t) > 0, L2y(t) > 0, L3y(t) < 0, L4y(t) < 0,
(N3): L1y(t) > 0, L2y(t) < 0, L3y(t) < 0, L4y(t) < 0,
(N4): L1y(t) > 0, L2y(t) < 0, L3y(t) > 0, L4y(t) < 0,
(N5): L1y(t) < 0, L2y(t) > 0, L3y(t) > 0, L4y(t) < 0,
(N6): L1y(t) < 0, L2y(t) < 0, L3y(t) > 0, L4y(t) < 0,
(NA): L1y(t) < 0, L2y(t) > 0, L3y(t) < 0, L4y(t) < 0,
(NB): L1y(t) < 0, L2y(t) < 0, L3y(t) < 0, L4y(t) < 0.

The first two results are intended to reduce the number of classes that will be investi-
gated.

Theorem 1 If
∫ ∞

t1

π 32(s)p(s) ds = ∞, (2.1)

then a positive solution y(t) of (E) does not satisfy (N1)–(N4) of Lemma 3.

Proof Assume on the contrary that y(t) is an eventually positive solution of (E) satisfying
condition (N1) or (N4) of Lemma 3 for t ≥ t1 ≥ t0. Since y(t) is positive and nondecreasing,
there exists a positive constant k > 0 such that y(t) ≥ k for t ≥ t1.

Integrating (E) from t1 to ∞, we get

L3y(t1) ≥
∫ ∞

t1

p(s)y
(
τ (s)

)
ds ≥ k

∫ ∞

t1

p(s) ds,

which is a contradiction with respect to (2.1).
Now, we assume that y(t) is an eventually positive solution of (E) satisfying condition

(N2) of Lemma 3 for t ≥ t1. Integrating (E) from t1 to t and using that y(t) is positive and
nondecreasing, we get

–L3y(t) ≥ k
∫ t

t1

p(s) ds. (2.2)

Integrating the above inequality from t1 to ∞, we obtain

L2y(t1) ≥ k
∫ ∞

t1

1
r3(u)

∫ u

t1

p(s) ds du = k
∫ ∞

t1

π 3(u)p(u) du,

which contradicts (2.1).
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Finally, we assume that y(t) is an eventually positive solution of (E) satisfying condition
(N3) of Lemma 3 for t ≥ t1. Similarly as above, we are led to (2.2). Integrating this from t1

to t, we obtain

–L2y(t) ≥ k
∫ t

t1

1
r3(u)

∫ u

t1

p(s) ds du.

An integration from t1 to ∞ yields

L1y(t1) ≥ k
∫ ∞

t1

1
r2(v)

∫ v

t1

1
r3(u)

∫ u

t1

p(s) ds du dv

= k
∫ ∞

t1

1
r3(u)

∫ u

t1

p(s) ds
∫ ∞

u

1
r2(v)

dv du

= k
∫ ∞

t1

1
r3(u)

π 2(u)
∫ u

t1

p(s) ds du = k
∫ ∞

t1

π 32(s)p(s) ds,

which is a contradiction and the proof is finished. �

Theorem 2 If

∫ ∞

t1

π 12
(
τ (s)

)
p(s) ds = ∞, (2.3)

then the positive solution y(t) of (E) does not satisfy (N5), (N6) of Lemma 3.

Proof Assume on the contrary that y(t) is an eventually positive solution of (E) satisfying
condition (N5) of Lemma 3 for t ≥ t1 ≥ t0. Since L2y(t) is a positive and increasing function
there exists a positive constant k > 0 such that

L2y(t) ≥ k

for t ≥ t1. Integrating the previous inequality from t to ∞, we have

–r1(t)y′(t) ≥ k
∫ ∞

t

1
r2(s)

ds.

