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Abstract
Since the existence of unwanted oscillations should be avoided in practical systems,
this article investigates active vibration and oscillation suppression of
two-degree-of-freedom dynamical systems using a novel variable structure control
methodology. Owing to high stability and generality of the fractional-calculus-based
differential equations, a non-integer-order sliding surface is proposed. Afterward, the
occurrence of the sliding motion is ensured using a switching control rule. The effects
of the input nonlinearities, which are usually existed in mechanical actuators, are fully
dealt with using the introduced fractional sliding modes. In addition, unknown
lumped uncertainties are considered to disturb the system dynamics. As a result, the
proposed controller is robust against system and control fluctuations and can handle
bounded external perturbations. Moreover, careful stability synthesis is developed to
theoretically confirm the control designs. Finally, two numerical case studies, which
include oscillation control of a magnetic bearing system and a gyroscope device, are
provided to demonstrate the superior performance of the suggested control
technology.

Keywords: Fractional sliding surface; Oscillation elimination; Input nonlinearity;
External perturbation; Active control

1 Introduction
It is well known that, in many cases, when a physical system is excited by some external
forces, it starts to oscillate with finite amplitude and frequency [1, 2]. For example, con-
sider a mechanical system intrinsic stresses concentrated by oscillation. Such condition
not only can result strain fractures of the system’s mechanical parts but also decreases ma-
chine power, engenders noise and disturbance and enlarges friction. Generally speaking,
any form of unwanted oscillation may yield to machine performance degradation, more
energy spending, noise generation, reliability and efficiency decrease, damaging mechan-
ical parts of the system and human discomfort [3]. Therefore, some alternatives should be
adopted to compensate and suppress unnecessary oscillations.

Generally speaking, passive, semi-active and active control methods are the main con-
trol methodologies for oscillation suppressor design [3]. For system steady state response
manipulation, the passive oscillation control adopts some mechanical elements, such as
springs and dampers, to add absorbers, isolators, suspensions or resonators to the system.
When the oscillation frequency exceeds some threshold values, semi-active approaches
with adaptive springs and dampers are usually implemented. However, many real world
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applications have low frequency oscillations. In this case, active oscillation control is re-
alized using external actuators [4–6].

The foundation of fractional calculus has been established by Leibniz and L’Hospital in
1965 [7]. Fractional-calculus-based differential equations are more general mathematic
tools compared to the conventional integer-order differentials in which they adopt a real-
valued derivative (or integration) operator instead of just an integer-valued differentiator
(or integrator). However, the fractional calculus was not successful to find useful engi-
neering applications for several centuries and the progresses of this area were quite slow.
Nevertheless, in the recent decades, the theory of fractional derivatives and integrals has
been utilized for precisely description and modeling of a wide range of real-world phe-
nomena observed in practical systems and situations.

Owing to the limited operation of control actuators, such as electronic circuits com-
posed of operational amplifiers, electromechanical apparatus, pneumatic devices and hy-
draulic machines, there are usually a number of nonlinearities in control inputs which
include backslash, hysteresis, saturation, dead-zone, etc. The existence of such nonlinear-
ities in the controller can generate irregular behaviors in the system outputs, decrease the
control performance, bias extra oscillations in the system response and even result in sys-
tem failure as well as unstable closed-loop systems. Hence, the influence of the input non-
linearity should not be ignored in the procedure of analysis, design and implementation
of active control systems. In addition, since functional systems are inevitably perturbed
by parameter fluctuations and external perturbations, realization of a robust oscillation
controller is essential to evade degradation of the arranged performance for the system
outputs. In [6], stability synthesis of fuzzy control systems in spite of sector input non-
linearities has been studied. Orszulik and Shan [8] have considered the Lyapunov-based
classical feedback control of piezoelectric devices with the hysteresis nonlinearity. In the
work [9], sliding-mode variable structure controllers have been derived for attitude control
of underwater vehicles and delayed oscillatory systems with considering input nonlinear-
ities. An artificial neural network control algorithm has been proposed in [10] for robotic
manipulators with actuator saturation nonlinearity. A PID-iterative learning control ap-
proach for tackling the actuator nonlinearity has been designed by Huang and Chen for a
biomedical device [11]. Finite-time stability synthesis of special nonlinear systems in spite
of the input nonlinearity has been addressed in [12]. Control design of non-integer-order
systems in the presence of nonlinear inputs has been also reported in the literature [13,
14].

