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Abstract
Numerical analysis of stochastic delay differential equations has been widely
developed but frequently for the cases where the delay term has a simple feature. In
this paper, we aim to study a more general case of delay term which has not been
much discussed so far. We mean the case where the delay term takes random values.
For this purpose, a new continuous split-step scheme is introduced to approximate
the solution and then convergence in the mean-square sense is investigated.
Moreover, given a test equation, the mean-square asymptotic stability of the scheme
is presented. Numerical examples are provided to further illustrate the obtained
theoretical results.

1 Introduction
In many physical phenomena with random nature, the state future of a system not only
depends on the current state but also depends on the whole past history of the system
over a finite time interval, and certainly the mathematical modelling actually describing
the system leads to a stochastic delay differential equation (SDDE) and not a stochastic
ordinary differential equation (SODE). In this paper, an autonomous d-dimensional Itô
stochastic delay differential equation is considered

⎧
⎨

⎩

dX(t) = a(X(t), X(t – τ )) dt + b(X(t), X(t – τ )) dW (t), t ∈ [t0, T],

X(t) = η(t), t ∈ [t0 – r, t0],
(1.1)

where r is a positive constant and τ is called lag process. The drift and diffusion coefficients
a, bj : Rd → R

d for j = 1, . . . , m are Borel-measurable functions and η,η ∈R
d , is named ini-

tial process. Obviously, the inaccessibility of the closed-form of the solutions or their dis-
tributions of these mathematical modelings, which arise in diverse areas of applications,
reveal the significance of addressing numerical methods, because they play an important
role to educe a realistic view of the solution behaviour of such equations. In recent years,
some authors have dealt with the numerical analysis of SDDEs whose time lag is a dis-
crete, see, e.g. [3, 12, 16]. But the delay function might be dynamically changed and even
disturbed under an ambient noise. If the delay function depends only on time, then it is
called time-dependent, see, e.g. [1, 6, 8, 22]. But if, in addition to the time, it depends on the
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solution process, then it is named state-dependent. As far as the author knows, only a few
numerical schemes for SDDEs which contain the third type of lag function have been pro-
posed, see, e.g. [13, 14]. The authors [13, 14] considered the continuous-time GARCH(1, 1)
model for stochastic volatility involving state-dependent delayed response and applied the
Euler–Maruyama discrete-time approximation in the strong convergence sense to simu-
late. On the other hand, there exist some papers which extend some types of stochastic
functional (evolution, fractional, neutral) differential equations with state-dependent de-
lay and study some theoretical aspects particularly the existence and uniqueness of (mild)
solution and controllability results, see, e.g. [2, 19, 31, 32]. In the following, a new interpo-
lation, whose computational costs are not too high, is presented. The main contribution of
this paper is to investigate the numerical solution of Eq. (1.1), under sufficient conditions
which will be mentioned later, with three cases of lag process as follows:

(L1) τ is a constant,
(L2) τ is time-dependent as τ (t),
(L3) τ is state-dependent as τ (t, X(t)).

Note that in case (L2), τ can be a continuous-time random process or a deterministic func-
tion. Here, we just consider the deterministic case. Since the main task in all integration
formulas for SDDEs is to provide an interpolation at non-mesh points, a new split-step
scheme will be properly extended over the whole interval [t0, T]. The authors in [28] stud-
ied the strong convergence and the mean-square stability of the split-step backward Euler
method to linear SDDEs with constant lag and took the stepsize as a multiplier of that. This
type of stepsize selection by a semi-implicit split-step θ -Milstein method was developed
in [7], too. But Wang et al. in [22] proposed a new improved split-step backward Euler
method for SDDEs with time-dependent delay where a piecewise linear interpolation is
used to approximate the solution at the delayed points. Also, in contrast to [7, 28], in [22],
the restriction of stepsize is removed and the unconditional stability property is extended
as well. In our proposed method, this restriction on stepsize is dropped, too. As more pa-
pers, we could mention [11, 17] which investigate the behaviour of the split-type methods
for stochastic differential equations and [26] which studies the strong convergence of the
split-step θ -method for a class of neutral stochastic delay differential equations.

As we know, the (numerical) stability concept is a powerful tool in measuring the sensi-
tivity of the (difference) equation for any confusion. For instance, the disturbances, which
occur during mathematical modelling, or round off errors made in the implementation
of the numerical method may lead to fundamental changes. Undoubtedly, reviewing the
numerical stability of stochastic differential equations is an inspiration to that of SDDEs.
Among the most prominent papers which scrutinise the numerical stability for stochas-
tic differential equations, the readers can refer to [9, 20] for a review. Mao in [18] devel-
oped pth moment and almost sure exponential stability of stochastic functional differen-
tial equations by means of the Razumikhin-type theorems. Also, [25] examined almost
sure exponential stability of the Euler–Maruyama scheme for such equations. Further-
more, the authors in [4] employed the Halanay-type theory as the main tool to analyse
pth exponential stability of the solution and the Euler-type method. In this work, we study
the mean-square stability of SDDE (1.1) and also that of the proposed scheme. Note that
the case of state-dependent delay is almost new. Some papers help us to accomplish our
aim; see [18, 27, 30]. Also, the stability for such a class of SDDEs under weaker conditions
like one-sided Lipschitz and locally Lipschitz, which has been studied in the case of SDE
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or SDDE with discrete or time-dependent delay [5, 10, 24, 29, 30], could be extended in the
future. This paper consists of two parts. The first deals with convergence and the second
with stability, both of which are examined in the mean-square sense.

This paper is organised as follows. Section 2 is concerned with the notations, assump-
tions and a numerical scheme for the underlying problem. In Sect. 3, the convergence of
the scheme in the mean-square sense is derived. In Sect. 4, we define the stability concept
for the problem and numerical solution, too. Moreover, the mean-square stability of the
scheme is established. Ultimately, some test problems are indicated in Sect. 5.

2 Results formulation
Let (Ω ,F , {Ft}t≥t0 , P) be a complete probability space with the filtration {Ft}t≥t0 satisfying
the usual conditions. Moreover, W = (Wt)t≥t0 is an m-dimensional Brownian motion on
the probability space. Let D = C([t0 – r, t0],Rd) be the Banach space of all continuous func-
tions from [t0 – r, t0] to R

d . Also, we use the Lp(Ω , D) to be the space of all Ft0 -measurable
and integrable initial processes η : Ω → D which can be equipped with the following semi-
norm:

‖η‖Lp(D) =
(∫

Ω

‖η‖p
D dP

)1/p

,

where the supremum norm ‖ · ‖p
D for p ≥ 1 is defined as

‖η‖p
D = sup

s∈[t0–r,t0]

∣
∣η(s)

∣
∣p,

where | · | is the Euclidian norm in R
k for k ≥ 1. In this sequel, we make the necessary

assumptions on the problem as follows.

Assumption 1 The functions a : (Rd)2 →R
d and b : (Rd)2 →R

d×m are globally Lipschitz
continuous, i.e. there is a positive constant K1 such that

∣
∣a(X1, Y1) – a(X2, Y2)

∣
∣2 ∨ ∣

∣b(X1, Y1) – b(X2, Y2)
∣
∣2 ≤ K1

(|X1 – X2|2 + |Y1 – Y2|2
)

for all X1, X2, Y1, Y2 ∈R
d .

Assumption 2 In case (L2), let τ : [t0, T] → (0, r] be of Lipschitz continuous as

∣
∣τ (t) – τ (s)

∣
∣ ≤ K2|t – s|, t, s ∈ [t0, T],

where K2 is a positive constant. In case (L3), let τ : [t0, T] × R
d → (0, r] be of Lipschitz

continuous, i.e. there exist two positive constants K2 and K3 such that

∣
∣τ (t, X) – τ (s, X)

∣
∣ ≤ K2|t – s|,

∣
∣τ (t, X1) – τ (t, X2)

∣
∣ ≤ K3|X1 – X2|

for all t, s ∈ [t0, T] and X, X1, X2 ∈ R
d . Note that in each of the two cases above, the fact

that τ is positive guarantees the measurability and then the existence of the Itô integral.
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Assumption 3 Given two adapted integrable stochastic processes ρ1,ρ2 : Ω × [t0 –
r, T] → [t0 – r, t0], we have

E
∣
∣η

(
ρ1(t)

)
– η

(
ρ2(s)

)∣
∣2 ≤ K4E

∣
∣ρ1(t) – ρ2(s)

∣
∣, t, s ∈ [t0 – r, T],

where K4 is a positive constant.

Theorem 2.1 Suppose that ‖η‖L2(D) < ∞, under Assumptions 1–3, SDDE (1.1) has a
unique strong solution X such that

‖X‖L2(D̄) ≤ H ,

where D̄ = C([t0 – r, T],Rd) is the Banach space of all continuous sample paths with values
in R

d and H is a positive constant. Moreover, there exists a positive constant K5 such that
for every t, s ∈ [t0, T] we have

E
∣
∣X

(
ρ1(t)

)
– X

(
ρ2(s)

)∣
∣2 ≤ K5E

∣
∣ρ1(t) – ρ2(s)

∣
∣, (2.1)

where ρ1, ρ2: Ω × [t0, T] → [t0, T] are two adapted integrable stochastic processes.

The proof of the theorem above is deferred to the Appendix.

2.1 Underlying scheme
We now focus on the main intent, namely developing a new continuous split-step scheme
based on the Euler–Maruyama to SDDE (1.1). To do this, consider a non-equidistant dis-
cretization of the interval I = [t0, T] as follows:

t0 ≤ t1 ≤ · · · ≤ tN = T ,

the approximation X̃(t) for SDDE (1.1) is defined recursively through the underlying
scheme

⎧
⎪⎪⎨

⎪⎪⎩

X̃(t0) = X∗(t0) = X(t0),

X∗(tk) = X̃(tk) + a(X∗(tk), Z̃(tk))�tk , k = 1, . . . , N – 1,

X̃(tk+1) = X∗(tk) + b(X∗(tk), Z̃(tk))�Wk , k = 0, 1, . . . , N – 1,

(2.2)

where if tk – τk ≤ t0, then

Z̃(tk) = η(tk – τk), (2.3)

otherwise if tk – τk ∈ [ti, ti+1), then
⎧
⎨

⎩

X∗(ti) = X̃(ti) + a(X∗(ti), Z̃(ti))((tk – τk) – ti),

Z̃(tk) = X∗(ti) + b(X∗(ti), Z̃(ti))(W (tk – τk) – W (ti)),
(2.4)

where �tk = tk+1 – tk and �Wk = W (tk+1) – W (tk) are independent Gaussian distributed
random variables with mean zero and variance tk+1 – tk which can be made by a pseudo
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random generation. Note that τk in (2.3)–(2.4) is equal to τ and τ (tk) in cases (L1) and
(L2), respectively, and in case (L3), τk = τ (tk , X̃(tk)). One can simulate the value W (tk –
τk) – W (ti) by means of the Brownian bridges to remain on the correct Brownian paths
[15]. We can extend the following continuous approximation for whole [t0, T]:

⎧
⎨

⎩

X∗(ti) = X̃(ti) + a(X∗(ti), Z̃(ti))(t – ti),

X̃i(t) = X∗(ti) + b(X∗(ti), Z̃(ti))(W (t) – W (ti)),
(2.5)

where t ∈ [ti, ti+1) for i = 0, . . . , N – 1. Furthermore, Z̃(ti) is obtained similar to (2.3)–(2.4).
We can present a continuous version of the approximation solution as follows:

X̃(t) =
N–1∑

i=0

X̃i(t)1[ti ,ti+1)(t) + X̃(tN )1{t=tN }, (2.6)

where 1 denotes the indicator function.

