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Abstract
In this paper, we deal mainly with a class of periodic tridiagonal Toeplitz matrices with
perturbed corners. By matrix decomposition with the Sherman–Morrison–Woodbury
formula and constructing the corresponding displacement of matrices we derive the
formulas on representation of the determinants and inverses of the periodic
tridiagonal Toeplitz matrices with perturbed corners of type I in the form of products
of Fermat numbers and some initial values. Furthermore, the properties of type II
matrix can be also obtained, which benefits from the relation between type I and II
matrices. Finally, we propose two algorithms for computing these properties and
make some analysis about them to illustrate our theoretical results.
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1 Introduction

Tridiagonal matrices appear not only in pure linear algebra, but also in many practical
applications, such as computer graphics [1], image denoising [2], and partial differential
equations [3–6]. As an example, Holmgren and Otto [7] considered the one-dimensional
linear hyperbolic equation

∂u(x, t)
∂t

+ v
∂u(x, t)

∂x
= g

to study certain matrices occurring in discretized partial differential equations, where 0 <
x ≤ 1, t > 0, u(0, t) = f (–at), u(x, 0) = f (x), g = (v – a)f ′, v and a are positive constants,
and f is a scalar function with derivative f ′. Let k and h denote the time and spatial steps,
respectively. Consider the linear hyperbolic equation discretized based on trapezoidal rule
in time and center difference in space, respectively. Its coefficient matrix is a tridiagonal
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matrix with perturbed last row [8]:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 α 0 · · · · · · 0

–α
. . . . . . . . .

...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . –α 4 α

0 · · · · · · 0 –2α 4 + 2α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

,

where α = vk/h. On the other hand, some parallel computing algorithms are also designed
for solving tridiagonal systems on graphics processing unit (GPU), which are parallel cyclic
reduction [9] and partition methods [10]. Recently, Yang et al. [11] presented a parallel
solving method that mixes direct and iterative methods for block-tridiagonal equations
on CPU-GPU heterogeneous computing systems, whereas Myllykoski et al. [12] proposed
a generalized graphics processing unit implementation of partial solution variant of the
cyclic reduction (PSCR) method to solve certain types of separable block tridiagonal linear
systems. Compared to an equivalent CPU implementation that utilizes a single CPU core,
PSCR method indicated up to 24-fold speedups.

Many studies have been conducted for tridiagonal matrices [13–19]. Typical results for
their inverses include Usmani’s algorithm [20] based on rudimentary matrix analysis, El-
Mikkawy and Atlan’s two symbolic algorithms [21, 22] based on the Doolittle LU factor-
ization of the k-tridiagonal matrix, Jia et al.’s algorithms [23, 24] based on block diago-
nalization technique, and so on. There are also some studies on the solution of periodic
tridiagonal linear systems [25–27]. Tim and Emrah [28] used backward continued frac-
tions to derive the LU factorization of periodic tridiagonal matrix and then derived an
explicit formula for its inverse. Dow [29] discussed some special Toeplitz matrices includ-
ing periodic tridiagonal Toeplitz matrices, whereas Shehawey [30] generalized Huang and
McColl’s [31] work and put forward the inverse formula for periodic tridiagonal Toeplitz
matrices.

The main research object of this paper is an n × n matrix A = (ai,j)n
i,j=1, which is called

a periodic tridiagonal Toeplitz matrix with perturbed corners of type I and defined as
follows:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 2ξ 0 · · · 0 γ1

ξ –3ξ 2ξ
. . . 0

0 ξ
. . . . . . . . .

...
...

. . . . . . . . . 2ξ 0

0
. . . ξ –3ξ 2ξ

αn 0 · · · 0 ξ γn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

, (1)

where α1, αn, γ1, γn, ξ are complex numbers with ξ �= 0. Let În be the n×n “reverse unit ma-
trix”, which has ones along the secondary diagonal and zeros elsewhere. Let A be defined
as a periodic tridiagonal Toeplitz matrix with perturbed corners of type I . A matrix of the
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form B := ÎnAÎn is called a periodic tridiagonal Toeplitz matrix with perturbed corners of
type II . In this case, we say that B is induced by A. It is readily seen that A is a periodic
tridiagonal Toeplitz matrix with perturbed corners of type I if and only if its transpose AT

is a periodic tridiagonal Toeplitz matrix with perturbed corners of type II .
Besides, the following Fermat sequence {Fn} [32] plays a very important role in our main

results:

Fn+1 = 3Fn – 2Fn–1, where F0 = 2,F1 = 3, n ≥ 1; (2)

F–(n+1) =
3
2
F–n –

1
2
F–(n–1), where F0 = 2,F–1 =

3
2

, n ≥ 1. (3)

It is known that the nth Fermat number has the Binet formula Fn = 2n + 1.
The next section presents the main results of the paper. We present detailed derivations

of the determinants and inverses of periodic tridiagonal Toeplitz matrices with perturbed
corners. Our approach includes a clever use of matrix decomposition with the Sherman–
Morrison–Woodbury formula [33]. In the last section, we compare the CPU times for
the determinants and inverses of periodic tridiagonal Toeplitz matrices with perturbed
corners between different algorithms.

2 Determinants and inverses
In this section, we derive explicit formulas for the determinants and inverses of a periodic
tridiagonal Toeplitz matrix with perturbed corners. Main effort is made for working out
those for periodic tridiagonal Toeplitz matrix with perturbed corners of type I , since the
results for type II matrices would follow immediately.

Theorem 1 Let A = (ai,j)n
i,j=1 (n ≥ 3) be given as in (1). Then

det A = (–ξ )n–2{4(Fn–3 – 2)ξ 2 +
[
2(Fn–2 – 2)(α1 + γn) – (Fn–1 – 1)αn

– γ1
]
ξ + (Fn–1 – 2)(α1γn – αnγ1)

}
, (4)

where Fi (i = n – 3, n – 2, n – 1) is the ith Fermat number.

Proof Define the circulant matrix

ρ = (ρi,j)n
i,j=1, (5)

where

ρi,j =

⎧⎪⎪⎨
⎪⎪⎩

1, i = n, j = 1,

1, j = i + 1,

0 otherwise.

Clearly, ρ is invertible, and

detρ = (–1)n–3. (6)
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Multiply A by ρ from right and then partition Aρ into four blocks:

Aρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1 α1 2ξ 0 · · · · · · · · · 0

0 ξ –3ξ 2ξ 0
...

0 0 ξ –3ξ 2ξ 0
...

...
... 0 ξ –3ξ 2ξ

. . .
...

...
...

... 0
. . . . . . . . . 0

0
...

...
...

. . . . . . . . . 2ξ

2ξ 0
...

...
. . . . . . –3ξ

γn αn 0 0 · · · · · · 0 ξ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

(
A11 A12

A21 A22

)
. (7)

Since A22 is upper triangular, the determinant of A22 is

det A22 = ξn–2. (8)

Besides, ξ �= 0, so A22 is invertible. It is known (see, e.g., [34, Lemma 2.5]) that A–1
22 =

(äi,j)n–2
i,j=1 where

äi,j =

⎧⎨
⎩

Fj–i+1–2
ξ

, i ≤ j,

0, i > j,

and Fi is the ith Fermat number.
Next, taking the determinants for both sides of (7), by [35, p. 10] we get

det(Aρ) = det A22 det
(
A11 – A12A–1

22 A21
)
. (9)

Therefore

det A =
det A22 det(A11 – A12A–1

22 A21)
detρ

. (10)

To find det A, we need to evaluate the determinant of (A11 – A12A–1
22 A21). From (7) we have

A11 – A12A–1
22 A21

=

(
γ1 – 2(Fn–2 – 2)γn – 4(Fn–3 – 2)ξ α1 – 2(Fn–2 – 2)αn

(Fn–1 – 2)γn + 2(Fn–2 – 2)ξ (Fn–1 – 2)αn + ξ

)
,

and so

det
(
A11 – A12A–1

22 A21
)

= 4(2 – Fn–3)ξ 2 –
[
2(Fn–2 – 2)(α1 + γn) – (Fn–1

– 1)αn – γ1
]
ξ – (Fn–1 – 2)(α1γn – αnγ1)}. (11)
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Finally, applying (6), (8), and (11) to (10), we get the determinant of A, which completes
the proof. �

Theorem 2 Let A = (ai,j)n
i,j=1 (n ≥ 3) be given as in (1) and assume A to be nonsingular.