Motivated by the aforementioned statements, the problem of robust oscillation attenu-
ation of uncertain two-dimensional nonlinear dynamical systems subjected to input non-
linearity is investigated in this paper. Since the sliding modes are robust effective control
strategies adopted for applied dynamical systems in the literature [15–20], to enhance the
controller stability, a hybrid fractional-integer-order sliding-mode control methodology is
introduced. As a result, unknown system parameter variations and external disturbances
as well as both linear and nonlinear input controls are fully taken into account and ef-
ficient switching control rules are developed to derive the system trajectories to the ar-
ranged non-integer-order sliding surface. At last, computer simulations are presented for
two mechanical devices.

This article is structured as follows: Sect. 2 gives preliminaries for fractional-calculus
theory. Section 3 stands for system demonstration and problem statement. Section 4 pro-
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vides the introduced non-integer-order sliding-mode controllers. In Sect. 5, two illustra-
tive numerical case studies are included. Finally, conclusions are provided in Sect. 6.

2 Fractional-calculus preliminaries
In this section, some basics of fractional-calculus theory as well as fractional stability the-
orems are presented.

Definition 1 ([7]) The fractional integral of a function f (t) is defined as follows:

t0 Iα
t f (t) =

1
Γ (α)

∫ t

t0

f (τ )
(t – τ )1–α

dτ (1)

in which t0 stands for the starting time, α ∈ R+ represents the order of integration and Γ (·)
shows the Gamma function defined as follows:

Γ (z) =
∫ ∞

t0

tz–1e–t dt. (2)

Definition 2 ([7]) For the function f (t), the Caputo derivative is presented by

C
t0 Dα

t f (t) = t0 I(m–α)
t

dm

dtm f (t) =
1

Γ (m – α)

∫ t

t0

f (m)(τ )
(t – τ )α–m+1 dτ (3)

in which m – 1 < α < m ∈ N .

Property 1 ([7]) For the Caputo derivatives in the case of m = 1, one has

C
t0 Dα

t t0 Iα
t f (t) = RL

t0 Dα
t f (t)t0 Iα

t f (t) = f (t). (4)

Property 2 ([7]) First-order integration of the Caputo derivatives is as follows:

t0 Iα
t

C
t0 Dα

t f (t) = f (t) – f (t0). (5)

Remark 1 Through this article, the Caputo definition is denoted via Dα .

In what follows, the chief stability theories for fractional-order systems are restated.

Definition 3 ([21]) The constant x0 is an equilibrium point of fractional system Dαx(t) =
f (x, t), if and only if f (x, t) = Dαx0.

Theorem 1 ([22]) For | arg(eig A)| > απ/2, zero is the asymptotic stable unique equilibrium
point of (6).

Dαx = Ax, x(0) = x0 (6)

in which 1 < α < 2, x ∈ Rn and A ∈ Rn×n.
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Definition 4 ([21]) The solution of Dαx(t) = f (x, t) is said to be Mittag-Leffler (asymptotic)
stable if the following condition holds:

∥∥x(t)
∥∥ ≤ {

m
[
x(t0)

]
Eα

(
–λ(t – t0)α

)}b, (7)

where Eα(z) =
∑∞

k=0
zk

Γ (kα+1) is the Mittag-Leffler function, λ, b > 0, m(0) = 0, m(z) ≥ 0 and
m(z) is locally Lipschitz function.