Proposition 2.2 Consider the approximation processes X∗, Z̃ and X̃ which are computed
by (2.2), (2.3) and (2.4). Assume that a(0, 0) = 0 and b(0, 0) = 0, then there exists a positive
constant H̄ such that

∥
∥X∗∥∥

L2(D̄) ≤ H̄ , ‖Z̃‖L2(D̄) ≤ H̄ , ‖X̃‖L2(D̄) ≤ H̄ , (2.7)

where D̄ was specified in Theorem 2.1.

In the sequel, for the simplicity, we take H̄ such that it is equal to H in Theorem 2.1.
Under these conditions, we establish the strong convergence of scheme (2.5)–(2.6) over
[t0, T] in the next section.

3 Convergence
Having been motivated to analyse the behaviour of scheme (2.5)–(2.6), we naturally con-
centrate on the convergence concept. To this end, the mean-square convergence is invoked
by a theorem as follows.

Theorem 3.1 Suppose that Assumptions 1–3 hold and ‖η‖L2(D) < ∞. Moreover, we assume
that a(0, 0) = 0 and b(0, 0) = 0. If we apply scheme (2.5)–(2.6) to SDDE (1.1), then

(
E
(

sup
t0≤t≤T

∣
∣e(t)

∣
∣2

))1/2
= O

(
hγ

)
,

where e(t) = X(t) – X̃(t) and h = maxi=0,...,N–1�ti . Moreover, γ is equal to 1/2 in cases (L1)
and (L2) and to 1/4 in case (L3).

Proof Note that proving of case (L1) is similar to that of (L2), so we leave it to the reader
and we start proving with (L2). Let t ∈ [tn, tn+1). We can write

e(t) =
∫ t

t0

a
(
X(s), X(s – τ )

)
ds +

∫ t

t0

b
(
X(s), X(s – τ )

)
dW (s)

–
∫ t

t0

a
(
X∗(s), Z̃(s)

)
ds –

∫ t

t0

b
(
X∗(s), Z̃(s)

)
dW (s),
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where based on (2.5) and (2.6), X∗(s) = X∗(ti) and Z̃(s) = Z̃(ti) when s ∈ [ti, ti+1), i = 0, . . . , n.
So

E
(

sup
t0≤v≤t

∣
∣e(v)

∣
∣2

)

≤ 2E
(

sup
t0≤v≤t

∣
∣
∣
∣

∫ v

t0

(
a
(
X(s), X(s – τ )

)
– a

(
X∗(s), Z̃(s)

))
ds

∣
∣
∣
∣

2)

+ 2E
(

sup
t0≤v≤t

∣
∣
∣
∣

∫ v

t0

(
b
(
X(s), X(s – τ )

)
– b

(
X∗(s), Z̃(s)

))
dW (s)

∣
∣
∣
∣

2)

.

By Hölder’s and Doob’s martingale inequalities, we derive

E
(

sup
t0≤v≤t

∣
∣e(v)

∣
∣2

)
≤ 2(t – t0)

∫ tn+1

t0

E
∣
∣a

(
X(s), X(s – τ )

)
– a

(
X∗(s), Z̃(s)

)∣
∣2 ds

+ 8
∫ tn+1

t0

E
∣
∣b

(
X(s), X(s – τ )

)
– b

(
X∗(s), Z̃(s)

)∣
∣2 ds.

By Assumption 1, we have

E
(

sup
t0≤v≤t

∣
∣e(v)

∣
∣2

)

≤ 2K1(T – t0 + 4)
∫ tn+1

t0

(
E
∣
∣X(s) – X∗(s)

∣
∣2 + E

∣
∣X(s – τ ) – Z̃(s)

∣
∣2)ds

= 2K1(T – t0 + 4)
n∑

i=0

∫ ti+1

ti

(
E
∣
∣X(s) – X∗(ti)

∣
∣2 + E

∣
∣X(s – τ ) – Z̃(ti)

∣
∣2)ds.

We can write

E
(

sup
t0≤v≤t

∣
∣e(v)

∣
∣2

)
≤ M

n∑

i=0

(∫ ti+1

ti

(
A1(s) + A2(s) + A3(s) + A4(s)

)
ds

)

, (3.1)

where M = 4K1(T – t0 + 4) and for s ∈ [ti, ti+1)

A1(s) = E
∣
∣X(s) – X̃(s)

∣
∣2,

A2(s) = E
∣
∣X̃(s) – X∗(ti)

∣
∣2,

and in case (L2)

A3(s) = E
∣
∣X

(
s – τ (s)

)
– X

(
ti – τ (ti)

)∣
∣2,

A4(s) = E
∣
∣X

(
ti – τ (ti)

)
– Z̃(ti)

∣
∣2,

and in case (L3)

A3(s) = E
∣
∣X

(
s – τ

(
s, X(s)

))
– X

(
ti – τ

(
ti, X̃(ti)

))∣
∣2,

A4(s) = E
∣
∣X

(
ti – τ

(
ti, X̃(ti)

))
– Z̃(ti)

∣
∣2,
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where Z̃(ti) = X̃(ti – τ (ti, X̃(ti))). We can write A1i, A2i, A3i and A4i instead of A1, A2, A3

and A4 to be more precise. But the second subscripts have been removed for the sake of
simplicity. We now present the necessary upper bounds for these functions. Definitely

A1(s) = E
∣
∣e(s)

∣
∣2. (3.2)

Due to the Hölder continuity property of the Brownian motion as well as Assumption 1
and relation (2.7), we have

A2(s) = E
∣
∣b

(
X∗(ti), Z̃(ti)

)(
W (s) – W (ti)

)∣
∣2

≤ K6|s – ti|, (3.3)

where

K6 = 2K1H .

Note that H = H̄ . We now try to obtain the necessary error bounds for A3(s) and A4(s). We
first consider case (L2). If both values s – τ (s) and ti – τ (ti) are less or larger than t0, under
Assumption 3, Theorem 2.1 and due to being Lipschitz of τ in Assumption 2, we see that

E
∣
∣X

(
s – τ (s)

)
– X

(
ti – τ (ti)

)∣
∣2 ≤ (K4 + K5)(1 + K2)|s – ti|. (3.4)

If s – τ (s) or ti – τ (ti) is less than t0 and the other is larger than t0, then under the interme-
diate value theorem there exists a point t∗ ∈ [ti, s] ⊂ [ti, ti+1] such that t∗ – τ (t∗) = t0. So we
get

E
∣
∣X

(
s – τ (s)

)
– X

(
ti – τ (ti)

)∣
∣2 ≤ 2E

∣
∣X

(
s – τ (s)

)
– X

(
t∗ – τ

(
t∗))∣∣2

+ 2E
∣
∣X

(
t∗ – τ

(
t∗)) – X

(
ti – τ (ti)

)∣
∣2.

Similar to the previous argument discussed in obtaining (3.4), we get

A3(s) ≤ 2(K4 + K5)(1 + K2)|s – ti|.

Besides, we find that Z̃(ti) approximates the solution at ti – τ (ti) by (2.3)–(2.4). So we can
write A4(s) = E|e(ti – τ (ti))|2 and then we have

E
(

sup
t0≤v≤t

∣
∣e(v)

∣
∣2

)
≤ M

(
2(K4 + K5)(1 + K2) + K6

)
n∑

i=0

�ti
2

2
+ 2M

∫ t

t0

E
(

sup
t0≤v≤s

∣
∣e(v)

∣
∣2

)
ds.

Applying Gronwall’s lemma yields

E
(

sup
t0≤v≤t

∣
∣e(v)

∣
∣2

)
≤ C

n∑

i=0

�ti
2,

where C = M
2 (2(K4 + K5)(1 + K2) + K6)e2M(T–t0). Due to the arbitrariness of n, we can write

E
(

sup
t0≤v≤T

∣
∣e(v)

∣
∣2

)
= C

N–1∑

i=0

�ti
2 ≤ Ch

N–1∑

i=0

�ti,
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since
∑N–1

i=0 �ti = T – t0, the desired result is obtained. We now turn to case (L3) where τ

is the function of X(t). To this end, we break down A3(s) into four terms as follows:

A3(s) = A31 + A32 + A33 + A34,

where

A31(s) =
∫

Ω1

∣
∣X

(
s – τ

(
s, X(s)

))
– X

(
ti – τ

(
ti, X̃(ti)

))∣
∣2 dP,

A32(s) =
∫

Ω2

∣
∣X

(
s – τ

(
s, X(s)

))
– X

(
ti – τ

(
ti, X̃(ti)

))∣
∣2 dP,

A33(s) =
∫

Ω3

∣
∣X

(
s – τ

(
s, X(s)

))
– X

(
ti – τ

(
ti, X̃(ti)

))∣
∣2 dP,

A34(s) =
∫

Ω4

∣
∣X

(
s – τ

(
s, X(s)

))
– X

(
ti – τ

(
ti, X̃(ti)

))∣
∣2 dP,

with

Ω1 =
{

w, s – τ
(
s, X(s)

) ≤ t0 and ti – τ
(
ti, X̃(ti)

) ≤ t0
}

,

Ω2 =
{

w, s – τ
(
s, X(s)

) ≤ t0 and ti – τ
(
ti, X̃(ti)

)
> t0

}
,

Ω3 =
{

w, s – τ
(
s, X(s)

)
> t0 and ti – τ

(
ti, X̃(ti)

) ≤ t0
}

,

Ω4 =
{

w, s – τ
(
s, X(s)

)
> t0 and ti – τ

(
ti, X̃(ti)

)
> t0

}
.