After integration from τ (t) to ∞, we get

y
(
τ (t)

) ≥ k
∫ ∞

τ (t)

1
r1(u)

∫ ∞

u

1
r2(s)

ds du = kπ 12
(
τ (t)

)
. (2.4)

On the other hand, in view of (2.4), an integration of (E) from t1 to ∞ yields

L3y(t1) ≥
∫ ∞

t1

p(s)y
(
τ (s)

)
ds ≥ k

∫ ∞

t1

p(s)π 12
(
τ (s)

)
ds,

which contradicts (2.3).
Now, we assume that y(t) is an eventually positive solution of (E) satisfying condition

(N6) of Lemma 3 for t ≥ t1 ≥ t0. Seeing that L1(y) is a negative and decreasing function,
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there exists a constant k > 0 such that

L1y(t) = r1(t)y′(t) ≤ –k

for t ≥ t1, and integrating this inequality from τ (t) to ∞, we have

y
(
τ (t)

) ≥ k
∫ ∞

τ (t)

1
r1(s)

ds. (2.5)

Integrating (E) from t1 to ∞ and using (2.5), we obtain

L3y(t1) ≥
∫ ∞

t1

p(s)y
(
τ (s)

)
ds ≥ k

∫ ∞

t1

p(s)
∫ ∞

τ (s)

1
r1(u)

du ds

= k
∫ ∞

t1

p(s)π 1
(
τ (s)

)
ds,

which is a contradiction to (2.3). The proof is completed. �

Theorems 2.1 and 2.3 reduce the number of possible nonoscillatory solutions of (E) only
to (NA) or (NB), which essentially simplifies examination of (E).

3 Main results
Now we provide useful monotonic properties of nonoscillatory solutions of (E) satisfying
conditions (NA) or (NB) of Lemma 3. We begin with the following auxiliary result.

Lemma 4 Assume that y(t) is an eventually positive solution of (E) satisfying condition
(NA) of Lemma 3 and

∫ ∞

t0

p(s)π 3(s)π 1
(
τ (s)

)
ds = ∞. (3.1)

Then

lim
t→∞ r1(t)y′(t) = lim

t→∞ y(t) = 0. (3.2)

Proof Assume that y(t) is an eventually positive solution of (E) satisfying condition (NA)
of Lemma 3 for t ≥ t1 ≥ t0.

Since y(t) is positive and decreasing, there exists limt→∞ y(t) = � ≥ 0. We claim that � = 0.
If not, then y(τ (t)) ≥ � > 0, eventually, let us say for t ≥ t1. An integration of (E) from t1 to
t yields

–
(
L2y(t)

)′ ≥ 1
r3(t)

∫ t

t1

p(s)y
(
τ (s)

)
ds ≥ �

r3(t)

∫ t

t1

p(s) ds. (3.3)

Integrating from t1 to ∞, we obtain

(
r2

(
r1y′))′(t1) ≥ �

∫ ∞

t1

1
r3(u)

∫ u

t1

p(s) ds du = �

∫ ∞

t1

p(s)π 3(s) ds,

which contradicts (3.1), and we conclude that y(t) → 0 as t → ∞.
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On the other hand, since –r1y′ is positive and decreasing, there exists

lim
t→∞ –r1y′(t) = � ≥ 0.

We assume on the contrary that � > 0. Then

–r1y′(t) > �, t ≥ t1.

Integrating from t to ∞, one gets

y(t) ≥ �π 1(t),

which setting into (3.3) yields

–
(
L2y(t)

)′ ≥ �

r3(t)

∫ t

t1

p(s)π 1
(
τ (s)

)
ds.

An integration from t1 to ∞ yields

(
r2

(
r1y′))′(t1) ≥ �

∫ ∞

t1

1
r3(u)

∫ u

t1

p(s)π 1
(
τ (s)

)
ds du = �

∫ ∞

t1

p(s)π 3(s)π 1
(
τ (s)

)
ds.

This is a contradiction, and the proof is complete now. �

Theorem 3 Let (3.1) hold. Assume that y(t) is an eventually positive solution of (E) satis-
fying condition (NA) of Lemma 3. Then

y(t)
π 12(t)

is decreasing, (3.4)

y(t)
π 123(t)

is increasing. (3.5)

Proof Assume that y(t) is an eventually positive solution of (E) satisfying condition (NA)
of Lemma 3 for t ≥ t1 ≥ t0. At first, we shall show that y(t)

π 12(t) is decreasing. Employing
(3.2) and using that L2y(t) is positive and decreasing, we have

–r1(t)y′(t) =
∫ ∞

t

L2y(s)
r2(s)

ds ≤ L2y(t)π 2(t),

which implies

(
r1(t)y′(t)
π 2(t)

)′
=

L2y(t)π 2(t) + r1(t)y′(t)
r2(t)π 2

2(t)
≥ 0.