Theorem 2 ([21]) For α ∈ (0, 1], if
(i) the origin is an equilibrium point of the fractional system

Dαx(t) = f (x, t), (8)

(ii) f (x, t) has a Lipschitz constant l > 0 and
(iii) there exists a function V (t, x(t)) and a class-K functions αi, i = 1, 2, 3 with

α1
(‖x‖) ≤ V (t, x) ≤ α2

(‖x‖), DαV (t, x) ≤ –α3
(‖x‖) (9)

then zero is the asymptotic stable equilibrium point of the system (8).

Lemma 1 ([23]) For α ∈ (0, 1], the following formula is valid for the Caputo derivatives:

1
2

C
t0 Dα

t f 2(t) ≤ f (t)C
t0 Dα

t f (t). (10)

3 System description and problem statement
To analysis and synthesis the oscillation of a dynamical system, the first step is to pro-
vide a model for the system behavior description using mathematical formulas based on
the physics and nature of the system. In this regard, most of complicated two-degree-of-
freedom (2DoF) mechanical systems, such as micro-mechanical resonators, gyroscopes,
robot manipulators, piezoelectric actuators, horizontal platforms, Duffing oscillators,
2DoF structures, inverted pendulums and magnetic bearings, can be effectively charac-
terized by the following non-autonomous second-order dynamical equations:

ẍ = F(X, t) + �f (X, t) + d(X, t) +
(
g(X, t) + �g(X, t)

)
ϕ
(
u(t)

)
(11)

in which X = [x, ẋ]T ∈ R2 is the system state vector, F(X, t) is a nonlinear function, �f (X, t)
represents system linear and/or nonlinear uncertainties representing modeling errors,
parameter variations and un-modeled dynamics, d(X, t) shows an external perturbation,
g(X, t) > 0 is an invertible control gain function, �g(X, t) represents control uncertainties,
ϕ(·) is a linear or nonlinear function introduced later and u(t) ∈ R is the single control
signal.

Defining x1 = x and x2 = ẋ, one can rewrite the model (11) as follows:

ẋ1 = x2,

ẋ2 = f (X, t) + �L(X, u, t) + g(X, t)ϕ
(
u(t)

)
,

(12)
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where f (X, t) is a continuous nonlinear function and �L(X, u, t) = �f (X, t) + d(X, t) +
�g(X, t)ϕ(u(t)) is named the system lumped uncertainly.

Assumption 1 The system lumped uncertainty is considered to be bounded via

∣∣�L(X, u, t)
∣∣ ≤ a‖X‖ + b‖u‖ + c (13)

in which a, b, c < ∞ are known positive constants.

Remark 2 It is noted that the exact value of the lumped uncertainty �L(X, u, t) is generally
unknown. However, in real applications, one can introduce some reasonable fixed upper
bounds for the system uncertainties and external disturbances. On the other hand, in As-
sumption 1, we use two dynamic bounds (i.e. a‖X‖ and b‖u‖) along a constant bound
(i.e. c) to tackle the lumped uncertainty �L(X, u, t) as a function of the system states and
control inputs. The utilization of these dynamic terms in the control inputs can aid the
controller to overcome the lumped uncertainties in a more reliable manner rather than
applying classic fixed bounds which are common in the traditional control signals.

Control objective: The main aim of this article is to derive a nonlinear non-integer-order
robust sliding-mode controller in order to suppress the vibratory and oscillatory behavior
of the uncertain system (12) even if some input nonlinearities are present in the actuators.

4 Design of fractional sliding active control scheme
Among available active control methodologies, the sliding-mode strategy is the most com-
mon method in oscillation attenuation, because it can overcome unavoidable parameter
fluctuations and external perturbations which degrade the system performance. More-
over, the sliding-mode technology has simple structure and high stability features. Thus,
this article applies a new fractional sliding mode for oscillation suppression of practical
integer-order systems. The design steps of the proposed sliding-mode controller are given
below.