Then A–1 = (ăi,j)n
i,j=1, where

ăi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(Fn–2–2)ξ+(Fn–1–2)γn
ψ

, i = 1, j = 1,
4(Fn–3–2)ξ–γ1+2(Fn–2–2)γn

ψ
, i = 1, j = 2,

2(Fn–3–2)ξ–(Fn–2–1)αn+(Fn–2–2)γn
ψ

, i = 2, j = 1,
2(Fn–3–2)α1ξ+(Fn–2–2)(α1γn–αnγ1)

–ψξ
, i = 2, j = 2,

3ă2,2 – 2ă2,1 + 1
ξ

, i = 2, j = 3,
3
2 ă2,2 – 1

2 ă1,2 + 1
2ξ

, i = 3, j = 2,

3ăi,j–1 – 2ăi,j–2,

⎧⎨
⎩

i ∈ {1, 2}, i + 2 ≤ j ≤ n,

3 ≤ j ≤ i ≤ n,

3
2 ăi–1,j – 1

2 ăi–2,j,

⎧⎨
⎩

j ∈ {1, 2}, j + 2 ≤ i ≤ n,

3 ≤ i < j ≤ n,

(12)

ψ = 4(Fn–3 – 2)ξ 2 +
[
2(Fn–2 – 2)(α1 + γn) – (Fn–1 – 1)αn – γ1

]
ξ

+ (Fn–1 – 2)(α1γn – αnγ1), (13)

and Fi (i = n – 3, n – 2, n – 1) is the ith Fermat number.

Proof Let A–1 = (ăi,j)n
i,j=1, and let In = (ei,j)n

i,j=1 be the identity matrix, that is,

ei,j =

⎧⎨
⎩

1, i = j,

0 otherwise.
(14)

For a nonsingular A,

A–1A = AA–1 = In. (15)

According to (15), we get

ei,j = 2ăi,j–1ξ – 3ăi,jξ + ăi,j+1ξ , 1 ≤ i ≤ n, 2 ≤ j ≤ n – 1, (16)

ei,j = ăi–1,jξ – 3ăi,jξ + 2ăi+1,jξ , 3 ≤ i ≤ n – 2, 1 ≤ j ≤ n. (17)

Based on (14), from (16) we get that

ăi,j = 3ăi,j–1 – 2ăi,j–2,

⎧⎨
⎩

i ∈ {1, 2}, i + 2 ≤ j ≤ n,

3 ≤ j ≤ i ≤ n,
(18)

and ă2,3 = 3ă2,2 – 2ă2,1 + 1
ξ

.



Wei et al. Advances in Difference Equations        (2019) 2019:410 Page 6 of 11

Similarly, from (17) we get that

ăi,j =
3ăi–1,j

2
–

ăi–2,j

2
,

⎧⎨
⎩

j ∈ {1, 2}, j + 2 ≤ i ≤ n,

3 ≤ i < j ≤ n,
(19)

and ă3,2 = 3ă2,2
2 – ă2,1

2 + 1
2ξ

.
Therefore, based on the previous analysis, we need to determine four initial values, that

is, ăi,j (i, j ∈ {1, 2}), for the recurrence relations (18) and (19) to compute the inverse of A.
The rest of the proof is devoted to evaluating these particular entries of A–1.

We decompose A as follows:

A = ξF + μν, (20)

where F = ((fij)n
i,j=1)–1, μ = (μT

1 ,μT
2 ), ν =

( ν1
ν2

)
with

fij =

⎧⎨
⎩
Fj–i+1, 1 ≤ i ≤ j ≤ n,

2Fj–i–1 otherwise,

μ1 =
(

α1 +
Fn+1 – 3
Fn+1 – 2

ξ , 0, . . . , 0,αn +
2ξ

Fn+1 – 2

)

1×n
,

μ2 =
(

γ1 +
Fn – 1
Fn+1 – 2

ξ , 0, . . . , 0,γn +
Fn+1 – 3
Fn+1 – 2

ξ

)

1×n
,

ν1 = (1, 0, . . . , 0)1×n, ν2 = (0, . . . , 0, 1)1×n,

and Fi is the ith Fermat number as before.
Applying the Sherman–Morrison–Woodbury formula (see, e.g. [33, p. 50]) to (20) gives

A–1 = (ξF + μν)–1 =
1
ξ
F

–1 –
1
ξ 2 F

–1μ

(
In +

1
ξ
νF–1μ

)–1

νF–1. (21)

Now we compute each component on the right-hand side of (21). Multiplying F–1 by ν

and μ from left and right, respectively, we have

νF–1 =

(
τ1

τ2

)
, (22)