Thus, r1(t)y′(t)
π 2(t) is increasing, and in view of (3.2), we get

–y(t) =
∫ ∞

t

r1(s)y′(s)
π 2(s)

π 2(s)
r1(s)

ds ≥ r1(t)y′(t)
π 2(t)

π 12(t),
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which yields

(
y(t)

π 12(t)

)′
=

r1(t)y′(t)π 12(t) + y(t)π 2(t)
r1(t)π 2

12(t)
≤ 0,

and we conclude that y(t)
π 12(t) is a decreasing function.

Now, we shall prove that y(t)
π 123(t) is an increasing function. Employing that L3y(t) is a

negative and decreasing function, we have

–L2y(t) ≤
∫ ∞

t

L3y(s)
r3(s)

ds ≤ L3y(t)π3(t),

which yields

(
L2y(t)
π3(t)

)′
=

L3y(t)π3(t) + L2y(t)
r3(t)π 2

3(t)
≥ 0

and L2y(t)
π3(t) is increasing. Therefore,

–r1(t)y′(t) =
∫ ∞

t

L2y(s)
π3(s)

π 3(s)
r2(s)

ds ≥ L2y(t)
π3(t)

π 23(t).

This inequality implies that r1(t)y′(t)
π23(t) is increasing. Finally,

–y(t) =
∫ ∞

t

r1(s)y′(s)
π 23(s)

π 23(s)
r1(s)

ds ≤ r1(t)y′(t)π 123(t)
π 23(t)

,

which implies

(
y(t)

π 123(t)

)′
=

r1(t)y′(t)π 123(t) + y(t)π 23(t)
r1(t)π 2

123(t)
≥ 0,

and we conclude that y(t)
π 123(t) is increasing. �

Theorem 4 Assume that y(t) is an eventually positive solution of (E) satisfying condition
(NB) of Lemma 3. Then

y(t)
π 1(t)

is increasing. (3.6)

Proof Assume that y(t) is an eventually positive solution of (E) satisfying condition (NB)
of Lemma 3 for t ≥ t1 ≥ t0. Applying the monotonic property of r1(t)y′(t), we get

–y(t) =
∫ ∞

t

r1(s)y′(s)
r1(s)

ds ≤ r1(t)y′(t)π 1(t),

which gives

(
y(t)
π 1(t)

)′
=

r1(t)y′(t)π 1(t) + y(t)
r1(t)π 2

1(t)
≥ 0,

and we conclude that y(t)
π 1(t) is increasing. �
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Now, we are prepared for establishing the criteria for the essential classes (NA) and (NB)
to be empty.

Theorem 5 Let (3.1) hold. If

lim sup
t→∞

{
π 123(τ (t))
π 12(τ (t))

∫ τ (t)

t1

p(s)π 12
(
τ (s)

)
ds +

1
π 12(τ (t))

∫ t

τ (t)
p(s)G

(
s, τ (t)

)
π 12

(
τ (s)

)
ds

+
1

π 123(τ (t))

∫ ∞

t
p(s)G

(
s, τ (t)

)
π 123

(
τ (s)

)
ds

}

> 1, (3.7)

where

G(s, t) = π 321(s) + π 12(t)π 3(s) – π 1(t)π 32(s),

then the class (NA) of Lemma 3 is empty.

Proof Assume on the contrary that y(t) is an eventually positive solution of (E) satisfying
condition (NA) of Lemma 3 for t ≥ t1 ≥ t0. Integrating (E) twice from t1 to t and from t to
∞, we obtain

L2y(t) ≥
∫ ∞

t

1
r3(u)

∫ u

t1

p(s)y
(
τ (s)

)
ds du.

Changing the order of integrating in the previous inequality, we see

(
r1(t)y′(t)

)′ ≥ π 3(t)
r2(t)

∫ t

t1

p(s)y
(
τ (s)

)
ds +

1
r2(t)

∫ ∞

t
p(s)y

(
τ (s)

)
π 3(s) ds.