Here, a non-integer-order sliding manifold is designed as

s(t) = D–α ẍ(t) + λx(t), (14)

where λ > 0 is a constant.
Now, the fractional-order dynamics of the sliding manifold (14) can be achieved as fol-

lows:

s(t) = 0 → D–α ẍ(t) = D–α+2x(t) = –λx(t). (15)

Theorem 3 Zero is the asymptotic stable equilibrium point of the dynamics (15).

Proof Referring to Theorem 1, the stability condition for the linear system (15) is | arg(λ)| >
(2–α)π/2. Since the eigenvalue of the non-integer-order sliding manifold dynamics (15) is
equal to –λ, one can conclude that 0 < α < 1 (or 1 < (2 –α) < 2) meets the stability criterion
| arg(λ)| = π > (2 – α)π/2). Hence, the stability circumvent of Theorem 1 is met and the
sliding-mode dynamics (15) is asymptotically stable. So, the proof is ended. �
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After designing a desired sliding manifold, the next step is to propose a control law to
ensure the occurrence of the sliding motion. To derive a sliding-mode control law, first
the case of linear input is considered. So, the function ϕ(·) is removed from (12) and the
resulting system is changed into the following structure:

ẋ1 = x2,

ẋ2 = f (X, t) + �L(X, u, t) + g(X, t)u(t).
(16)

The proper fractional-order sliding control law is provided as

u(t) = –g–1(X, t)
(
f (X, t) + λDαx1(t) +

(
K1‖X‖ + K2‖u‖ + K3

)
sgn(s)

)
) (17)

in which K1 > a, K2 > b and K3 > c are three constants.

Theorem 4 The control signal (17) is able to reach the system state trajectories (16) with
the condition (14) to the sliding manifold s(t) = 0.

Proof One can select a Lyapunov function candidate as

V1(t) = 0.5s2. (18)

Taking the fractional-order derivative of V (t) and based on Lemma 1, one has

DαV1 ≤ sDαs. (19)

Using the proposed sliding surface (14), we have

DαV1 ≤ sDα
(
D–α ẍ(t) + λx(t)

)
. (20)

Based on ẍ(t) = f (X, t) + �L(X, u, t) + g(X, t)u(t) and Property 1, one obtains

DαV1 ≤ s
(
f (X, t) + �L(X, u, t) + g(X, t)u(t) + λDαx(t)

)
. (21)

It is clear that

DαV1 ≤ s
(
f (X, t) + g(X, t)u(t) + λDαx(t)

)
+ |s|∣∣�L(X, u, t)

∣∣. (22)

Referring to Assumption 1 and the inequality (13), one gets

DαV1 ≤ s
(
f (X, t) + g(X, t)u(t) + λDαx(t)

)
+ |s|(a‖X‖ + b‖u‖ + c

)
. (23)

Substituting u(t) from (17) into (23), it yields

DαV1 ≤ –|s|(K1‖X‖ + K2‖u‖ + K3
)

+ |s|(a‖X‖ + b‖u‖ + c
)

= |s|((a – K1)‖X‖ + (b – K2)‖u‖ + c – K3
) ≤ –(K3 – c)|s| ≤ 0. (24)
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Figure 1 A schematic diagram of a typical input nonlinearity

Consequently, based on Theorem 2, the system states will converge to s(t) = 0. Thus, the
proof is completed. �

Now, assume that the control actuator is subjected to sector nonlinearities. In this case,
we modify the proposed sliding-mode technology (17) so that the existence of the reaching
phase is ensured. A schematic diagram of a typical input nonlinearity is displayed in Fig. 1.

