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Abstract
This paper studies the global stability of two discrete-time HIV infection models. The
models integrate (i) latently infected cells, (ii) long-lived chronically infected cells and
(iii) short-lived infected cells. The second model generalizes the first one by assuming
that the incidence rate of infection as well as the production and removal rates of the
HIV particles and cells are modeled by general nonlinear functions. We discretize the
continuous-time models by using a nonstandard finite difference scheme. The
positivity and boundedness of solutions are established. The basic reproduction
number is derived. By using the Lyapunov method, we prove the global stability of
the models. Numerical simulations are presented to illustrate our theoretical results.
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1 Introduction
Modeling and analysis of within-host human immunodeficiency virus (HIV) dynamics
have received considerable attention from biologists and mathematicians during the last
decades (see, e.g., [1–23]). The main target of the HIV is the CD4+ T cell. HIV causes
the deadly disease acquired immunodeficiency syndrome (AIDS). Mathematical models
of HIV dynamics are useful for describing the interaction between the host cells and HIV
[2]. The basic HIV dynamics model which describes the interaction between the HIV (p),
uninfected CD4+ T cells (s) and infected CD4+ T cells (z) has been proposed by Nowak and
Bangham [1]. Callaway and Perelson [3] have extended the basic HIV dynamics model by
taking into consideration three classes of infected cells: (i) latently infected cells (w) which
cannot generate HIV particles, (ii) short-lived infected cells (z) which live for short time
and generate large numbers of HIV particles, and (iii) long-lived chronically infected cells
(u) which live for long time and generate small numbers of HIV particles:

ṡ = β – δs – (1 – ε)k̄sp, (1)

ẇ = (1 – ε)k̄1sp – (α + m)w, (2)

ż = (1 – ε)k̄2sp + mw – dz, (3)

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-019-2338-3
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-019-2338-3&domain=pdf
http://orcid.org/0000-0001-5030-633X
mailto:a_m_elaiw@yahoo.com


Elaiw and Alshaikh Advances in Difference Equations        (2019) 2019:407 Page 2 of 24

u̇ = (1 – ε)k̄3sp – au, (4)

ṗ = Nzdz + Nuau – cp, (5)

where k̄ = k̄1 + k̄2 + k̄3 represents the incidence rate constant. β represents the rate at which
new CD4+ T cells are created from sources. δ is the death rate constant of the uninfected
CD4+ T cells. The parameters α, d, a and c denote the death rate constants of the latently
infected cells, short-lived infected cells, long-lived chronically infected cells and free HIV
particles, respectively. The parameters Nz and Nu represent the average number of HIV
particles produced in the lifetime of the short-lived infected cells and long-lived chroni-
cally infected cells, respectively. The term mw is the activation rate of the latently infected
cells, and ε represents the drug efficacy, where 0 ≤ ε ≤ 1. This model has been extended
in [10] by considering time delay. Several authors have devoted their efforts in studying
the global stability of mathematical models in virology (see, e.g., [7, 16–22] and [24–30])
and epidemiology (see, e.g., [31, 32]).

Most of the HIV dynamics models presented in the literature are given by systems
of nonlinear differential equations. Therefore, the exact analytical solutions of these
continuous-time models are unknown. It is important to note that scientists often collect
the data and analyze the results at discrete times. Further, the use of digital computers in
performing numerical simulations of nonlinear systems necessitated the investigation of
the discrete-time models. Consequently, a discretization can be used to obtain a discrete-
time model which is an approximation of the exact solution. However, how to select a
proper discrete method so that the global properties of solutions of the corresponding
continuous-time models can be efficiently preserved is still an open problem [33]. The
mixed Euler method which is a mixture of both forward and backward Euler methods
has been used for within-host virus dynamics governed by ordinary differential equations
(ODEs) in [34, 35], for delayed virus dynamics models governed by delay differential equa-
tions (DDEs) in [36]. The mixed Euler method has been utilized for virus dynamics models
with diffusion governed by partial differential equations (PDEs) in [37] and delayed partial
differential equations (DPDEs) in [38]. It has been proven that the mixed Euler method can
preserve the positivity and boundedness of solutions, moreover, it can preserve the global
stability of equilibria of the corresponding continuous-time system with no restriction on
the space and time step sizes [38].