Integrating the above inequality from t to ∞, one gets

–r1(t)y′(t) ≥
∫ ∞

t

π 3(u)
r2(u)

∫ u

t1

p(s)y
(
τ (s)

)
ds du +

∫ ∞

t

1
r2(u)

∫ ∞

u
p(s)y

(
τ (s)

)
π 3(s) ds du

= π 23(t)
∫ t

t1

p(s)y
(
τ (s)

)
ds +

∫ ∞

t
π 23(s)p(s)y

(
τ (s)

)
ds

+
∫ ∞

t
p(s)y

(
τ (s)

)
π 3(s)

[
π 2(t) – π 2(s)

]
ds.

It follows from Lemma 1 that π 23(s) + π 32(s) = π 2(s)π 3(s), and so

–y′(t) =
π 23(t)
r1(t)

∫ t

t1

p(s)y
(
τ (s)

)
ds +

π 2(t)
r1(t)

∫ ∞

t
p(s)y

(
τ (s)

)
π 3(s) ds

–
1

r1(t)

∫ ∞

t
p(s)y

(
τ (s)

)
π 32(s) ds.

Integrating once more from t to ∞ and employing Lemma 2, we have

y(t) ≥ π 123(t)
∫ t

t1

p(s)y
(
τ (s)

)
ds +

∫ ∞

t
p(s)y

(
τ (s)

)
π 123(s) ds

+
∫ ∞

t
p(s)y

(
τ (s)

)
π 3(s)

[
π 12(t) – π 12(s)

]
ds
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–
∫ ∞

t
p(s)y

(
τ (s)

)
π 32(s)

[
π 1(t) – π 1(s)

]
ds

= π 123(t)
∫ t

t1

p(s)y
(
τ (s)

)
ds +

∫ ∞

t
p(s)y

(
τ (s)

)
π 321(s) ds

+ π 12(t)
∫ ∞

t
p(s)y

(
τ (s)

)
π 3(s) ds – π 1(t)

∫ ∞

t
p(s)y

(
τ (s)

)
π 32(s) ds

= π 123(t)
∫ t

t1

p(s)y
(
τ (s)

)
ds +

∫ ∞

t
p(s)y

(
τ (s)

)
G(s, t) ds.

Then

y
(
τ (t)

) ≥ π 123
(
τ (t)

)
∫ τ (t)

t1

p(s)y
(
τ (s)

)
ds +

∫ ∞

τ (t)
p(s)y

(
τ (s)

)
G

(
s, τ (t)

)
ds

= π 123
(
τ (t)

)
∫ τ (t)

t1

p(s)y
(
τ (s)

)
ds +

∫ t

τ (t)
p(s)y

(
τ (s)

)
G

(
s, τ (t)

)
ds

+
∫ ∞

t
p(s)y

(
τ (s)

)
G

(
s, τ (t)

)
ds.

Using that y(t)
π 12(t) is decreasing and y(t)

π 123(t) is increasing, the last inequality yields

y
(
τ (t)

) ≥ π 123
(
τ (t)

) y(τ (t))
π 12(τ (t))

∫ τ (t)

t1

p(s)π 12
(
τ (s)

)
ds

+
y(τ (t))

π 12(τ (t))

∫ t

τ (t)
p(s)G

(
s, τ (t)

)
π 12

(
τ (s)

)
ds

+
y(τ (t))

π 123(τ (t))

∫ ∞

t
p(s)G

(
s, τ (t)

)
π 123

(
τ (s)

)
ds.