In (12), it is assumed that ϕ(u(t)) with ϕ(0) = 0 is inside the sector [ρ,μ],ρ > 0 as follows:

ρu2 ≤ uϕ(u) ≤ μu2. (25)

To tackle the nonlinear phenomenon of the control input, a robust sliding control rule
is proposed by

u(t) = –
sgn(s)

ρg(X, t)
(∣∣f (X, t)

∣∣ + λ
∣∣Dαx1(t)

∣∣ + K1‖X‖ + K2‖u‖ + K3
)

= –ξ sgn(s) (26)

with ξ = 1
ρg(X,t) (|f (X, t)| + λ|Dαx1(t)| + K1‖X‖ + K2‖u‖ + K3) > 0.

Remark 3 Substituting u(t) in (26) by u(t) = –ξ sgn(s), ξ > 0, one obtains ρξ 2 sgn(s)2 ≤
–ξ sgn(s)ϕ(u) → ρξ 2 ≤ –ξ sgn(s)ϕ(u), multiplying –|s| to both sides of the last inequality,
one gets

sϕ(u) ≤ –ρξ |s|. (27)

The property is left to be adopted in the proof of Theorem 5.

Theorem 5 The control rule (26) can reach the state trajectories of the system (12) with
the conditions (13) and (25) to the sliding manifold s(t) = 0.

Proof On the basis of the fractional stability theorem, a positive definite function is taken
as

V2(t) = 0.5s2. (28)
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Taking the fractional-order derivative of V2(t) and based on Lemma 1, one gets

DαV2 ≤ sDαs. (29)

Using the proposed sliding surface (14), one can obtain

DαV2 ≤ sDα
(
D–α ẍ(t) + λx(t)

)
. (30)

Based on system dynamics (12) and Property 1, one has

DαV2 ≤ s
(
f (X, t) + �L(X, u, t) + g(X, t)ϕ

(
u(t)

)
+ λDαx(t)

)
. (31)

It is obvious that

DαV2 ≤ |s|(∣∣f (X, t)
∣∣ +

∣∣λDαx(t)
∣∣ +

∣∣�L(X, u, t)
∣∣) + sg(X, t)ϕ

(
u(t)

)
. (32)

Referring to Assumption 1 and the inequality (13), one can obtain

DαV2 ≤ |s|(∣∣f (X, t)
∣∣ +

∣∣λDαx(t)
∣∣ + a‖X‖ + b‖u‖ + c

)
+ sg(X, t)ϕ

(
u(t)

)
. (33)

Using Remark 3 and the inequality (27), we have

DαV2 ≤ |s|(∣∣f (X, t)
∣∣ +

∣∣λDαx(t)
∣∣ + a‖X‖ + b‖u‖ + c

)
– g(X, t)ρξ |s|. (34)

Substituting ξ from (26) into (34), it yields

DαV1 ≤ –|s|(K1‖X‖ + K2‖u‖ + K3
)

+ |s|(a‖X‖ + b‖u‖ + c
)

= |s|((a – K1)‖X‖ + (b – K2)‖u‖ + c – K3
) ≤ –(K3 – c)|s| ≤ 0. (35)

Therefore, on the basis of Theorem 2, the system states will reach to s(t) = 0. Hence, the
proof is ended. �

Remark 4 To prevent the occurrence of undesirable oscillations named chattering, which
appear due to the existence of the sgn(s) function in the control inputs (17) and (26), we
replace it by the continuous function tanh(εs) with ε > 0 a constant.

5 Computer simulations
In this section, two illustrative examples are included to emphasize the effectiveness and
applicability of the introduced active control methodology.

5.1 Magnetic bearing system
A magnetic bearing system (see Fig. 2) is a mechanical device which benefits magnetic
forces to swing a rotor shaft in midair. The useful applications of mechanical magnetic
bearings in the fields of vacuum pumps, gas turbines, electric power apparatus, reaction
wheels and jet engines have been reported in the literature.
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Figure 2 A magnetic bearing system [24]

A simplified two-dimensional motion equation of the magnetic bearing device is gov-
erned by

mẍ(t) + cẋ + kxx + kiix = 0, (36)

where m = 2.565 denotes the rotor mass, c = 0.001 shows the friction and kx = 25.2 and
ki = 40 represent the position and current stiffness parameters, respectively.