Assumption 3, Assumption 2 and Theorem 2.1 yield that

A31(s) = E
∣
∣1Ω1

(
X

(
s – τ

(
s, X(s)

))
– X

(
ti – τ

(
ti, X̃(ti)

)))∣
∣2

≤ K4
(|s – ti| + E

∣
∣τ

(
s, X(s)

)
– τ

(
ti, X̃(ti)

)∣
∣
)

≤ K4
(|s – ti| + E

∣
∣τ

(
s, X(s)

)
– τ

(
ti, X(s)

)∣
∣

+ E
∣
∣τ

(
ti, X(s)

)
– τ

(
ti, X(ti)

)∣
∣ + E

∣
∣τ

(
ti, X(ti)

)
– τ

(
ti, X̃(ti)

)∣
∣
)

≤ K4
(
(1 + K2)|s – ti| + K3

(
E
∣
∣X(s) – X(ti)

∣
∣ + E

∣
∣e(ti)

∣
∣
))

≤ K4
(
(1 + K2)|s – ti| + K3

(√
K5|s – ti|1/2 + E

∣
∣e(ti)

∣
∣
))

,

by considering the dominant terms, we achieve

A31(s) ≤ K4K3
(√

K5|s – ti|1/2 + E
∣
∣e(ti)

∣
∣
)
.

Similarly, an upper bound for A34(s) using Theorem 2.1, Assumption 2 and Assumption 3
is obtained as

A34(s) ≤ K5K3
(√

K5|s – ti|1/2 + E
∣
∣e(ti)

∣
∣
)
.

To obtain an upper bound for A32 and A33, we suppose that there exists t∗, ti < t∗ < s, such
that

P
({

t∗ – τ
(
t∗, X

(
t∗)) = t0

})
= 1.
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We can write

A32(s) = E
∣
∣1Ω2

(
X

(
s – τ

(
s, X(s)

))
– X

(
ti – τ

(
ti, X̃(ti)

)))∣
∣2

≤ 2
∫

Ω2

(∣
∣X

(
s – τ

(
s, X(s)

))
– X

(
t∗ – τ

(
t∗, X

(
t∗)))∣∣2

+
∣
∣X

(
t∗ – τ

(
t∗, X

(
t∗))) – X

(
ti – τ

(
ti, X̃(ti)

))∣
∣2)dP.

In a similar manner which was employed in finding the upper bound of A31(s), we see that

A32(s) ≤ 2K3
√

K5(K4 + K5)|s – ti|1/2 + 2K5K3E
∣
∣e(ti)

∣
∣

and

A33(s) ≤ 2K3
√

K5(K4 + K5)|s – ti|1/2 + 2K4K3E
∣
∣e(ti)

∣
∣.

Then we have

A3(s) ≤ 5(K4 + K5)K3
√

K5|s – ti|1/2 + 3(K4 + K5)K3E
∣
∣e(ti)

∣
∣. (3.5)

Since Z̃(ti) = X̃(ti – τ (ti, X̃(ti))), the function A4 becomes

A4(s) = E
∣
∣e

(
ti – τ

(
ti, X̃(ti)

))∣
∣2. (3.6)

Therefore by (3.1), (3.2), (3.3), (3.5) and (3.6)

E
(

sup
t0≤v≤t

∣
∣e(v)

∣
∣2

)
≤ M

n∑

i=0

∫ ti+1

ti

5(K4 + K5)K3
√

K5|s – ti|1/2 ds

+ 3M(K4 + K5)K3

n∑

i=0

(ti+1 – ti)E
∣
∣e(ti)

∣
∣

+ 2M
∫ t

t0

E
(

sup
t0<v≤s

∣
∣e(v)

∣
∣2

)
ds.

The application of Gronwall’s lemma results in

E
(

sup
t0≤v≤t

∣
∣e(v)

∣
∣2

)
≤ M(K4 + K5)K3e2M(t–t0)

(
10
3

√
K5

n∑

i=0

|ti+1 – ti|3/2

+ 3
n∑

i=0

(ti+1 – ti)E
∣
∣e(ti)

∣
∣

)

,

we can write

E
(

sup
t0≤v≤t

∣
∣e(v)

∣
∣2

)
≤ C1h1/2 +

9C1

10
√

K5
E
(

sup
t0≤v≤t

∣
∣e(v)

∣
∣
)

, (3.7)
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where C1 = 10(T–t0)
3 M(K4 + K5)K3

√
K5e2M(T–t0). In view of (E(A))2 ≤ E(A2), by Jensen’s in-

equality, we can write

(
E
(

sup
t0≤v≤t

∣
∣e(v)

∣
∣
))2 ≤ C1h1/2 +

9C1

10
√

K5
E
(

sup
t0≤v≤t

∣
∣e(v)

∣
∣
)

. (3.8)

We now set

A = E
(

sup
t0≤v≤t

∣
∣e(v)

∣
∣
)

, (3.9)

and hence by (3.8) and (3.9)

A2 ≤ C1h1/2 + C2A,

where C2 = 9C1
10

√
K5

. By recurrence, one sees that

A2 ≤ C1h1/2 + C2A

≤ C1h1/2 + C2
√

C1h1/2 + C2A. (3.10)

We define

B = C1h1/2 + C2A. (3.11)

By (3.10), firstly,

A2 ≤ B, (3.12)

and secondly,

B ≤ C1h1/2 + C2
√

B. (3.13)

Since C2 > 0 and A ≥ 0, so from (3.11) we get

B – C1h1/2 ≥ 0. (3.14)

By (3.13) and (3.14), we observe that (B – C1h1/2)2 ≤ C2
2B and

B2 –
(
C2

2 + 2C1h1/2)B + C1
2h ≤ 0. (3.15)

For this quadratic inequality, we obtain two quantities for B as follows:

B1 =
(C2

2 + 2C1h1/2) –
√

C2
4 + 4C1C2

2h1/2

2
,

B2 =
(C2

2 + 2C1h1/2) +
√

C2
4 + 4C1C2

2h1/2

2
.
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Obviously, relation (3.15) is satisfied for B ∈ [B1, B2]. By the Taylor expansion of function
√

C2
4 + 4C1C2

2h1/2 about point C2
4, we achieve

B1 = C1
2C2

4ξ2
–3/2h,

B2 = C2
2 + C1

(
1 + C2

2ξ1
–1/2)h1/2,

where ξ1, ξ2 ∈ (C2
4, C2

4 + 4C1C2
2h1/2). By (3.12), A2 ≤ B for all B ∈ [B1, B2] and also B1 is

the sharpest bound. Note that if h → 0, then B1 → 0, and so A2 → 0. Hence, by definition
A in (3.9), E(supt0≤v≤t |e(v)|) → 0, and we get E(supt0≤v≤t |e(v)|2) → 0 by (3.7). Henceforth,
the convergence of the scheme is visible. In order to determine a sharp bound for A2, we
are interested in a quantity which is as small as possible. So B1 reveals the convergence
rate. Because A = O(h1/2) and consequently by (3.9) and (3.7), we obtain

E
(

sup
t0≤v≤t

∣
∣e(v)

∣
∣2

)
= O

(
h1/2).

Since there is no restriction on t, the desired result follows immediately. �

Let us now mention two important remarks in line with Theorem 3.1.

Remark 3.2 ([21]) As we know, there exist no two seminorms which can be generally ma-
jorized by a multiplier of each other. So there is no ambiguity if ‖ · ‖L1 and ‖ · ‖L2 are
proportional to different powers of h in Theorem 3.1.

Remark 3.3 Note that as the scheme proceeds on the partition Λ1 to integrate the solution
at the mesh points, where Λ1 = {t0, t1, . . . , tN = T} is a partition which covers all discrete
points, some points, which we can say are hidden, are brought up. For instance, tk ∈ Λ1

corresponds to tk – τk and the approximation Z̃k . We can rename tk – τk by tm and make
partition Λ2 by means of these points. Besides, here, the underlying scheme and the in-
terpolation, which approximate the stochastic process on Λ1 and Λ2, respectively, are the
same. So, practically, the proposed approximation computes the solution at the points in
Λ1 and Λ2.

4 Stability
The main objective in the numerical stability literature is to examine whether the numeri-
cal solution mimics the behaviour of the exact process or not. In particular, it is important
to know the reaction of the scheme when n tends to infinity whilst the exact process be-
comes trivial as large as t becomes very large. In fact, the impact of rounding errors, which
are not inevitable, on the numerical results in the long term case is analysed. In this sec-
tion, the asymptotic mean-square stability, corresponding to SDDE (1.1) and also a linear
test equation, will be challenged.

Definition 4.1 The exact solution (strong solution) of SDDE (1.1) denoted by X is named
asymptotically mean-square stable if

lim
t→∞E

∣
∣X(t)

∣
∣2 = 0.
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In the sequel, we present a theorem which deals with the mean-square stability of SDDE
(1.1) and the proof sketch is given in the Appendix.

Theorem 4.2 Given SDDE (1.1) which satisfies Assumptions 1–3, assume that there exist
a positive constant λ and non-negative constants α0, α1, β0 and β1 such that

xT a(x, 0) ≤ –λ|x|2,
∣
∣a(x, 0) – a(x̄, y)

∣
∣ ≤ α0|x – x̄| + α1|y|,

trace
[
bT (x, y)b(x, y)

] ≤ β0|x|2 + β1|y|2

for all x, x̄, y ∈R
d . If

λ > α1 +
1
2

(β0 + β1),

then the zero solution is mean-square stable.

Definition 4.3 Let X̃ be the numerical solution of SDDE (1.1). If there exists h̄(a, b, c, d) >
0 such that the maximum stepsize lies in (0, h̄(a, b, c, d)), then the scheme is called asymp-
totically mean-square stable if

lim
k→∞

E
∣
∣X̃(tk)

∣
∣2 = 0.

Theorem 4.4 Given SDDE (1.1), let Assumptions 1–3 hold and ‖η‖L2(D) < ∞. Assume that
there exist two positive constants λ1 and λ2 and non-negative constants β0 and β1 such that

⎧
⎨

⎩

xT a(x, y) ≤ –λ1|x|2 + λ2|y|2,

trace[bT (x, y)b(x, y)] ≤ β0|x|2 + β1|y|2
(4.1)

for all x, y ∈R
d . Assume that a(0, 0) = 0 and b(0, 0) = 0. If 2λ1 > 2λ2 +β0 +β1, β0λ2 +β1λ1 �= 0

and �tk ∈ (0, 2λ1–2λ2–β0–β1
2(β0λ2+β1λ1) ), then scheme (2.2)–(2.4) is asymptotically mean-square stable.