F
–1μ =

(

1 
2

)
, (23)

where τ1 and τ2 are row vectors, and 
1 and 
2 are column vectors,

τ1 = (Fj)n
j=1, τ2 = (2Fj–n–1)n

j=1,


1 = (Fn–i+1αn + 2F–iα1 + 2F1–iξ )n
i=1,


2 = (Fn–i+1γn + 2F–iγ1 + 2Fn–iξ )n
i=1.
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Then multiplying (23) by ν
ξ

from the left, further adding In, and computing the inverse of
the matrix, we have

(
In +

1
ξ
νF–1μ

)–1

=
ξ

σ

(
2F–nγ1 + 3γn + 5ξ –3γ1 – Fnγn – 2Fn–1ξ

–2F–nα1 – 3αn – 2F1–nξ 3α1 + Fnαn + 5ξ

)
,

where

σ = –
Fn+1 – 2
Fn–1 – 1

{
4(Fn–3 – 2)ξ 2 +

[
2(Fn–2 – 2)(α1 + γn) – (Fn–1 – 1)αn

– γ1
]
ξ + (Fn–1 – 2)(α1γn – αnγ1)

}
.

Multiplying the pervious formula (In + 1
ξ
νF–1μ)–1 by F–1μ from the left and by νF–1 from

the right, respectively, yields

F
–1μ

(
In +

1
ξ
νF–1μ

)–1

νF–1 = (kij)n
i,j=1, (24)

where

kij =
ξ

ψ

[
4θ1ξ

2 + (θ2α1 – θ3αn + θ4γ1 + θ5γn)ξ + θ6(α1γn – αnγ1)
]
,

θ1 = (Fn–i – 2)(Fj–2 – 2) – (Fj–i – 1)(Fi–1 – 2)(Fn–1–j – 2),

θ2 =
(Fn – 2)[2(Fn–i – 2)(Fj – 2) – (Fj–i+1 – 1)(Fi–1 – 2)(Fn+1–j – 2)]

Fn+1 – 2

–
3(Fn–i – 1)(Fi – 2)(Fj – 2)

Fn+1 – 2
,

θ3 = (Fn–1 – 1)(Fj–i+1 – 2),

θ4 = 2(Fj–i–1 – 2),

θ5 =
(Fn – 2)[2(Fn–i – 2)(Fj – 2) – (Fj–i+1 – 1)(Fi–1 – 2)(Fn+1–j – 2)]

Fn+1 – 2

–
3(Fj–1 – 1)(Fn+1–i – 2)(Fn+1–j – 2)

Fn+1 – 2
,

θ6 = (Fn–i – 2)(Fj – 2) – (Fj–i – 1)(Fi–1 – 2)(Fn+1–j – 2),

ψ = 4(Fn–3 – 2)ξ 2 +
[
2(Fn–2 – 2)(α1 + γn) – (Fn–1 – 1)αn – γ1

]
ξ

+ (Fn–1 – 2)(α1γn – αnγ1).

From (21) and (24) we have

(ăi,j)n
i,j=1 =

1
ξ
F

–1 –
1
ξ 2 (kij)n

i,j=1, (25)
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where

ăi,j =
Fj–i+1

ξ
–

ki,j

ξ 2 , 1 ≤ i ≤ j ≤ n, (26)

ăi,j =
2Fj–i–1

ξ
–

ki,j

ξ 2 , 1 ≤ j < i ≤ n. (27)

By (26) we compute

ă1,1 =
2(Fn–2 – 2)ξ + (Fn–1 – 2)γn

ψ
,

ă1,2 =
4(Fn–3 – 2)ξ – γ1 + 2(Fn–2 – 2)γn

ψ
,

ă2,2 =
2(Fn–3 – 2)α1ξ + (Fn–2 – 2)(α1γn – αnγ1)

–ψξ
.

By (27) we compute

ă2,1 =
2(Fn–3 – 2)ξ – (Fn–2 – 1)αn + (Fn–2 – 2)γn

ψ
.

This completes the proof. �

Remark 1 Formulas (26) and (27) would give an analytic formula for A–1. However, there
is a big advantage of (12) from computational consideration, as we shall see from Sect. 3.

The next two theorems are parallel results of type I matrices.