Mickens [39] has introduced nonstandard finite difference (NSFD) scheme for solving
differential equations. It has been proven that NSFD can preserve the main properties of
several types of continuous-time models. The main advantage of NSFD approach is that
the essential qualitative features of the mathematical model such as equilibria, positivity,
boundedness and global behaviors of solutions are preserved independently of the cho-
sen step-size [40]. On the other hand, even though there exist some general methods for
construction of NSFD schemes for certain systems of ordinary differential equations (see,
e.g., [41, 42]), there is no universal NSFD scheme suitable for every mathematical model.
Therefore every model requires the construction of an individual numerical scheme in
order to obtain the correct qualitative results. NSFD has been widely employed in the
study of different epidemic models (see, e.g., [33] and [43–46]). NSFD has been used for
within-host virus dynamics models governed by
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• ODEs: Virus dynamics models governed by ODEs have been studied by considering
Holling type-II infection function in [47] and CTL immune response in [40] and [48].

• DDEs: Delayed virus dynamics models given by DDEs has been studied by [49].
• PDEs: Virus dynamics models with diffusion given by PDEs have been studied by

considering: general infection function [50], both virus-to-cell and cell-to-cell
transmissions in [51] and latently infected cells in [52]. Diffusive HBV infection model
with HBV DNA-containing capsids has been studied in [53].

• DPDEs: Delayed virus dynamics models with diffusion have been studied by
considering general nonlinear incidence rate in [54]. The HBV model presented in
[53] has been extended by incoporating time delay in [55] and [56].

All the above-mentioned discrete-time virus dynamics models have considered one or
two classes of infected cells. In this paper, our target is to study two discrete time HIV
infection models with three categories of infected cells, latently infected cells, short-lived
infected cells and long-lived chronically infected cells. The first model is obtained by dis-
cretizing system (1)–(5) using NSFD. The second model extends the first one by consider-
ing that the incidence rate of infection as well as the production and removal rates of the
HIV particles and cells are modeled by general nonlinear functions. Positivity and bound-
edness properties of the solutions are proven. Further, global stability of the equilibria is
established by constructing Lyapunov functions and by applying LaSalle’s invariance prin-
ciple.

2 Discrete-time model
Discretizing system (1)–(5) using the NSFD method [39] we obtain

sn+1 – sn = β – δsn+1 – ksn+1pn, (6)

wn+1 – wn = k1sn+1pn – (α + m)wn+1, (7)

zn+1 – zn = k2sn+1pn + mwn+1 – dzn+1, (8)

un+1 – un = k3sn+1pn – aun+1, (9)

pn+1 – pn = Nzdzn+1 + Nuaun+1 – cpn+1, (10)

where, k = k1 + k2 + k3, ki = (1 – ε)k̄i, i = 1, 2, 3 and n ∈ N = {0, 1, 2, . . .}. We consider the
initial conditions:

(s0, w0, z0, u0, p0) ∈R
5
+ =

{
(s, w, z, u, p) | s > 0, w > 0, z > 0, u > 0, p > 0

}
. (11)

2.1 Preliminaries
Let us consider the region

Γ1 =
{

(s, w, z, u, p) : 0 < s, w, z, u < N1, 0 < p < N2
}

,

where N1 = β

ξ
, N2 = (Nzd+Nua)

c N1 and ξ = min{δ,α, d, a}.

Lemma 1 Any solution (sn, wn, zn, un, pn) of model (6)–(10) with initial conditions (11) is
positive and ultimately bounded.
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Proof From Eqs. (6)–(10) we obtain

sn+1 =
β + sn

1 + δ + kpn
, (12)

wn+1 =
wn

1 + α + m
+

k1pn(β + sn)
(1 + α + m)(1 + δ + kpn)

, (13)

zn+1 =
zn

1 + d
+

k2pn(β + sn)
(1 + d)(1 + δ + kpn)

+
m

1 + d

(
wn

1 + α + m
+

k1pn(β + sn)
(1 + α + m)(1 + δ + kpn)