Proof From (2.2), we can write

⎧
⎨

⎩

|X̃(tk)|2 = 〈X∗(tk) – a(X∗(tk), Z̃(tk))�tk , X∗(tk) – a(X∗(tk), Z̃(tk))�tk〉
= |X∗(tk)|2 – 2X∗T (tk)a(X∗(tk), Z̃(tk))�tk + |a(X∗(tk), Z̃(tk))|2�tk

2,

by (4.1), we get

∣
∣X̃(tk)

∣
∣2 ≥ ∣

∣X∗(tk)
∣
∣2 + 2

(
λ1

∣
∣X∗(tk)

∣
∣2 – λ2

∣
∣Z̃(tk)

∣
∣2)

�tk +
∣
∣a

(
X∗(tk), Z̃(tk)

)∣
∣2

�tk
2

≥ ∣
∣X∗(tk)

∣
∣2 + 2

(
λ1

∣
∣X∗(tk)

∣
∣2 – λ2

∣
∣Z̃(tk)

∣
∣2)

�tk .

Henceforth, we get

∣
∣X∗(tk)

∣
∣2 ≤ 1

1 + 2λ1�tk

(∣
∣X̃(tk)

∣
∣2 + 2λ2

∣
∣Z̃(tk)

∣
∣2

�tk
)
. (4.2)
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Again, from (2.2), we have

∣
∣X̃(tk+1)

∣
∣2 =

〈
X∗(tk) + b

(
X∗(tk), Z̃(tk)

)
�Wk , X∗(tk) + b

(
X∗(tk), Z̃(tk)

)
�Wk

〉

=
∣
∣X∗(tk)

∣
∣2 + 2X∗T (tk)b

(
X∗(tk), Z̃(tk)

)
�Wk

+
(
b
(
X∗(tk), Z̃(tk)

)
�Wk

)T(
b
(
X∗(tk), Z̃(tk)

)
�Wk

)
.

By applying the expectation and using (4.1) and (4.2), we get

E
∣
∣X̃(tk+1)

∣
∣2 = E

∣
∣X∗(tk)

∣
∣2 + E

(
trace

[
b
(
X∗(tk), Z̃(tk)

)T b
(
X∗(tk), Z̃(tk)

)])
�tk

≤ E
∣
∣X∗(tk)

∣
∣2 +

(
β0E

∣
∣X∗(tk)

∣
∣2 + β1E

∣
∣Z̃(tk)

∣
∣2)

�tk

≤ 1 + β0�tk

1 + 2λ1�tk

(
E
∣
∣X̃(tk)

∣
∣2 + 2λ2E

∣
∣Z̃(tk)

∣
∣2

�tk
)

+ β1E
∣
∣Z̃(tk)

∣
∣2

�tk

=
1 + β0�tk

1 + 2λ1�tk
E
∣
∣X̃(tk)

∣
∣2 +

(
2λ2�tk(1 + β0�tk)

1 + 2λ1�tk
+ β1�tk

)

E
∣
∣Z̃(tk)

∣
∣2

=
1 + β0�tk

1 + 2λ1�tk
E
∣
∣X̃(tk)

∣
∣2 +

(
2λ2�tk(1 + β0�tk)

1 + 2λ1�tk
+ β1�tk

)

E
∣
∣X̃(tmk )

∣
∣2,

where X̃(tmk ) = Z̃(tk) by tmk = tk – τk . Hence, we can write

E
∣
∣X̃(tk+1)

∣
∣2 ≤

(
(1 + 2λ2�tk)(1 + β0�tk)

1 + 2λ1�tk
+ β1�tk

)

· max
{

E
∣
∣X̃(tk)

∣
∣2, E

∣
∣X̃(tmk )

∣
∣2}.

To have mean-square stability, we set (1+2λ2�tk )(1+β0�tk )
1+2λ1�tk

+β1�tk < 1, and so we obtain �tk ∈
(0, 2λ1–2λ2–β0–β1

2(β0λ2+β1λ1) ) by assumption that 2λ1 > 2λ2 + β0 + β1 and β0λ2 + β1λ1 �= 0. �

As it is customary, we consider a linear scalar test equation with state-dependent delay:

⎧
⎨

⎩

dX(t) = (aX(t) + bX(t – τ )) dt + (cX(t) + dX(t – τ )) dW (t), t ∈ [t0, T],

X(t) = η(t), t ∈ [t0 – r, t0],
(4.3)

where a, b, c, d ∈ R and τ = τ (t, X(t)). Let ‖η‖L2(D) < ∞. Such test problems in the case of
discrete delay and time-dependent delay can be found in [23, 28]. The following corollary
states what condition results in asymptotic mean-square stability for (4.3).

Corollary 4.5 If the following condition is satisfied

a < –|b| –
(|c| + |d|)2

2
, (4.4)

then SDDE (4.3) is mean-square stable.

Proof By Theorem 4.2 and setting λ = –a, α0 = |a|, α1 = |b|, β0 = 2|c|2, β1 = 2|d|2, the
desired result is achieved. �
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Now we turn our attention to the proposed method (2.2)–(2.4). Clearly, applying this
scheme to the given equation (4.3) is indicated as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

X̃k+1 = 1+c�Wk
1–a�tk

(X̃k + bZ̃k�tk ) + dZ̃k�Wk ,

where if tk – τk ∈ [tm, tm+1),

Z̃k = 1+c(W (tk–τk )–W (tm))
1–a(tk –τk –tm) (X̃m + bZ̃m(tk – τk – tm)) + dZ̃m(W (tk – τk) – W (tm)),

else if tk – τk ≤ t0, Z̃k = η(tk – τk).

(4.5)

Remember that the scheme has been applied on Λ1, which is a non-uniform partition as
Λ1 = {t0, t1, . . . , tN = T}, with �tk = tk+1 – tk and �Wk = Wk+1 – Wk . Based on what was
discussed in Remark 3.3, we have an approximation on Λ1 ∪ Λ2. This survey paves the
way to analyse the stability of the scheme. In the following, the sufficient conditions to
mean-square stability of scheme (4.5) will be determined.

Theorem 4.6 Under condition (4.4), the numerical scheme (4.5) applied to linear SDDE
(4.3) is asymptotic mean-square stable by some limitations on the stepsize.

Proof As we know, practically, the scheme proceeds along the partition Λ1 ∪ Λ2. Thus,
we can write

|X̃k+1|2 ≤
(

1 + c�Wk

1 – a�tk

)2

|X̃k|2 + 2
(

1 + c�Wk

1 – a�tk

)(
1 + c�Wk

1 – a�tk

b�tk + d�Wk

)

|X̃k||Z̃k|

+
(

1 + c�Wk

1 – a�tk

b�tk + d�Wk

)2

|Z̃k|2.

Now, by applying the expectation, we have

E|X̃k+1|2 ≤ 1 + c2�tk

|1 – a�tk |2
E|X̃k|2 + 2

(
1 + c2�tk

|1 – a�tk |2
|b|�tk +

|dc|
|1 – a�tk |

�tk

)

E
(|X̃k||Z̃k|

)

+
(

1 + c2�tk

|1 – a�tk |2
b2�tk

2 +
2|dbc|

|1 – a�tk |
�tk

2 + d2�tk

)

E|Z̃k|2.

By replacing 2|X̃k||Z̃k| to |X̃k|2 + |Z̃k|2, we obtain

E|X̃k+1|2 ≤
(

1 + c2�tk

|1 – a�tk |2
(
1 + |b|�tk

)
+

|dc|
|1 – a�tk |

�tk

)

E|X̃k|2

+
(

1 + c2�tk

|1 – a�tk |2
|b|�tk

(
1 + |b|�tk

)
+

|dc|�tk (1 + 2|b|�tk )
|1 – a�tk |

+ d2�tk

)

E|Z̃k|2,

we can rearrange the relation above as follows:

E|X̃k+1|2 ≤
(

1 + c2�tk

|1 – a�tk |2
(
1 + 2|b|�tk + b2�tk

2) + 2
|dc|�tk (1 + |b|�tk )

|1 – a�tk |
+ d2�tk

)

× max
{

E|X̃k|2, E|Z̃k|2
}

.
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Note that based on what was discussed on the mesh points, tk – τk ∈ Λ2, and so we can
replace Z̃k with X̃m in which tm = tk – τk . Hence

E|X̃k+1|2 ≤ M(a, b, c, d,�tk ) · max
{

E|X̃k|2, E|X̃m|2},

where

M(a, b, c, d,�tk ) =
1 + c2�tk

|1 – a�tk |2
(
1 + 2|b|�tk + b2�tk

2) + 2
|dc|�tk (1 + |b|�tk )

|1 – a�tk |
+ d2�tk .

Obviously, in order to have the desired result, we have to impose

M(a, b, c, d,�tk ) < 1, (4.6)

that is, �tk must be selected such that M will be bounded by 1. Relation (4.6) yields that

(
1 + c2�tk

)(
1 + 2|b|�tk + b2�tk

2) + 2|dc|�tk

(
1 + |b|�tk

)|1 – a�tk |
+ d2�tk |1 – a�tk |2 < |1 – a�tk |2,

and then

(|cb| – |ad|)2
�tk

2 +
(
2
(|c| + |d|)(|cb| – a|d|) + b2 – a2)�tk

+
(
2a + 2|b| +

(|c| + |d|)2) < 0,

we now come up with a quadratic equation which can be invoked as

A(a, b, c, d)�2 + B(a, b, c, d)� + C(a, b, c, d) < 0, (4.7)

with

A(a, b, c, d) = (ad)2 – 2a|bcd| + (bc)2,

B(a, b, c, d) = 2
(|c| + |d|)(|cb| – a|d|) + b2 – a2,

C(a, b, c, d) = 2a + 2|b| +
(|c| + |d|)2.

We define

J(a, b, c, d,�) = A(a, b, c, d)�2 + B(a, b, c, d)� + C(a, b, c, d).

Here, we first consider

J(a, b, c, d,�) = 0, (4.8)

and compute the discriminant � for that. Obviously, A(a, b, c, d) ≥ 0 and by Theorem 4.5
we have

C(a, b, c, d) < 0.



Akhtari Advances in Difference Equations        (2019) 2019:396 Page 16 of 34

It follows that � ≥ 0 with

� = B(a, b, c, d)2 – 4A(a, b, c, d)C(a, b, c, d).

If A(a, b, c, d) > 0, then the discriminant � is positive, and we have two distinct roots
h1(a, b, c, d) and h2(a, b, c, d). Furthermore, given the relation between the roots of a poly-
nomial and its coefficients, we get

h1(a, b, c, d) ∗ h2(a, b, c, d) =
C(a, b, c, d)
A(a, b, c, d)

< 0.

