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Abstract
In this paper, we study a higher order generalization of the Jacobsthal sequence,
namely, the (k, c)-Jacobsthal sequence (J(k,c)n ) for any integers n, k ≥ 2 and a real
number c > 0. In particular, we find information about roots of its characteristic
polynomial. For that purpose, we combine some powerful tools such as Marden’s
method, the Perron–Frobenius theorem, and the Eneström–Kakeya theorem.
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1 Introduction
A sequence (un)n is a homogeneous linear recurrence sequence with coefficients c0, c1, . . . ,
cs–1, c0 �= 0, if

un+s = cs–1un+s–1 + · · · + c1un+1 + c0un, (1)

for all non-negative integers n. A recurrence sequence is therefore completely determined
by the initial values u0, u1, . . . , us–1, and by the coefficients c0, c1, . . . , cs–1. The integer s is
called the order of the linear recurrence. The characteristic polynomial of the sequence
(un)n≥0 is given by

ψ(x) = xs – cs–1xs–1 – · · · – c1x – c0 = (x – α1)m1 · · · (x – α�)m� ,

where the αj ’s (which are distinct) are named the roots of the recurrence. Also, the recur-
rence (un)n has a dominant root if one of its roots has strictly largest absolute value. A fun-
damental result in the theory of recurrence sequences asserts that there exist uniquely
determined non-zero polynomials g1, . . . , g� ∈ Q({αj}�j=1)[x], with deg gj ≤ mj – 1 (mj is the
multiplicity of αj as zero of ψ(x)), for j = 1, 2, . . . ,�, such that

un = g1(n)αn
1 + g2(n)αn

2 + · · · + g�(n)αn
� , for all n. (2)

For more details, see [11, Theorem C.1].
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Let P, Q be non-zero integers and let P2 – 4Q �= 0. The sequences (Un(P, Q))n≥0 given for
n ≥ 0 by

Un+2(P, Q) = P · Un+1(P, Q) – Q · Un(P, Q),

where U0(P, Q) = 0, U1(P, Q) = 1, is called the first Lucas sequence. For instance, if P = 1
and Q = –1, then (Un(1, –1))n≥0 = (Fn)n≥0 is the well-known Fibonacci sequence. The Fi-
bonacci numbers are known for their amazing properties (see [9] for the history, proper-
ties, and applications of the Fibonacci sequence and some of its generalizations). When
P = 1 and Q = –2, we find that (Un(1, –2))n≥0 = (Jn)n≥0 is the Jacobsthal sequence, which
has many interesting properties (see [5]). An explicit formula for Jn is

Jn =
2n – (–1)n

3
.

There are several generalizations for Fibonacci numbers. For example, let k ≥ 2 and
denote F (k) := (F (k)

n )n≥–(k–2), the k-generalized Fibonacci sequence whose terms satisfy the
recurrence relation

F (k)
n = F (k)

n–1 + F (k)
n–2 + · · · + F (k)

n–k , for n ≥ 2, (3)

with the initial conditions F (k)
–(k–2) = F (k)

–(k–3) = · · · = F (k)
0 = 0 and F (k)

1 = 1.
The study of the behavior of the roots of the characteristic polynomial of a recurrence

(which gives information about the asymptotic behavior of the sequence) has a very long
history and it became more popular after the seminal work of Baker on effective lower
bounds for linear forms in logarithms. For example, as a consequence of Baker’s theory
(see [1]) we have: Let (un) be a recurrence sequence. Suppose that (un) is a sequence of
integers of the form

un = aαn + O
(|α|θn), with θ ∈ (0, 1),

where a and α are non-zero algebraic numbers, with |α| > 1 and such that un – aαn �= 0 for
all n. Then the equation

un = yp, un /∈ {0,±1},

implies p < C, where C > 0 is an effective constant, which depends only on the parameters
of the recurrence (un). This result can be applied to k-generalized Fibonacci numbers. In
fact, since it is known that the characteristic polynomial of (F (k)

n )n, namely,

ψk(x) := xk – xk–1 – · · · – x – 1,

has just one zero outside the unit circle and all the zeros are simple (as can be found in [6]),
we have F (k)

n = aαn + O(1). Actually, we remark that the case k = 2 was solved completely
in 2003, by Bugeaud et al [3, Theorem 1].

Papers [8] studied some generalized sequences of (3) and authors proved similar prop-
erties of roots of the characteristic polynomials.