Theorem 3 Let A be given as in (1), and let B be a periodic tridiagonal Toeplitz matrix
with perturbed corners of type II , which is induced by A. Then

det B = (–ξ )n–2{4(Fn–3 – 2)ξ 2 +
[
2(Fn–2 – 2)(α1 + γn) – (Fn–1 – 1)αn

– γ1
]
ξ + (Fn–1 – 2)(α1γn – αnγ1)

}
,

where Fi (i = n – 3, n – 2, n – 1) is the ith Fermat number.

Proof Since det B = det În det A det În, we obtain this conclusion by using Theorem 1 and
det În = (–1)

n(n–1)
2 . �

Theorem 4 Let A be given as in (1), and let B be a periodic tridiagonal Toeplitz matrix
with perturbed corners of type II , which is induced by A. Then

B–1 = (ăn+1–i,n+1–j)n
i,j=1,

where ăi,j is as in (12).

Proof It follows immediately from B–1 = Î–1
n A–1 Î–1

n = ÎnA–1 În and Theorem 2. �
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3 Numerical experiments
In this section, we give two algorithms for finding the determinant and inverse of a periodic
tridiagonal Toeplitz matrix with perturbed corners of type I , which is called A. Besides,
we make some analysis of these algorithms to illustrate our theoretical results.

Firstly, based on Theorem 1, we give an algorithm for computing determinant of A:

Algorithm 1
Step 1: Input α1, αn, γ1, γn, ξ , order n and generate Fermat numbers Fi (i = n – 3, n –

2, n – 1) by (2).
Step 2: Calculate and output the determinant of A by (4).

Based on Algorithm 1, we make a comparison of the total number of operations for
determinant of A between LU decomposition and Algorithm 1 in Table 1. Specifically, we
get that the total number of operations for the determinant of A is 2n + 24. Moreover, this
number can be reduced to O(log n) (see [36], pp. 226–227).

Next, based on Theorem 2, we give an algorithm for computing inverse of A:

Algorithm 2
Step 1: Input α1, αn, γ1, γn, ξ , order n and generate Fermat numbers Fi (i = n – 3, n –

2, n – 1) by (2).
Step 2: Calculate ψ by (13), four initial values ă1,1, ă1,2, ă2,1, and ă2,2 by (12).
Step 3: Calculate the remaining elements of the inverse:

ă2,3 = 3ă2,2 – 2ă2,1 +
1
ξ

,

ă3,2 =
3
2

ă2,2 –
1
2

ă2,1 +
1

2ξ
,

ăi,j = 3ăi,j–1 – 2ăi,j–2, i ∈ {1, 2}, i + 2 ≤ j ≤ n,

ăi,j =
3
2

ăi–1,j –
1
2

ăi–2,j, j ∈ {1, 2}, j + 2 ≤ i ≤ n,

ăi,j = 3ăi,j–1 – 2ăi,j–2, 3 ≤ j ≤ i ≤ n,

ăi,j =
3
2

ăi–1,j –
1
2

ăi–2,j, 3 ≤ i < j ≤ n.

Step 4: Output the inverse A–1 = (ăi,j)n
i,j=1.

To test the effectiveness of Algorithm 2, we compare the total number of operations
for the inverse of A between LU decomposition and Algorithm 2 in Table 2. The total
number operation of LU decomposition is n3

2 + n2 + 43n
2 – 30, whereas that of Algorithm 2

is 7n2

2 – 11n
2 + 63.

Table 1 Comparison of the total number operations for determinant of A

Algorithms Number operations

LU decomposition algorithm 13n – 15
Algorithm 1 2n + 24
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Table 2 Comparison of the total number of operations for the inverse of A

Algorithms Number operations

LU decomposition algorithm n3
2 + n2 + 43n

2 – 30

Algorithm 2 7n2
2 – 11n

2 + 63

4 Conclusions
In this paper, we present explicit formulas for the determinants and inverses of periodic
tridiagonal Toeplitz matrices with perturbed corners. The representation of the determi-
nant in the form of products of the Fermat number and some initial values from matrix
transformations. For the inverse, our main approach includes a clever use of matrix de-
composition with the Sherman–Morrison–Woodbury formula. To test the effectiveness
of our method, we propose two algorithms for finding the determinant and inverse of peri-
odic tridiagonal Toeplitz matrices with perturbed corners and compare the total number
of operations for two basic quantities between different algorithms. After comparison, we
draw a conclusion that our algorithms are superior to other algorithms to some extent.
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