It is profitably viewed that h1(a, b, c, d) and h2(a, b, c, d) have different signs. Without
any loss of generality, we assume that h1(a, b, c, d) < h2(a, b, c, d), then (4.7) is satisfied
for all �tk ∈ (h1(a, b, c, d), h2(a, b, c, d)). Hence, if the stepsize is taken in the interval
(0, h2(a, b, c, d)), then the stability of the scheme will be guaranteed. If A(a, b, c, d) = 0, then
B(a, b, c, d) = b2 – a2 and by Theorem 4.5, b2 < a2, and so B(a, b, c, d) < 0. In this case, for
all stepsizes, relation (4.7) is satisfied, and so unconditional stability arises. So we can say
if �tk ∈ (0, h̄) for all k, where h̄ = ∞ or h̄ = h2(a, b, c, d), scheme (4.5) is asymptotic mean-
square stable. �

Remark 4.7 We can prove Theorem 4.6 using Theorem 4.4 by setting λ1 = –a– |b|
2 , λ2 = |b|

2 ,
β0 = |c|2 + |c||d| and β1 = |d|2 + |c||d|. By (4.4), we have 2λ1 > 2λ2 + β0 + β1 and β0λ2 +
β1λ1 �= 0. By Theorem 4.4, if we take the stepsize in (0, h∗), h∗ = –2a–2|b|–(|c|+|d|)2

|b|(|c|2+|cd|)+(|d|2+|cd|)(–2a–|b|) ,
then scheme (4.5) is mean-square stable. Thus, if �tk ∈ (0, h̃) for all k, then scheme (4.5) is
mean-square stable where h̃ = max(h∗, h̄). Note that h̄ was obtained in the proof of Theo-
rem 4.6.

5 Simulation experiments
In this section, we seek the accuracy and efficiency of the numerical scheme for some test
problems. As we know, stochastic models in addition to the deterministic aspect possess
a probabilistic one. Accordingly, the noise process must be properly simulated in order to
obtain an efficient numerical scheme. In this work, the Wiener process models the noise,
and one must be careful when generating the Brownian motion and take an approach
such that the correct paths of that are followed. Particularly, due to the delay nature, some
points become evident during the implementation of the scheme which do not belong
to the partition but have to be simulated. For this aim, given the Markov property of the
Wiener process, one can utilise a linear interpolation to simulate Wt if the values Wt1 and
Wt2 , t1 < t < t2, are known. We call �Wti , �Wti = Wti+1 –Wti , to be the Brownian increment
and �ti, �ti = ti+1 – ti, to be time one. Besides, one very challenging point in the study of
stochastic delay differential equations is the non-availability of the exact solution of the
most test problems. So one has to obtain the exact one by discretising the equation on
a fine mesh. Note that, because of the computational and round off errors, too delicate
partition is not necessarily the right choice. Thus, we must be cautious in choosing the
right mesh. We begin with a discrete delay.
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Example 5.1

⎧
⎨

⎩

dX(t) = (–3X(t) + 0.5X(t – 1)) dt + (X(t) + X(t – 1)) dW (t), t ∈ [0, T],

η(t) = 1 + t, t ∈ [–1, 0].

Here τ = 1 and in the determining the parameters, the numerical stability condition
has been taken into account, see relation (4.4), and such condition will also be considered
in the two next examples. Since delay is constant, for every ti, ti – 1 point situates in a
subinterval far from current interval, and accordingly the overlapping does not exist. We
postpone this discussion to the next example. Consequently, the relevant programmes are
easily accomplished, which leads us to Table 1, Fig. 1 and Fig. 5.

As a second problem, we consider the time-dependent case with a delay function (1 +
t2)–1 decreasing versus time.

Example 5.2

⎧
⎨

⎩

dX(t) = (–4X(t) + X(t – 1
1+t2 )) dt + (X(t) + X(t – 1

1+t2 )) dW (t), t ∈ [0, T],

η(t) = 1, t ∈ [–1, 0].

By virtue of the fact that (1 + t2)–1 decreases in t, it is expected that the implementation
of the scheme with a slight difference is similar to (L1). Here, unlike the constant delay,
we face overlapping. We use the word overlapping if during the implementation of the
scheme, there exists a point ti+1 such that ti+1 – τi+1 ∈ [ti, ti+1) separates the latter interval
into [ti, ti+1 – τi+1) and [ti+1 – τi+1, ti+1). In this case, by approximating the process at ti+1 –
τi+1, because of the fact that the scheme is one-step, recomputation of X̃(ti+1) is required.
So the generation of each path is more time-consuming than that of the previous one.
Furthermore, stepsize 2–12 will be selected to create a partition in order to simulate the
exact solution in these two examples.

Example 5.3

⎧
⎪⎪⎨

⎪⎪⎩

dX(t) = (–5X(t) + X(t – |X(t)|
c+|X(t)| )) dt

+ (0.5X(t) + X(t – |X(t)|
c+|X(t)| )) dW (t), t ∈ [–1, T],

X(t) = 0.5, t ≤ –1,

where τ (t, X(t)) = |X(t)|
c+|X(t)| , and let c be a positive constant.

Here, according to the dependence of the delay term on the noise process, the simulation
is not analogous to the two previous ones. Notice that for every point ti, in addition to X̃i,
the amount Z̃i has to be computed, namely approximation of the process at ti –τi, and if we
denote this point by tmi, then the value Z̃mi has to be computed. If we set tki = tmi –τmi, then
an important question is whether the quantity Z̃ki has to be computed or not. Since in the
two first cases of delay term we have tmj > tmi > tki for every j such that j > i, so we do not
need the approximation Z̃ki. Note that τ is a decreasing function in Example 5.2. Hence, in
order to avoid nesting calculations, we can use α for the value of the Z̃ki, requiring α to be
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constant. But in the state-dependent case, as we evidently observed in our running, unlike
the two first cases, going back to the past is not necessarily consecutive. Hence, we might
use Z̃ki during the next computations, and so it has to be modified. Assume that nesting
calculations have to be required at the points tki1 < tki2 < · · · < tkil < tki, and naturally they
have to be stopped after a finite period. For this, we rectify Z̃ki1 by averaging every Z̃j where
Z̃j �= α for j < ki1. By the way, the overlapping problem exists here, too. Thus, as mentioned
in the previous example, we must carefully execute the scheme. Considering the case of
state-dependent delay which includes more computation errors, too many small stepsizes
may lead us to a wrong direction. So our proposed partition is made by the stepsize 2–11.
Needless to say, time and computing costs are considerably higher than those of the two
previous cases.

5.1 Comment on results
After having finished implementing the numerical scheme for the three examples above,
we now hint at some tips in line with the obtained numerical results. To simplify the nota-
tion, let Xe and Xa stand for the exact and numerical solutions, respectively. The numer-
ical implementations have been made with various input stepsizes up to the end of the
interval and the exact one by a small stepsize as previously mentioned for N discretized
Brownian paths. Then, in order to visualise error εT = E|Xe(T) – Xa(T)| inspiring confi-
dence to the scheme, practically, we utilise the sample mean of the individual paths as
1
N

∑N
i=1 |Xi

e(T) – Xi
a(T)| provided N is sufficiently large. Here, N = 10,000. All four Ta-

bles 1, 2, 3 and 4 reveal the reasonable behaviour of the computational error to the shrink-
aging of the stepsize. Apparently, the smaller stepsize results in improving the approxima-
tion, which indicates the significant response of the scheme. In order to indicate the speed
of convergence of the scheme, we draw the logarithm of global computational error versus
that of the stepsize. In doing so, the command loglog in Matlab, which is interpreted as the
logarithm function, has been applied and it provides us with Figs. 1, 2, 3 and 4. We observe
that the obtained curves are parallel to the functions x 1

2 and x 1
4 , which is in agreement with

Table 1 Computational error at endpoint T = 1 for Example 5.1

stepsize 2–5 2–6 2–7 2–8

εT 0.0476 0.0318 0.0214 0.0145

Table 2 Computational error at endpoint T = 1 for Example 5.2

stepsize 2–5 2–6 2–7 2–8

εT 0.0917 0.0590 0.0394 0.0266

Table 3 Computational error at endpoint T = 1 for Example 5.3 with c = 0.01

stepsize 2–5 2–6 2–7 2–8

εT 0.1619 0.1374 0.1181 0.1017

Table 4 Computational error at endpoint T = 1 for Example 5.3 with c = 1

stepsize 2–5 2–6 2–7 2–8

εT 0.0377 0.0281 0.0231 0.0195
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Figure 1 The rate of strong convergence for Example 5.1 with T = 1. The logarithm of εT is denoted by the
green line with asterisk which is parallel with the dashed red line by slope 1

2

Figure 2 The rate of strong convergence for Example 5.2 with T = 1. The logarithm of εT is denoted by the
green line with asterisk which is parallel with the dashed red line by slope 1

2

the theoretical results. Remember that we must pay particular attention to (4.4) in order
to preserve the numerical stability. The parameters of the given problem are T = 20 and
�ti = 0.2. Note that Figs. 5, 6, 7 and 8 present the mean of normed approximation over
N realisations as 1

N
∑N

i=1 |Xa
i (tn)|2, which establishes the stability. Regarding the trends,

one can see that the summation converges to zero as tn becomes larger. By means of these
results, we conclude that scheme (2.2)–(2.4) is a well-developed scheme for problem (1.1).

6 Conclusion
In this paper, emphasising the numeric, the stochastic differential equations with a vari-
ety of delay terms were interrogated. A new continuous split-step scheme based on the
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Figure 3 The rate of strong convergence for Example 5.3 with T = 1, c = 0.01. The logarithm of εT is denoted
by the green line with asterisk which is parallel with the dashed red line by slope 1

4

Figure 4 The rate of strong convergence for Example 5.3 with T = 1, c = 1. The logarithm of εT is denoted by
the green line with asterisk which is parallel with the dashed red line by slope 1

4

Euler–Maruyama, with a non-uniform partition and free-limitation stepsize, was intro-
duced and the convergence in the L2 sense was stabilised. As expected, because of using
an interpolation which is the same as the underlying scheme, the rate of mean-square
convergence takes the amount 1/2 in the two first delay terms and it does 1/4 in the last
one. The asymptotic mean-square stability of the scheme was probed. The stability and
convergence concepts, as the two basic desirable properties, satisfied the efficiency of the
scheme. More general test equations under weaker conditions and also the other senses
of stability such as almost sure asymptotic (exponential) stability in the state-dependent
case, can be inquired in the future.
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Figure 5 The average of numerical solution over 10,000 discretized Brownian paths with h = 0.2 and T = 20
for Example 5.1

Figure 6 The average of numerical solution over 10,000 discretized Brownian paths with h = 0.2 and T = 20
for Example 5.2

Appendix: Proofs
In this section, we deal with proving Theorems 2.1 and 4.2. First, we start with a useful
lemma.