Here, we are interested in the following generalization of the Jacobsthal sequence.
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Table 1 Examples of (k, c)-Jacobsthal sequences for some integer values of k and c

(k, c) First 10 non-zero terms of J(k,c)n

(2, 2) 1, 1, 3, 5, 11, 21, 43, 85, 171, 341
(3, 5) 1, 1, 2, 8, 15, 33, 88, 196, 449, 1085
(4, 7) 1, 1, 2, 4, 14, 27, 59, 128, 312, 688

Definition 1 Let k ≥ 2 be an integer and let c > 0 be a real number. The (k, c)-Jacobsthal
sequence (J (k,c)

n )n≥–(k–2) is defined by the recurrence

J (k,c)
n = J (k,c)

n–1 + · · · + J (k,c)
n–k+1 + c · J (k,c)

n–k , for n ≥ 2,

with the initial values J (k,c)
–(k–2) = J (k,c)

–(k–3) = · · · = J (k,c)
0 = 0 and J (k,c)

1 = 1.

Some special cases of (k, c)-Jacobsthal sequences are listed in Table 1. Let fk,c(x) be the
characteristic polynomial of the (k, c)-Jacobsthal sequence. Our first results are related to
the zeros of fk,c(x). More precisely, we proved the following theorems.

Theorem 1 Let k ≥ 2 be an integer and let c > 0 be a real number. Set fk,c(x) = xk – xk–1 –
· · · – x – c, then fk,c(x) has a simple dominant zero and, moreover:

(i) fk,2(x) has 2 as the dominant zero and all the other zeros lie on the boundary of unit
circle.

(ii) If c > 2, then fk,c(x) has a dominant zero α > 2 and all the other zeros lie outside the
closed unit circle.

(iii) If c ∈ (0, 2), then fk,c(x) has a dominant zero α ∈ (1, 2) and all the other zeros lie
inside the unit circle.

Theorem 2 For k ≥ 2, all the zeros of fk,c(x) are simple if some of the items below is true
(i) c ∈ (1, 2];

(ii) c > 2 and k ≥
√

8c(c–1)
(c–2)2 + 3c–2

c–2 .
Moreover, there are at most two zeros α+ and α– with multiplicity greater than one and
they must have the form

α± =
3ck + 2 – c – 2k ± √

(c + 2k – 3ck – 2)2 – 8c(c – 1)k2

2(c – 1)k
.

As a consequence of the previous theorem, we find that the following result holds for
integer higher order Jacobsthal recurrences.

Corollary 1 If c and k are positive integers, then all the zeros of fk,c(x) are simple.

2 Auxiliary results
In this section, we shall present some results which will be essential ingredients in the
proof of our results.

Our first tool is related to a method of Marden [10, Chapter X] for calculating the num-
ber of zeros of a polynomial within the unit circle. Here we shall state only a particular case
which is convenient to us. For that, first, consider a polynomial f (x) = a0 + a1x + · · · + anxn
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with real coefficients and denote by f ∗(x) its reciprocal polynomial, i.e., f ∗(x) = xnf (1/x).
We define the Schur transform of f (x), denoted by Tf(x), by

Tf(x) = a0f (x) – anf ∗(x).

A particular case of Marden’s result [10, Lemma 42.1] is the following.

Theorem 3 Let f (x) = a0 + a1x + · · · + anxn be a polynomial with real coefficients. If δ(f ) :=
a2

0 – a2
n �= 0, then f (x) and Tf(x) have the same number of zeros on the boundary of the unit

circle.

Another useful and very important result is due to Eneström and Kakeya [4, 7].

Theorem 4 Let f (x) = a0 +a1x+ · · ·+anxn be an n-degree polynomial with real coefficients.
If 0 ≤ a0 ≤ a1 ≤ · · · ≤ an, then all zeros of f (x) lie in |x| ≤ 1.

Further, we shall use the Perron–Frobenius theorem from the linear algebra.

Theorem 5 Let A be a square matrix with non-negative real entries. If Ak is a positive
matrix (i.e., a matrix having all positive entries), then A has a positive eigenvalue of mul-
tiplicity 1 and strictly greater in absolute value than all other eigenvalues.