Then

1 ≥
{
π 123(τ (t))
π 12(τ (t))

∫ τ (t)

t1

p(s)π 12
(
τ (s)

)
ds +

1
π 12(τ (t))

∫ t

τ (t)
p(s)G

(
s, τ (t)

)
π 12

(
τ (s)

)
ds

+
1

π 123(τ (t))

∫ ∞

t
p(s)G

(
s, τ (t)

)
π 123

(
τ (s)

)
ds

}

,

which contradicts (3.7). �

Theorem 6 If

lim sup
t→∞

{∫ τ (t)

t1

p(s)H
(
s, τ (t)

)
ds +

∫ t

τ (t)
p(s)π 321(s) ds

+
1

π 1(τ (t))

∫ ∞

t
p(s)π 321(s)π 1

(
τ (s)

)
ds

}

> 1, (3.8)

where

H(s, t) = π 32(s)π 1(t) + π 3(s)π 12(t) + π 123(t),

then the class (NB) of Lemma 3 is empty.
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Proof Assume on the contrary that y(t) is an eventually positive solution of (E) satisfying
condition (NB) of Lemma 3 for t ≥ t1 ≥ t0. Integrating (E) twice from t1 to t and thereafter
switching the order of integration, we obtain

–
(
r1(t)y′(t)

)′ ≥ 1
r2(t)

∫ t

t1

p(s)y
(
τ (s)

)(
π 3(s) – π 3(t)

)
ds.

Integrating the above inequality again from t1 to t and changing the order of integration,
we get

–r1(t)y′(t) ≥
∫ t

t1

1
r2(u)

∫ u

t1

p(s)y
(
τ (s)

)(
π 3(s) – π 3(t)

)
ds du

=
∫ t

t1

p(s)y
(
τ (s)

)
π 3(s)

[
π 2(s) – π 2(t)

]
ds

–
∫ t

t1

p(s)y
(
τ (s)

)[
π 23(s) – π 23(t)

]
ds.

Applying Lemma 1, we can write

–r1(t)y′(t) ≥
∫ t

t1

p(s)y
(
τ (s)

)[
π 32(s) – π 3(s)π 2(t) + π 23(t)

]
ds.

Integrating the previous inequality from t to ∞ and consequently switching the order of
integration, we obtain

y(t) ≥
∫ ∞

t

1
r1(u)

∫ u

t1

p(s)y
(
τ (s)

)[
π 32(s) – π 3(s)π 2(u) + π 23(u)

]
ds du

=
∫ t

t1

p(s)y
(
τ (s)

)
π 32(s)π 1(t) ds –

∫ t

t1

p(s)y
(
τ (s)

)
π 3(s)π 12(t) ds

+
∫ t

t1

p(s)y
(
τ (s)

)
π 123(t) ds +

∫ ∞

t
p(s)y

(
τ (s)

)
π 32(s)π 1(s) ds

–
∫ ∞

t
p(s)y

(
τ (s)

)
π 3(s)π 12(s) ds +

∫ ∞

t
p(s)y

(
τ (s)

)
π 123(s) ds.

Employing the equality π 123(t) + π 32(t)π 1(t) – π 3(t)π 12(t) = π 321(t), we can rewrite the
above inequality into a simpler form

y(t) ≥
∫ t

t1

p(s)y
(
τ (s)

)[
π 32(s)π 1(t) – π 3(s)π 12(t) + π 123(t)

]
ds

+
∫ ∞

t
p(s)y

(
τ (s)

)
π 321(s) ds.

Using notation for H(s, t)

y(t) ≥
∫ t

t1

p(s)y
(
τ (s)

)
H(s, t) ds +

∫ ∞

t
p(s)y

(
τ (s)

)
π 321(s) ds, (3.9)
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then

y
(
τ (t)

) ≥
∫ τ (t)

t1

p(s)y
(
τ (s)

)
H

(
s, τ (t)

)
ds +

∫ ∞

τ (t)
p(s)y

(
τ (s)

)
π 321(s) ds

=
∫ τ (t)

t1

p(s)y
(
τ (s)

)
H

(
s, τ (t)

)
ds +

∫ t

τ (t)
p(s)y

(
τ (s)

)
π 321(s) ds

+
∫ ∞

t
p(s)y

(
τ (s)

)
π 321(s) ds.