Lemma A.1 Assume that X, Y : Ω → D̄ are two stochastic processes with D̄ = C([t0 –
r, T],Rd). Furthermore, X and Y are denoted by ηX and ηY on [t0 – r, t0], respectively. Con-
sider the function τ which has been defined in Assumption 2 and suppose that there exists
a positive constant H such that

‖X‖L2(D̄) ≤ H , ‖Y‖L2(D̄) ≤ H . (A.1)
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Figure 7 The average of numerical solution over 10,000 discretized Brownian paths with h = 0.2, T = 20 and
c = 0.01 for Example 5.3

Figure 8 The average of numerical solution over 10,000 discretized Brownian paths with h = 0.2, T = 20 and
c = 1 for Example 5.3

Then there exists a positive constant L∗ such that, for all t ∈ [t0, T],

E
∣
∣X

(
t – τ

(
t, X(t)

))
– Y

(
t – τ

(
t, Y (t)

))∣
∣2

≤ L∗
(

E
(

sup
t0≤s≤t

∣
∣X(s) – Y (s)

∣
∣2

)
+ ‖ηX – ηY ‖2

L2(D)

)
, (A.2)

where D = C([t0 – r, t0],Rd).

Proof We divide [t0, T] into two sets as follows:

I1 =
{

t ∈ [t0, T]; P
{

X(t) �= Y (t)
}

= 0
}

,

I2 =
{

t ∈ [t0, T]; P
{

X(t) �= Y (t)
}

> 0
}

.
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For all t ∈ I1, we can easily write

E
∣
∣X

(
t – τ

(
t, X(t)

))
– Y

(
t – τ

(
t, Y (t)

))∣
∣2

≤
(

E
(

sup
t0≤s≤t

∣
∣X(s) – Y (s)

∣
∣2

)
+ ‖ηX – ηY ‖2

L2(D)

)
,

if t ∈ I2, then we define

Lt =
E|X(t – τ (t, X(t))) – Y (t – τ (t, Y (t)))|2

E|X(t) – Y (t)|2 + ‖ηX – ηY ‖2
L2(D)

.

We claim that Lt is bounded above. If we suppose that the claim is not true, then for every
α > 0 there exists tα ∈ I2 such that Ltα > α and

E
∣
∣X

(
tα – τ

(
tα , X(tα)

))
– Y

(
tα – τ

(
tα , Y (tα)

))∣
∣2

> α
(
E
∣
∣X(tα) – Y (tα)

∣
∣2 + ‖ηX – ηY ‖2

L2(D)
)
,

clearly, due to (A.1), E|X(tα) – Y (tα)|2 + ‖ηX – ηY ‖2
L2(D) ≤ 4H2, and so the right-hand side

of the expression above will tend to infinity as α → ∞, i.e.

E
∣
∣X

(
tα – τ

(
tα , X(tα)

))
– Y

(
tα – τ

(
tα , Y (tα)

))∣
∣2 → ∞.

Also, by (A.1) again, for all α > 0,

E
∣
∣X

(
tα – τ

(
tα , X(tα)

))
– Y

(
tα – τ

(
tα , Y (tα)

))∣
∣2 ≤ 2H2.

These two last expressions reveal a contradiction. Therefore, the claim is true and we can
set

L̄ = sup
t∈I2

Lt .

Finally, we obtain

E
∣
∣X

(
t – τ

(
t, X(t)

))
– Y

(
t – τ

(
t, Y (t)

))∣
∣2

≤ L̄
(
E
∣
∣X(t) – Y (t)

∣
∣2 + ‖ηX – ηY ‖2

L2(D)
)

≤ L̄
(

E
(

sup
t0≤s≤t

∣
∣X(s) – Y (s)

∣
∣2

)
+ ‖ηX – ηY ‖2

L2(D)

)
,

where t ∈ I2. By setting L∗ = max{L̄, 1}, the desired result is obtained. �

In the sequel, we define a unique strong solution for SDDE (1.1) in the third case.

Definition A.2 The stochastic process X is called a strong solution of SDDE (1.1) in case
(L3) if the following properties are satisfied:

1. X(t) is continuous and adapted to Ft for all t ∈ [t0, T];
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2. For all t ≥ 0, with probability one we have

∫ t

t0

∣
∣a

(
X(s), X

(
s – τ

(
s, X(s)

)))∣
∣ds +

∫ t

t0

∣
∣b

(
X(s), X

(
s – τ

(
s, X(s)

)))∣
∣2 ds < ∞;

3. For all t0 ≤ t ≤ T , as almost surely

X(t) = η(t0) +
∫ t

t0

a
(
X(s), X

(
s – τ

(
s, X(s)

)))
ds

+
∫ t

t0

b
(
X(s), X

(
s – τ

(
s, X(s)

)))
dW (s),

and if we set t̄ = t – τ (t, X(t)) and t̄ ≤ t0, then X(t̄) = η(t̄).
If P{X(t) = X̄(t), t0 ≤ t ≤ T} = 1 for all stochastic processes X̄ satisfying the three condi-
tions above, then we say the solution satisfies the uniqueness.

Now we deal with the proving of Theorem 2.1. Since there exist some texts which deal
with the existence and uniqueness for cases (L1) and (L2), so we just consider the third
case.

Proof of Theorem 2.1 First, supposing that the equation has a strong solution X, we show
that ‖X‖L2(D̄) < ∞, and then X is unique in the strong sense. Finally, we deal with the
existence of the solution. Note that, for every t ∈ [t0, T], by Hölder’s and Doob’s martingale
inequalities, we derive

E
(

sup
t0≤v≤t

∣
∣X(v)

∣
∣2

)
≤ 3E

∣
∣η(t0)

∣
∣2 + 3(t – t0)

∫ t

t0

E
∣
∣a

(
X(s), X

(
s – τ

(
s, X(s)

)))∣
∣2 ds

+ 12
∫ t

t0

E
∣
∣b

(
X(s), X

(
s – τ

(
s, x(s)

)))∣
∣2 ds,

where the relation (a + b + c)3 ≤ 3a3 + 3b3 + 3c3 has been used. By Assumption 1 and
remembering that a(0, 0) = 0 and b(0, 0) = 0, we have

E
(

sup
t0≤v≤t

∣
∣X(v)

∣
∣2

)
≤ 3E

∣
∣η(t0)

∣
∣2 + 2

(
3(t – t0) + 12

)

× K1

∫ t

t0

(
E
∣
∣X(s)

∣
∣2 + E

∣
∣X

(
s – τ

(
s, X(s)

))∣
∣2)ds

≤ 3E
∣
∣η(t0)

∣
∣2 + 2

(
3(t – t0) + 12

)
K1

∫ t

t0

E
(

sup
t0–r≤v≤t0

∣
∣X(v)

∣
∣2

)
ds

+ 4
(
3(t – t0) + 12

)
K1

∫ t

t0

E
(

sup
t0≤v≤s

∣
∣X(v)

∣
∣2

)
ds.

We know ‖η‖L2(D) < ∞. Hence

E
(

sup
t0≤v≤t

∣
∣X(v)

∣
∣2

)
≤ 3E

∣
∣η(t0)

∣
∣2 + 2

(
3(t – t0) + 12

)
K1(t – t0)‖η‖2

L2(D)

+ 4
(
3(t – t0) + 12

)
K1

∫ t

t0

E
(

sup
t0≤v≤s

∣
∣X(v)

∣
∣2

)
ds.
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By Gronwall’s inequality, we get

E
(

sup
t0≤v≤t

∣
∣X(v)

∣
∣2

)
≤ ke4K1(3(t–t0)+12)(t–t0), (A.3)

where k = 3E|η(t0)|2 + 2(3(t – t0) + 12)K1(t – t0)‖η‖2
L2(D). So

E
(

sup
t0–r≤v≤t

∣
∣X(v)

∣
∣2

)
≤ ‖η‖2

L2(D) + ke4K1(3(t–t0)+12)(t–t0).

By setting H2 = ‖η‖2
L2(D) + ke4K1(3(T–t0)+12)(T–t0), the exact solution is bounded in L2 as

(
E
(

sup
t0–r≤v≤T

∣
∣X(v)

∣
∣2

))1/2 ≤ H . (A.4)

Note that H > 0. In order to prove the Hölder type of the exact solution, we suppose that,
for every positive constant α > 0, there exist tα , sα ∈ [t0, T] such that

E
∣
∣X

(
ρ(tα)

)
– X

(
ρ(sα)

)∣
∣2 > αE

∣
∣ρ1(tα) – ρ2(sα)

∣
∣,

if α → ∞, then E|X(ρ(tα)) – X(ρ(sα))|2 → ∞. Note that ρ1(tα) and ρ2(sα) are the two
bounded random variables taking values in [t0, T]. In addition, from (A.4) we have
E|X(ρ1(tα)) – X(ρ2(sα))|2 ≤ 2H2. So it is a contradiction, and then there exists a positive
constant, like K5, such that (2.1) holds.

Now we firstly prove the uniqueness and secondly the existence. Suppose that X and Y
are the two strong solutions of the equation with Y (s) = X(s) = η(s) for all s ∈ [t0 – r, t0].
Note that, for all t ∈ (t0, T],

E
(

sup
t0≤v≤<t

∣
∣X(v) – Y (v)

∣
∣2

)

≤ 2E
(

sup
t0≤v≤t

∣
∣
∣
∣

∫ v

t0

(
a
(
X(s), X

(
s – τ

(
s, X(s)

)))
– a

(
Y (s), Y

(
s – τ

(
s, Y (s)

))))
ds

∣
∣
∣
∣

2)

+ 2E
(

sup
t0≤v≤t

∣
∣
∣
∣

∫ v

t0

(
b
(
X(s), X

(
s – τ

(
s, X(s)

)))

– b
(
Y (s), Y

(
s – τ

(
s, Y (s)

))))
dW (s)

∣
∣
∣
∣

2)

,

by Assumption 1, Hölder’s and Doob’s inequalities

E
(

sup
t0≤v≤t

∣
∣X(v) – Y (v)

∣
∣2

)

≤ (
2(t – t0) + 8

)

× K1

∫ t

t0

(
E
∣
∣X(s) – Y (s)

∣
∣2 + E

∣
∣X

(
s – τ

(
s, X(s)

))
– Y

(
s – τ

(
s, Y (s)

))∣
∣2)ds

≤ 2
(
(t – t0) + 4

)
K1

(
1 + L∗)

∫ t

t0

(E
(

sup
t0≤v≤s

∣
∣X(v) – Y (v)

∣
∣2

)
ds,
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where (A.2) has been employed. Note that ηX = ηY . Finally, by Gronwall’s inequality, we
have

E
(

sup
t0≤v≤t

∣
∣X(v) – Y (v)

∣
∣2

)
= 0.