We still shall use two well-known trigonometric formulas: For α �= 2kπ , where k is any
integer, we have

sin(φ) + sin(φ + α) + · · · + sin(φ + nα) =
sin (n+1)α

2 sin(φ + nα
2 )

sin α
2

(4)

and

cos(φ) + cos(φ + α) + · · · + cos(φ + nα) =
sin (n+1)α

2 cos(φ + nα
2 )

sin α
2

. (5)

With these tools at hand we are ready to deal with the proof of our results.

3 Proof of Theorem 1
For proving that fk,c(x) has a dominant zero for all values of c > 0, we shall use the connec-
tion between recurrence sequences and linear algebra (eigenvalues, characteristic polyno-
mial etc.). First, we note that fk,c(x) is the characteristic polynomial of its companion k × k
matrix

Ac =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢
⎣

0 0 · · · 0 c
1 0 · · · 0 1
0 1 · · · 0 1
...

...
. . .

...
0 0 · · · 1 1

⎤

⎥⎥
⎥⎥
⎥⎥
⎥
⎦
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Figure 1 The digraph corresponding to the
companion matrix Ac

That is, fk,c(x) = det(xI – Ac) and then the roots of the recurrence of the (k, c)-Jacobsthal
sequence are precisely the eigenvalues of the matrix Ac. Thus, in order to prove the exis-
tence of a dominant zero for fk,c(x), it suffices to prove the existence of an eigenvalue with
absolute value strictly greater than the absolute value of all other eigenvalues (this largest
absolute value is called spectral radius). For proving that, we shall use Theorem 5. So, we
must prove that An

c is a positive matrix, for some n ≥ 1. In fact, we claim that Ak
c is a posi-

tive matrix. To prove this assertion, we shall use a fact from graph theory, which says that,
for Ac = (ai,j), we can look at the directed hypergraph of k vertices where arcs correspond
to positive entries of Ac (including a loop k → k). So, the entry (i, j) of Ak

c is positive if
you can get from i to j in k steps (loops are allowed). Since ai,k > 0, for all 1 ≤ i ≤ k and
ai+1,i > 0, for all 1 ≤ i ≤ k – 1, our graph is like Fig. 1 (we refer the reader to [2, p. 78] for
this results and other facts about combinatorial matrix theory). So, the first step is to go
from i to k (since ai,k > 0), after we stay in the loop k → k for j – 1 steps and then we go to
j in k – j steps. So, we reach j from i in 1 + (j – 1) + (k – j) = k steps. Since the pair (i, j) is
arbitrary, the matrix Ak

c has only positive entries and by the Perron–Frobenius theorem,
we find that fk,c(x) has a simple dominant zero, as desired.

In order to prove the items, we observe that, for c = 1, the (k, 1)-Jacobsthal sequence is
exactly the k-generalized Fibonacci sequence (and the result is already known for this last
sequence). So, we may suppose, in all that follows, that c �= 1.

Proof of (i) The proof follows directly from the fact that

fk,2(x) = (x – 2)
xk – 1
x – 1

. �

Proof of (ii) Note that by Descartes’ sign rule, fk,c(x) has only one positive zero, say α. Also,
fk,c(2) = 2 – c < 0 and then α > 2, by the Intermediate Value Theorem, together with the
fact that fk,c(x) tends to infinity as x → ∞.

Define gc(x) = –f ∗
k,c(1/x) = cxk + xk–1 + · · ·+ x – 1. Thus β := 1/α ∈ (0, 1/2) is a zero of gc(x).

Note that

gc(x) = (x – β)
(
cxk–1 + (cβ + 1)xk–2 + · · · +

(
cβk–1 + βk–2 + · · · + β + 1

))
.

Write ψc(x) := gc(x)/(x – β). Now, we shall prove that the coefficients of ψc(x) are in the
decreasing order. In fact, since c(1 – β) > 1 (because β < 1/2 and c > 2), we have c > cβ + 1.
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So, by the same reason, we have

cβ j–1 +
j–2∑

i=0

β i > cβ j +
j–1∑

i=0

β i,

for all j ∈ [2, k] (since the above inequality is equivalent to c > cβ + 1). Therefore, by the
Eneström–Kakeya theorem, all the zeros of ψc(x) satisfy |x| ≤ 1 and so, all the zeros of
fk,c(x) satisfy |x| ≥ 1. Now, it suffices to prove that these zeros do not lie on the unit circle.
For that, we shall use Marden’s method. Since δ(fk,c) = (–c2)–12 �= 0, then, by Marden’s the-
orem, the polynomials fk,c(x) and Tfk,c(x) = (–c)2fk,c(x) – xkfk,c(1/x) have the same number
of zeros on the boundary of the unit circle. After some calculations, we obtain

Tfk,c(x) = xk–1 + xk–2 + · · · + x + c – 1.