Defining x1 = x, x2 = ẋ and u(t) = ix, the model (36) with a lumped uncertainty is rewrit-
ten as follows:

ẋ1 = x2,

ẋ2 =
c
m

x2 +
kx

m
x1 +

ki

m
u(t) + �L(X, u, t),

(37)

where �L(X, u, t) = 0.3 sin(5x2x1) + 0.2 tanh(3t) is considered as the lumped uncertainties.
Referring to Eqs. (14) and (17), the sliding-mode controller is derived as follows:

s(t) = D–0.1ẍ(t) + 2x(t), (38)

u(t) = –
m
ki

(
c
m

x2 +
kx

m
x1 + 2D0.1x1(t) +

(
0.4‖X‖ + 0.3

)
tanh(50s)

)
. (39)

The system is simulated with the starting points of x1(0) = –1 and x2(0) = 1. Figure 3
depicts the state evolutions of the controlled magnetic bearing system. It is seen that there
is no oscillation and the convergence to the origin is achieved as quickly as possible. For
comparison, the state trajectory results of the fractional-order and integer-order terminal
sliding modes given in [25] for the magnetic bearing system without input nonlinearities
are illustrated in Fig. 4. One can see that the convergence times of the methods in [25] are
about 5 sec. However, the introduced technique in this article achieves the convergence by
1 sec. This means that the proposed control strategy in this paper is faster and more robust
against the lumped uncertainties than the available fractional and integer terminal sliding
modes in the literature. The time evolution of the applied sliding manifold (38) is shown in
Fig. 5. It is seen that the sliding motion occurs quickly. The time evolution of the control
signal is displayed in Fig. 6. The time response of the applied control input in Ref. [25]
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Figure 3 State evolutions of the magnetic bearing system obtained by the proposed method

Figure 4 State evolutions of the magnetic bearing system obtained in [25]

is depicted in Fig. 7. Obviously, there are high frequency oscillations (chattering) on the
control input proposed by the work [25] which limits the applicability of the corresponding
controller in practice. Also, since the control signal of the work [25] provided in Fig. 7
does not converge to zero, the integral control effort will be infinite, avoiding the need
of implementing the controller in practical situations. On the other hand, the amplitude
of the control input developed in this research is finite with no harmful chattering and
it converges to zero, implying that the proposed oscillation suppressor can be realized in
practical situations.
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Figure 5 Time evolution of the applied sliding manifold (38)

Figure 6 Time evolution of the control input (39) obtained by the proposed method

5.2 Gyroscope system
In this case, the gyroscope system which has valuable applications in many engineering
fields such as navigation, mechatronics, optical device circuits, aeronautics applications
and space engineering is adopted for the simulation purpose. The dynamical equations of
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Figure 7 Time evolution of the control input (48) obtained in [25]

the gyroscope are given by

ẍ = α2 (1 – cos x1)2

sin3 x1
+ c1x2 + c2x3

2 – β sin x1 – f sinωt sin x1. (40)

Defining x1 = x and x2 = ẋ and adding a lumped uncertainty to the system dynamics, one
can rewrite the gyroscope model (40) with a nonlinear input as follows:

ẋ1 = x2,

ẋ2 = –α2 (1 – cos x1)2

sin3 x1
– c1x2 – c2x3

2 + β sin x1

+ f sinωt sin x1 + �L(X, u, t) + ϕ
(
u(t)

)
(41)

in which x1 represents the rotation angle, x2 shows the rotation angle velocity, parametric
and the base excitation is represented by f sinωt, c1x2 and c2x3

2 are linear and nonlinear
damping terms, respectively, and α2 = 100, β = 1, c1 = 0.5, c2 = 0.05, ω = 25 and f = 35.5
are constant system parameters.