So, for all t ∈ [t0, T], X(t) = Y (t) with probability one, and then the proof of uniqueness
is finished. Now we turn to the existence. To do this, the classical fixed-point approach,
which is also called Picard iteration, is applied. Remember that τ is a bounded continuous
process taking values in (0, r]. In the sequel, we define sequence {Xn(t)}t∈[t0–r,T] as

⎧
⎨

⎩

X0(t) = η(t0), t ∈ [t0, T],

X0(t) = η(t), t ∈ [t0 – r, t0],
(A.5)

and
⎧
⎪⎪⎨

⎪⎪⎩

X1(t) = X0(t0) +
∫ t

t0
a(X0(s), X0(s – τ (s, X0(s)))) ds

+
∫ t

t0
b(X0(s), X0(s – τ (s, X0(s)))) dW (s), t ∈ [t0, T],

X1(t) = η(t), t ∈ [t0 – r, t0],

(A.6)

and
⎧
⎪⎪⎨

⎪⎪⎩

X2(t) = X1(t0) +
∫ t

t0
a(X1(s), X1(s – τ (s, X1(s)))) ds

+
∫ t

t0
b(X1(s), X1(s – τ (s, X1(s)))) dW (s), t ∈ [t0, T],

X2(t) = η(t), t ∈ [t0 – r, t0],

(A.7)

and in this way, for all n ≥ 2, we define

⎧
⎪⎪⎨

⎪⎪⎩

Xn+1(t) = Xn(t0) +
∫ t

t0
a(Xn(s), Xn(s – τ (s, Xn(s)))) ds

+
∫ t

t0
b(Xn(s), Xn(s – τ (s, Xn(s)))) dW (s), t ∈ [t0, T],

Xn+1(t) = η(t), t ∈ [t0 – r, t0].

(A.8)

Note that since η(t) ∈ Ft , X1(t) ∈ Ft and so X2(t) ∈ Ft , too. By induction Xn(t) ∈ Ft for
all n. Moreover, due to the continuity of η, X1 is continuous, and in the same manner, Xn is
continuous for all n. Besides, due to ‖η‖L2(D) < ∞, by Assumption 1, Hölder’s and Doob’s
inequalities

E
(

sup
t0≤v≤t

∣
∣Xn(v)

∣
∣2

)
≤ 3E

∣
∣η(t0)

∣
∣2 + 6

(
(t – t0) + 4

)
K1(t – t0)‖η‖2

L2(D)

+ 12
(
(t – t0) + 4

)
K1

∫ t

t0

E
(

sup
t0≤v≤s

∣
∣Xn–1(v)

∣
∣2

)
ds

for all t ≥ t0 and n. We can write

max
1≤n≤k

E
(

sup
t0≤v≤t

∣
∣Xn(v)

∣
∣2

)
≤ 3E

∣
∣η(t0)

∣
∣2 + 6

(
(t – t0) + 4

)
K1(t – t0)‖η‖2

L2(D)

+ 12
(
(t – t0) + 4

)
K1

∫ t

t0

max
1≤n≤k

E
(

sup
t0≤v≤s

∣
∣Xn–1(v)

∣
∣2

)
ds
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≤ 3E
∣
∣η(t0)

∣
∣2 + 18

(
(t – t0) + 4

)
K1(t – t0)‖η‖2

L2(D)

+ 12
(
(t – t0) + 4

)
K1

∫ t

t0

max
1≤n≤k

E
(

sup
t0≤v≤s

∣
∣Xn(v)

∣
∣2

)
ds

for every k ≥ 1. By Gronwall’s lemma, we get

max
1≤n≤k

E
(

sup
t0≤v≤t

∣
∣Xn(v)

∣
∣2

)
≤ H̄ , (A.9)

with H̄ = 3(1 + 6((T – t0) + 4)K1(T – t0))‖η‖2
L2(D)e12((T–t0)+4)K1(T–t0). Now we show that the

sequence Xn(t) is convergent. Corresponding to (A.6) and by Assumption 1, Hölder’s and
Doob’s inequalities

E
(

sup
t0≤v≤t

∣
∣X1(v) – X0(v)

∣
∣2

)

≤ (
2(t – t0) + 8

)
K1

∫ t

t0

E
∣
∣X0(s)

∣
∣2 + E

∣
∣X0(s – τ

(
s, X0(s)

))∣
∣2 ds

≤ 4
(
(t – t0) + 4

)
(t – t0)K1‖η‖2

L2(D)

≤ MbK1(t – t0), (A.10)

with b = (T – t0) + 4 and M = 4‖η‖2
L2(D). By relations (A.6), (A.7) and (A.2) and Hölder’s

and Doob’s inequalities and also Assumption 1

E
(

sup
t0≤v≤t

∣
∣X2(v) – X1(v)

∣
∣2

)
≤ 2E

∣
∣X1(t0) – X0(t0)

∣
∣2

+ 2bK1
(
1 + L∗) ×

(∫ t

t0

E
(

sup
t0≤v≤s

∣
∣X1(v) – X0(v)

∣
∣2

)
ds

)

.

By (A.10), we can write

E
(

sup
t0≤v≤t

∣
∣X2(v) – X1(v)

∣
∣2

)
≤ 2M

(
1 + L∗) (bK1(t – t0))2

2
, (A.11)

remember that X2(t0) = X1(t0) = η(t0). Similarly

E
(

sup
t0≤v≤t

∣
∣X3(v) – X2(v)

∣
∣2

)
≤ 2bK1

(
1 + L∗) ×

∫ t

t0

E
(

sup
t0≤v≤s

∣
∣X2(v) – X1(v)

∣
∣2

)

≤ 4M
(
1 + L∗)2 (bK1(t – t0))3

6
.

Analogously, one can see that, for all n ≥ 1,

E
(

sup
t0≤v≤t

∣
∣Xn(v) – Xn–1(v)

∣
∣2

)
≤ M

2(1 + L∗)
(2bK1(1 + L∗)(t – t0))n

n!
. (A.12)

Hence, by Chebyshev’s inequality, we get

P
(

sup
t0≤v≤T

∣
∣Xn+1(v) – Xn(v)

∣
∣2 >

1
2n

)

≤ M
2(1 + L∗)

dn

n!
,
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where d = 2bK1(1 + L∗)(T – t0). It is clear that
∑∞

n=0
dn

n! < ∞, and so by the Borel–Cantelli
lemma, for almost all ω ∈ Ω , there exists n0 = n0(ω), which is a positive integer such that

sup
t0≤v≤T

∣
∣Xn+1(v) – Xn(v)

∣
∣2 ≤ 1

2n , n ≥ n0.

Hence, for all t ∈ [t0, T],

Xn(t) = X0(t) +
n∑

i=1

(
Xi+1(t) – Xi(t)

)
,

since |Xi+1(t) – Xi(t)| < 1
(
√

2)i and
∑n

i=1
1

(
√

2)i is convergent, so by a sufficient condition
presented by K. Weierstrass, Xn(t) converges uniformly. We set X(t) = limn→∞ Xn(t). By
(A.12), we can find that Xn(t) is a Cauchy sequence. So, for every ε > 0, there exists
n0(ε) ∈N such that, for all n ≥ n0(ε), we have

E
(

sup
t0≤u≤t

∣
∣Xn(u) – X(u)

∣
∣2

)
≤ ε,

so by (A.9), E(supt0≤u≤t |X(u)|2) ≤ H̄ . Notice that item 2 in Definition A.2 is satisfied and,
obviously, X is continuous and adapted. Now we must examine whether X(t) is satisfied
in problem (1.1). By Assumptions 1 and 2, one can see that τ (t, Xn(t)), a(Xn(s), Xn(s –
τ (s, Xn(s)))) and b(Xn(s), Xn(s – τ (s, Xn(s)))) converge pointwise to τ (t, X(t)), a(X(s), X(s –
τ (s, X(s)))) and b(X(s), X(s – τ (s, X(s)))), respectively. By Assumption 1 and relation (A.9),
we apply the dominated convergence theorem, and so

∫ t

t0

a
(
Xn(s), Xn(s – τ

(
s, Xn(s)

)))
ds −→

∫ t

t0

a
(
X(s), X

(
s – τ

(
s, X(s)

)))
ds,

∫ t

t0

b
(
Xn(s), Xn(s – τ

(
t, Xn(s)

)))
dW (s) −→

∫ t

t0

b
(
X(s), X

(
s – τ

(
s, X(s)

)))
dW (s),

where the convergence occurs in probability. Hence

Xn(t0) +
∫ t

t0

a
(
Xn(u), Xn(u – τ

(
u, Xn(u)

)))
du

+
∫ t

t0

b
(
Xn(u), Xn(u – τ

(
u, Xn(u)

)))
dW (u),

with probability one tending to

X(t0) +
∫ t

t0

a
(
X(u), X

(
u – τ

(
u, X(u)

)))
du +

∫ t

t0

b
(
X(u), X

(
u – τ

(
u, X(u)

)))
dW (u). �

We now deal with the proof of Theorem 4.2. The proof in the two first cases, where τ

is discrete or time-dependent, is found in [18], and so just the last one has to be accom-
plished. To this end, we generalise the Razumikhin-type theorems for the case in which
the delay has a random nature. However, our proofs are very close to the non-random
case. We provide our main result by three theorems.
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Theorem A.3 Consider SDDE (1.1) with state-dependent delay satisfying Assumptions 1–
3. Suppose that there exists a function V : [t0 – r,∞) ×R

d →R
+ which is continuous once

differentiable with respect to the first variable and twice to the second one. Besides

c1|x|p ≤ V (t, x) ≤ c2|x|p, (t, x) ∈ [t0 – r,∞) ×R
d, (A.13)

where c1, c2, p > 0, and there exists positive constant λ1 such that, for all t ≥ 0,

E
(
L

(
V (t,η)

)) ≤ –λ1E
(
V

(
t,η(t0)

))
, (A.14)

whenever we have

E
(
V

(
t + θ ,η(t0 + θ )

))
< λ0E

(
V

(
t,η(t0)

))
, (A.15)

where λ0 > 1. Also, η is a stochastic process which was defined in Sect. 2. Furthermore, θ

is a random variable taking values in [–r, 0]. Notice that operator L : C1,2([t0 – r,∞) ×
R

d,R+) →R is given as

⎧
⎪⎪⎨

⎪⎪⎩

L(V (t,η)) = ∂V (t,η(t0))
∂t +

∑d
i=1 ai(η(t0),η(–τ (t,η(t0)))) ∂V (t,η(t0))

∂xi

+ 1
2
∑d

k,l=1
∑m

j=1 bk,j(η(t0),η(–τ (t,η(t0))))

× ∂2V (t,η(t0))
∂xl∂xk

bl,j(η(t0),η(–τ (t,η(t0)))).