Let us prove that this polynomial does not have a zero with absolute value equal to 1.
Indeed, suppose that x = exp(iθ ) = cos(θ ) + i sin(θ ) (for some θ ∈ (0,π ), since –1 and 1
are not zeros of Tfk,c(x)) satisfy Tfk,c(x) = 0. Thus, we use De Moivre’s formula and by
combining the real and imaginary parts, we obtain

cos(θ ) + cos(2θ ) + · · · + cos
(
(k – 1)θ

)
= 1 – c

and

sin(θ ) + sin(2θ ) + · · · + sin
(
(k – 1)θ

)
= 0.

By using Eqs. (4) and (5), we arrive at

sin((k – 1)θ/2) cos(kθ/2)
sin(θ/2)

= 1 – c (6)

and

sin((k – 1)θ/2) sin(kθ/2)
sin(θ/2)

= 0. (7)

Since c �= 1, from (7), one has sin(kθ/2) = 0 and so kθ/2 = �π , for some integer �.
Thus, cos(kθ/2) = (–1)� and we use the sine addition formula to get sin((k – 1)θ/2) =
(–1)�+1 sin(θ/2). We combine this fact with (6) to arrive at the absurdity that –1 = 1 – c,
i.e., c = 2. So, all the zeros of fk,c(x) satisfy |x| > 1. �

Proof of (iii) Again, by Descartes’ sign rule, fk,c(x) has only one positive zero, say α. Also,
fk,c(2) = 2 – c > 0 and fk,c(1) = 2 – k – c < 0 and then α ∈ (1, 2), by the intermediate value
theorem.

Define gc(x) = –f ∗
k,c(1/x) = cxk + xk–1 + · · · + x – 1. Thus β := 1/α > 1/2 is a zero of gc(x).

Note that

gc(x) = (x – β)
(
cxk–1 + (cβ + 1)xk–2 + · · · +

(
cβk–1 + βk–2 + · · · + β + 1

))
.
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Write ψc(x) := gc(x)/(x – β). Then

ψ∗
c (x) =

(
cβk–1 + βk–2 + · · · + β + 1

)
xk–1 + · · · + (cβ + 1)x + c.

Now the coefficients of the previous polynomial are in increasing order. In fact, as in the
proof of item (ii), it is enough to prove that cβ + 1 ≥ c. This holds, because c(1 – β) <
2 · (1 – 1/2) = 1 (since c < 2 and β > 1/2). Thus, we use the Eneström–Kakeya theorem to
ensure that all the zeros of ψ∗

c (x) satisfy |x| ≤ 1, so, all the zeros of gc(x) satisfy |x| ≥ 1 and
finally all the zeros of fk,c(x) (different of α) satisfy |x| ≤ 1. Now, the proof that there is no
zero of fk,c(x) on the boundary of the unit circle is the same as in the previous item (since
in that proof the absurdity was that c = 2). This completes the proof. �

4 Proofs of Theorem 2 and Corollary 1
4.1 Proof of Theorem 2
Let gc(x) = (x – 1)fk,c(x) = xk+1 – 2xk – (c – 1)x + c. By Descartes’ sign rule this polynomial
has two positive real zeros counting multiplicity. One of them is x = 1 and the other, which
is a zero of fk,c(x), must be simple (note that fk,c(1) = 2 – k – c < 0). For the same reason
(Descartes’ sign rule for gc(–x)), we find that gc(x) has exactly one negative zero when k is
even and exactly two negative zeros or none negative zeros when k is odd. So, in the even
case the real zeros must be simple.

In conclusion, a possible zero α of gc(x) with multiplicity greater than one must be a
non-real number. Thus, since gc(α) = 0 and g ′

c(α) = 0 have to hold, we can combine these
equalities to obtain

0 = hc(α) := αg ′
c(α) – (k + 1)gc(α) = 2αk + (c – 1)kα – c(k + 1).

Also,

0 = (α – 2)hc(α) – 2gc(α) = (c – 1)kα2 + (c + 2k – 3ck – 2)α + 2ck.

This implies that we have two possibilities for α, namely,

α± =
3ck + 2 – c – 2k ± √

(c + 2k – 3ck – 2)2 – 8c(c – 1)k2

2(c – 1)k
.