Applying the monotonic properties of y(t) (decreasing) and y(t)
π 1(t) (increasing), we have

y
(
τ (t)

) ≥ y
(
τ (t)

)
∫ τ (t)

t1

p(s)H
(
s, τ (t)

)
ds + y

(
τ (t)

)
∫ t

τ (t)
p(s)π 321(s) ds

+
y(τ (t))
π 1(τ (t))

∫ ∞

t
p(s)π 1

(
τ (s)

)
π 321(s) ds,

which implies

1 ≥
∫ τ (t)

t1

p(s)H
(
s, τ (t)

)
ds +

∫ t

τ (t)
p(s)π 321(s) ds

+
1

π 1(τ (t))

∫ ∞

t
p(s)π 1

(
τ (s)

)
π 321(s) ds.

This contradicts (3.8), and the proof is complete. �

The following result is intended to avoid evaluation of function H(s, t) and to simplify
criterion (3.7).

Corollary 1 If

lim sup
t→∞

{

π 321
(
τ (t)

)
∫ τ (t)

t1

p(s) ds +
∫ t

τ (t)
p(s)π 321(s) ds

+
1

π 1(τ (t))

∫ ∞

t
p(s)π 321(s)π 1

(
τ (s)

)
ds

}

> 1, (3.10)

then the class (NB) of Lemma 3 is empty.

Proof Assume on the contrary that y(t) is an eventually positive solution of (E) satisfying
condition (NB) of Lemma 3 for t ≥ t1 ≥ t0. Proceeding similarly as in the proof of Theo-
rem 6, we get (3.9). It follows from monotonic properties of H(s, t) and Lemma 2 that

H(s, t) ≥ H(t, t) = π 321(t) for s ∈ 〈t1, t〉. (3.11)

Using (3.11) in (3.9), we obtain

y(t) ≥ π 321(t)
∫ t

t1

p(s)y
(
τ (s)

)
ds +

∫ ∞

t
p(s)y

(
τ (s)

)
π 321(s) ds.



Baculikova and Dzurina Advances in Difference Equations        (2019) 2019:388 Page 12 of 13

Then

y
(
τ (t)

) ≥ π 321
(
τ (t)

)
∫ τ (t)

t1

p(s)y
(
τ (s)

)
ds +

∫ t

τ (t)
p(s)y

(
τ (s)

)
π 321(s) ds

+
∫ ∞

t
p(s)y

(
τ (s)

)
π 321(s) ds.

Taking into account that y(t) is decreasing and y(t)
π 1(t) is increasing finally, we have

1 ≥ π 321
(
τ (t)

)
∫ τ (t)

t1

p(s) ds +
∫ t

τ (t)
p(s)π 321(s) ds

+
1

π 1(τ (t))

∫ ∞

t
p(s)π 321(s)π 1

(
τ (s)

)
ds,

which contradicts the assumption of the corollary. �

Picking up the previous results, we can establish easily verifiable oscillatory criteria.

Theorem 7 Let (2.1), (3.1), (3.7), (3.8) hold. Then (E) is oscillatory.

Theorem 8 Let (2.1), (3.1), (3.7), (3.10) hold. Then (E) is oscillatory.

We support our results with an illustrative example, in which also some comparison
with existing latest ones is made.

Example 1 Let us consider noncanonical fourth-order delay differential equation in the
form

(
(
t2(t2(t2y′(t)

)′)′)′ + at2y(λt) = 0, t ≥ t0 > 0, (Ex)

where a > 0, λ ∈ (0, 1), π i(t) = 1/t, π ij(t) = 1/(2t2), π 123(t) = π 321(t) = 1/(6t3). It is easy to
verify that (2.1), (3.1) hold.

Condition (3.7) takes the form

a
36λ2

(

9 + 9λ – λ2 + 18 ln
1
λ

)

> 1. (3.12)

Condition (3.8) takes the form

a
(

17
6

+ ln
1
λ

)

> 6. (3.13)

By Theorem 7, Eq. (Ex) is oscillatory provided that both (3.12) and (3.13) hold. In partic-
ular case where λ = 0.8, conditions (3.12) and (3.13) reduce to a > 1.963. The oscillatory
criterion obtained by a different technique presented in paper [4] gives oscillation of (Ex)
if a > 7.913.

On the other hand, for λ = 0.9, Theorem 7 guarantees oscillation of Eq. (Ex) provided
that a > 1.77, while the best criterion from [7] requires a > 3.50.

So our results are more efficient than the previous ones.
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