(A.16)

Then

E
∣
∣X(t)

∣
∣p ≤ Ke–γ t , t ≥ t0,

with K = c2
c1

E‖η‖p and γ = min(λ1, log(λ0)
r ).

Proof We define

U(t) = E
(

max
θ∈[–r,0]

eγ̄ (t+θ )V
(
t + θ , X(t + θ )

))
, t ≥ t0, (A.17)

where γ̄ = γ – ε for ε as an arbitrary positive constant and also θ is a random variable
taking values in [–r, 0]. We suppose that the maximum occurs in θ̄ , that is,

U(t) = E
(
eγ̄ (t+θ̄ )V

(
t + θ̄ , X(t + θ̄ )

))
. (A.18)

Note that U(t) ≥ 0. We claim that U(t) < U(t0). For this aim, we show that U is a decreasing
function. Clearly, for all random variables θ ∈ [–r, 0],

E
(
eγ̄ (t+θ )V

(
t + θ , X(t + θ )

)) ≤ U(t).

Here, we review two cases θ̄ = 0 and θ̄ �= 0. If θ̄ = 0 almost surely, then by (A.17)

E
(
eγ̄ (t+θ )V

(
t + θ , X(t + θ )

)) ≤ E
(
eγ̄ tV

(
t, X(t)

))
(A.19)
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for all random variables θ ∈ [–r, 0]. By relations (A.13) and (A.19), we have c1E(eγ̄ (t+θ )|X(t +
θ )|p) ≤ E(eγ̄ tV (t, X(t))). If U(t), namely E(eγ̄ tV (t, X(t))), is equal to zero, then almost surely

∣
∣X(t + θ )

∣
∣p = 0 (A.20)

for all random variables θ ∈ [–r, 0]. We assert that U(t +h) = 0 for every sufficiently small h.
If U(t + h) > 0, then there exists a random variable θ∗ such that

U(t + h) = E
(
eγ̄ (t+h+θ∗)V

(
t + h + θ∗, X

(
t + h + θ∗))),

it is clear that E(eγ̄ (t+h+θ∗)V (t + h + θ∗, X(t + h + θ∗))) > 0. Due to the continuity of
E(eγ̄ ·V (·, X(·))) and since h is a very small quantity, we have E(eγ̄ (t+θ∗)V (t + θ∗, X(t + θ∗))) >
0. Moreover, by relation (A.13), X(t + θ∗) �= 0 almost surely and it is a contradiction with
(A.20). So the assertion is true, i.e. U(t + h) = 0 and U(t + h) ≤ U(t). We now turn to the
case U(t) > 0, that is, E(eγ̄ tV (t, X(t))) > 0. By (A.19), we have

E
(
eγ̄ θ V

(
t + θ , X(t + θ )

)) ≤ E
(
V

(
t, X(t)

))
,

it is obvious that

E
(
e–γ̄ rV

(
t + θ , X(t + θ )

)) ≤ E
(
V

(
t, X(t)

))
,

by setting λ0 = eγ̄ r and η(t0 + θ ) = X(t + θ ), relation (A.15) is satisfied. Accordingly, by
(A.14), we achieve

E
(
L

(
V (t,η)

)) ≤ –λ1E
(
V

(
t, X(t)

))
,

where η(t0) = X(t). So we can write

E
(
eγ̄ (t+h)V

(
t + h, X(t + h)

))
– E

(
eγ̄ tV

(
t, X(t)

))
=

∫ t+h

t

(
eγ̄ sγ̄ E

(
V

(
s, X(s)

))

+ eγ̄ sE
(
L

(
V

(
s, X(s)

))))
ds

≤
∫ t+h

t
eγ̄ s(γ̄ – λ1)E

(
V

(
s, X(s)

))
ds

≤ 0

for every h > 0. So

E
(
eγ̄ (t+h)V

(
t + h, X(t + h)

)) ≤ E
(
eγ̄ tV

(
t, X(t)

))
. (A.21)

We claim that U(t + h) = E(eγ̄ (t+h)V (t + h, X(t + h))) for every sufficiently small h > 0. It
means that the maximum in (A.17) takes place in θ∗ = 0 almost surely. Assume that it
does not hold, then U(t + h) = E(eγ̄ (t+h+θ∗)V (t + h + θ∗, X(t + h + θ∗))) with P{θ∗ < 0} > 0,
and so, for all random variables θ ∈ [–r, 0],

E
(
eγ̄ (t+h+θ )V

(
t + h + θ , X(t + h + θ )

)) ≤ E
(
eγ̄ (t+h+θ∗)V

(
t + h + θ∗, X

(
t + h + θ∗))).
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Due to the continuity of E(eγ̄ ·V (·, X(·))), we obtain

E
(
eγ̄ (t+θ )V

(
t + θ , X(t + θ )

)) ≤ E
(
eγ̄ (t+θ∗)V

(
t + θ∗, X

(
t + θ∗))),

and especially for θ = 0 almost surely

E
(
eγ̄ tV

(
t, X(t)

)) ≤ E
(
eγ̄ (t+θ∗)V

(
t + θ∗, X

(
t + θ∗))),

but it disaffirms (A.19). So the claim is satisfied, and by (A.21) we get U(t + h) ≤ U(t). We
now turn to the case P{θ̄ < 0} > 0. We claim that U(t + h) ≤ U(t) for every sufficiently small
h > 0. If

⎧
⎨

⎩

U(t + h) = E(eγ̄ (t+h+θ∗)V (t + h + θ∗, X(t + h + θ∗))),

U(t + h) > U(t).

Due to the continuity of E(eγ̄ ·V (·, X(·))), we obtain

E
(
eγ̄ (t+θ∗)V

(
t + θ∗, X

(
t + θ∗))) > U(t). (A.22)

We observe that (A.22) contradicts (A.18), and so the claim is satisfied. Based on what was
discussed above, we arrive at U(t + h) ≤ U(t) for every sufficiently small h. Now we define
Dini-derivatives D+U(t) as

D+U(t) = lim sup
h→0+

U(t + h) – U(t)
h

.

Considering D+U(t) ≤ 0, the function U is non-increasing, see Lemma 5 in [4]. So U(t) ≤
U(t0). Putting everything together, we get

E
(
eγ̄ tV

(
t, X(t)

)) ≤ E
(
eγ̄ (t+θ̄)V

(
t + θ̄ , X(t + θ̄ )

))

≤ E
(

max
θ∈[–r,0]

eγ̄ (t0+θ )V
(
θ + t0, X(θ + t0)

))
,

since |eγ̄ θ | ≤ 1 and by (A.13), we obtain

c1eγ̄ tE
(∣
∣X(t)

∣
∣p) ≤ c2eγ̄ t0 E

(
max

θ∈[–r,0]

∣
∣η(t0 + θ )

∣
∣p

)
.

Consequently,

E
∣
∣X(t)

∣
∣p ≤ c2

c1
e–γ̄ (t–t0)E‖η‖p. �

Below, we present more simple conditions to check the stability in the two theorems.
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Theorem A.4 Assume that Assumptions 1–3 are fulfilled. Consider the function V defined
in Theorem A.3 holding condition (A.13). Moreover, for all t ≥ 0 and x, y ∈R

d ,

∂V (t, x)
∂t

+
d∑

i=1

ai(x, y)
∂V (t, x)

∂xi
+

1
2

d∑

k,l=1

m∑

j=1

bk,j(x, y)
∂2V (t, x)
∂xl∂xk

bl,j(x, y)

≤ –λV (t, x) + λ̄V
(
t – τ (t, x), y

)
, (A.23)

where λ and λ̄ are positive constants. Remember that τ is the lag function. If λ > qλ̄ for all
q ∈ (1,λ/λ̄), then the zero solution of SDDE (1.1) with state-dependent delay is pth moment
exponentially stable.

Proof The proof starts with reviewing the condition in the previous theorem. Just check-
ing relation (A.14) is required. In relation (A.23) we set x = η(t0) and y = η(–τ (t,η(t0))),
so

∂V (t,η(t0))
∂t

+ a
(
η(t0),η

(
–τ

(
t,η(t0)

)))∂V (t,η(t0))
∂x

+
1
2

bT(
η(t0),η

(
–τ

(
t,η(t0)

)))∂2V (t,η(t0))
∂x2 b

(
η(t0),η

(
–τ

(
t,η(t0)

)))

≤ –λV
(
t,η(t0)

)
+ λ̄V

(
t – τ

(
t,η(t0)

)
,η

(
–τ

(
t,η(t0)

)))
. (A.24)

We can call the left-hand side (A.24) by L(V (t,η)), and so

E
(
L

(
V (t,η)

)) ≤ –λE
(
V

(
t,η(t0)

))
+ E

(
λ̄V

(
t – τ

(
t,η(t0)

)
,η

(
–τ

(
t,η(t0)

))))
.

If we suppose that

E
(
V

(
t – τ

(
t,η(t0)

)
,η

(
–τ

(
t,η(t0)

)))) ≤ qE
(
V

(
t,η(t0)

))
, for q ∈ (1,λ/λ̄),

then

E
(
L

(
V (t,η)

)) ≤ (–λ + qλ̄)E
(
V

(
t,η(t0)

))
,

so the proof is complete. �

Finally, next theorem concludes our aim.

Theorem A.5 Consider SDDE (1.1) with state-dependent delay which satisfies Assump-
tions 1–3. Assume that there exist a positive constant λ and non-negative constants α0, α1,
β0 and β1 such that

xT a(x, 0) ≤ –λ|x|2,
∣
∣a(x, 0) – a(x̄, y)

∣
∣ ≤ α0|x – x̄| + α1|y|,

trace
[
bT (x, y)b(x, y)

] ≤ β0|x|2 + β1|y|2
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for all x, x̄, y ∈R
d . If

λ > α1 +
p – 1

2
(β0 + β1), p ≥ 2,

then the zero solution is pth moment exponentially stable.

Proof The theorem is a special case of Corollary 3.2 in [18] which is easily established by
Theorem A.4 and it is therefore omitted. �

Proof of Theorem 4.5 By Theorem A.5 and setting p = 2, the mean-square stability is
achieved. �
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