However, for any c and k as in items (i) or (ii), we obtain

(c + 2k – 3ck – 2)2 ≥ 8c(c – 1)k2, (8)

showing that α is real. Inequality (8) we can rewrite as

(c – 2)2k2 – 2(c – 2)(3c – 2)k + (c – 2)2 ≥ 0 (9)

or

(c – 2)2(k2 + 1
) ≥ –2(2 – c)(3c – 2)k. (10)
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For c ∈ (1, 2] we can see from (10) that (8) surely holds for any non-negative k. Let us
consider c ∈ (0, 1] ∪ (2,∞). The discriminant D of the quadratic polynomial (in variable k)
on the left-hand side of inequality (9) is equal to 32c(c – 1)(c – 2)2. Clearly, D ≤ 0 for c ∈
(0, 1], hence (8) holds for any k. Similarly, D > 0 for c > 1, thus we have to solve only the
case c > 2. Zeros of the quadratic polynomial from the left-hand side of inequality (9) are

k± =
3c – 2
c – 2

± 2
√

2

√
c(c – 1)
(c – 2)2 . (11)

These zeros are dependent on the parameter c, hence we will define two functions k+ and
k–, k± : (2,∞) →R, given by (11). We get easily that limc→2+ k–(c) = 0, limc→2+ k+(c) = +∞
and limc→∞ k±(c) = 3 ± 2

√
2. The derivatives of these functions are

k′
±(c) =

–4
√

c(c – 1) ± √
2(2 – 3c)

(c – 2)2
√

c(c – 1)
.

We easily see that the function k+(c) is decreasing and the function k–(c) is increasing in
(2,∞). Thus, for c > 2 the function k– is bounded, concretely 0 < k–(c) < 3 – 2

√
2 < 0.2 and

function k– is bounded from below by 3 + 2
√

2 > 2. Hence for c > 2 we have the following
condition for k:

k ≥ 3c – 2
c – 2

+

√
8c(c – 1)
(c – 2)2 .

This completes the proof.

4.2 Proof of Corollary 1
First, let us suppose that k > 5. We will again use the function k+, defined above, and its
properties. If c is an integer, then the maximum of k+(c) happens when c = 3 and this max-
imum is equal to k+(3) = 7 + 4

√
3 < 14. So, if k ≥ 14, then, by Theorem 2, fk,c(x) has only

single zeros and this fact does not depend on c. However, if c increases, function k+(c) de-
creases and then we can obtain better lower bounds for k which can lead, by computational
methods, to our desired result. For evaluating this task, we shall define some commands
in Wolfram Mathematica. First, the following function r(c):

r[c_] := IntegerPart[(-2 + 3 c)/(-2 + c) +

2 Sqrt[2] Sqrt[(-c + c^2)/(-2 + c)^2]]

The functions fk,c(x) (here F(x, k, c)):
F[x_, k_, c_] := x^k - Sum[x^j, {j, 1, k - 1}] - c

Its derivative (in relation to x):
G[x_, k_] := k*x^(k -1) - Sum[j*x^(j - 1), {j, 1, k - 1}]

We find that the possible multiple zeros for fk,c(x) happen for 5 < k ≤ r(c). However,
r(c) = 5, for all c ≥ 51 and so there are none of these kind of zeros for these cases. So,
we can consider only the case 3 ≤ c ≤ 50. We know that α is a multiple zero of fk,c(x) if
fk,c(α) = f ′

k,c(α) = 0. The next function will calculate the maximum between the number of
solutions for a fixed c and k in the range 6 ≤ k ≤ r(c):

s[c_] := Max[

Table[ Length[NSolve[F[x, k, c] == 0 && G[x, k] == 0, x ]],

{k, 6, h[c]} ]]
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Finally, we make a table for c from 3 to 50 by the following input:
Table[ s[c], {c, 3, 50} ]

The output is
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0}

This means that there are no multiple zeros if k > 5.
For the cases, k = 2, 3, 4 or 5, we can use Mathematica to return the exact zeros of f ′

k,c(x)
(for k ≤ 5, we have a closed formula for these zeros, which does not depend on c). After
that, we consider the linear equation fk,c(y) = 0 (in the variable c) for y being a root of
f ′
k,c(x) = 0. Then we again use Mathematica to see that none of the returned values of c is

a positive integer. This concludes the proof.
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