It is well known that the gyroscope system has an oscillatory behavior and for the given
parameter values this system displays chaotic behavior. The aim of this example is to sup-
press the oscillations of the uncertain gyroscope with input nonlinearity. The lumped un-
certainty and input nonlinearity are supposed to be in the following forms, respectively:

�L(X, u, t) = 0.2 cos(2t)x2 + 0.1 tanh(4t)u(t) + 0.4 sin(t), (42)

ϕ
(
u(t)

)
=

(
4 + sin(t)

)
u(t). (43)

The vector X(0) = [1, 2]T is taken as the initial conditions of the gyroscope system. And,
according to Eq. (14), the following sliding manifold is established:

s(t) = D–0.1ẍ(t) + x(t). (44)

Subsequently, a sliding control rule is derived as

u(t) = –
tanh(50s)

3

(∣∣∣∣–α2 (1 – cos x1)2

sin3 x1
– c1x2 – c2x3

2 + β sin x1 + f sinωt sin x1

∣∣∣∣
+

∣∣D0.1x1(t)
∣∣ + 0.3‖X‖ + 0.2‖u‖ + 0.5

)
. (45)



Aghababa Advances in Difference Equations        (2019) 2019:391 Page 13 of 16

Figure 8 State evolutions of the gyroscope with input nonlinearity

Figure 9 Time evolution of the sliding manifold (44)

Figure 8 shows the states of the controlled gyroscope system in spite of system fluc-
tuations and external disturbances. One observes that the states attain zero after some
oscillations. This means that the undesirable chaotic oscillations of the system are indeed
attenuated and the effects of the unwanted input nonlinearity as well as control gain un-
certainties are fully tackled. The time response of the derived linear sliding surface (44)
is plotted in Fig. 9. Clearly, the sliding-mode dynamics is stable with no high frequency
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Figure 10 Time evolution of the applied control rule (45)

undesirable oscillations implying that once the oscillations of the original system state
trajectories approach this dynamics, they will be converged to the origin. Figure 10 plots
the time evolution of the control signal (45) which is disturbed by the sector nonlinear-
ity (43). According to this figure, the control signal involves bounded magnitudes and the
convergence to zero is almost achieved. Therefore, the derived robust control technology
exhibits a low control energy effort confirming its applicability characteristic in real ap-
plications. Also, there is no harmful chattering on the control input depicted in Fig. 10
indicating that the physical actuators are able to implement such smooth control signals.
For comparison, the time evolution of the nonlinear input (45) is appeared in Fig. 11. It
is seen that the fluctuated control input includes high amplitude oscillations. However,
the derived control signal revealed in Fig. 8 is not only with lesser magnitude but also it
is smoother than the nonlinear input. Overall simulation results imply that the proposed
controller is robust against system uncertainties and external disturbances and can achieve
the stabilization goal even if there are unavoidable input nonlinearities and control gain
variations on the actuator in physical situations.

6 Conclusions
This article proposed the use of fractional-calculus-based control algorithms for oscilla-
tion removal of a class of applied integer-order mechanical systems. It was assumed that
the system is subjected to input nonlinearities and a robust fractional variable structure
switching controller was derived such that guaranteed the oscillation suppression of the
uncertain system. Moreover, the case of linear control inputs was handled out using the
proposed controller. The introduced control strategy is general and it can be easily mod-
ified to handle other actuator nonlinear effects. This article not only proved the stability
of the feedback system in the Lyapunov sense, but also analyzed the usefulness and appli-
cability of the designed oscillation suppressor using two illustrative examples. Simulation
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Figure 11 Time evolution of the nonlinear control rule (43)

results indicated that the magnitude of the derived control signal is suitable enough to be
realized in practical applications. Further topics along the lines of the present work can be
suggested as follows: (i) generalization of the proposed controller for the case of having
unknown bounds for the lumped uncertain terms; (ii) introducing a generalized adaptive
control scheme for the systems with unknown structural parameters and (iii) applying
some modifications to the current controller for overcoming other input nonlinearities
such as dead-zones and actuator saturations.
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