)
, (14)

un+1 =
un

1 + a
+

k3pn(β + sn)
(1 + a)(1 + δ + kpn)

, (15)

pn+1 =
pn

1 + c
+

Nzd
1 + c

[
zn

1 + d
+

k2pn(β + sn)
(1 + d)(1 + δ + kpn)

+
m

1 + d

(
wn

1 + α + m
+

k1pn(β + sn)
(1 + α + m)(1 + δ + kpn)

)]

+
Nua
1 + c

(
un

1 + a
+

k3pn(β + sn)
(1 + a)(1 + δ + kpn)

)
. (16)

Since all parameters in (6)–(10) are positive, by induction we get sn > 0, wn > 0, zn > 0,
un > 0 and pn > 0 for all n ∈N.

Define a sequence Mn:

Mn = sn + wn + zn + un.

Then

Mn+1 = Mn + β – δsn+1 – αwn+1 – dzn+1 – aun+1

≤ Mn + β – ξMn+1.

Hence

Mn+1 ≤ Mn

1 + ξ
+

β

1 + ξ
.

According Lemma 2.2 in [34] we obtain

Mn ≤
(

1
1 + ξ

)n

M0 +
β

ξ

[
1 –

(
1

1 + ξ

)n]
.

Consequently, limn→∞ sup Mn ≤ N1, limn→∞ sup sn ≤ N1, limn→∞ sup wn ≤ N1,
limn→∞ sup zn ≤ N1, limn→∞ sup un ≤ N1. We have

pn+1 – pn = Nzdzn+1 + Nuaun+1 – cpn+1

≤ (Nzd + Nua)
β

ξ
– cpn+1.
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Hence

pn+1 ≤ pn

1 + c
+

(Nzd + Nua)β
(1 + c)ξ

=
pn

1 + c
+

(Nzd + Nua)N1

1 + c
.

By induction we get

pn ≤
(

1
1 + c

)n

p0 +
(Nzd + Nua)N1

c

[
1 –

(
1

1 + c

)n]
.

Consequently, limn→∞ sup pn ≤ N2. Therefore, the solution (sn, wn, zn, un, pn) converges to
Γ1 as n → ∞. �

System (6)–(10) has two equilibria,
(i) HIV-free equilibrium Q0(s0, 0, 0, 0, 0) where s0 = β/δ.

(ii) persistent HIV equilibrium Q∗(s∗, w∗, z∗, u∗, p∗), where

s∗ =
s0

R0
, w∗ =

k1β

(α + m)kR0
(R0 – 1),

z∗ =
β(mk1 + (α + m)k2)

dk(α + m)R0
(R0 – 1),

u∗ =
βk3

akR0
(R0 – 1), p∗ =

δ

k
(R0 – 1).

Clearly, Q∗ exists only when R0 > 1, where R0 is basic reproduction number and is given
by

R0 =
β(Nz(mk1 + (α + m)k2) + (α + m)Nuk3)

δc(α + m)
=

β

δ
γ , (17)

where

γ =
(Nz(mk1 + (α + m)k2) + (α + m)Nuk3)

c(α + m)
.

2.2 Global stability
We define the function G(x) ≥ 0 as G(x) = x – ln x – 1. Hence,

ln x ≤ x – 1. (18)

Theorem 1 If R0 ≤ 1, then Q0 is globally asymptotically stable.

Proof Construct a discrete Lyapunov function:

Ln(sn, wn, zn, un, pn) = s0G
(

sn

s0

)
+ η1wn + η2zn + η3un + η4(1 + c)pn,

where ηi > 0, i = 1, 2, 3, 4 to be determined below.
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Hence, Ln > 0 for all sn > 0, wn > 0, zn > 0, un > 0 and pn > 0. In addition, Ln = 0 if and
only if sn = s0, wn = 0, zn = 0, un = 0 and pn = 0. Computing the difference 
Ln = Ln+1 – Ln:


Ln = s0G
(

sn+1

s0

)
+ η1wn+1 + η2zn+1 + η3un+1 + η4(1 + c)pn+1

–
[

s0G
(

sn

s0

)
+ η1wn + η2zn + η3un + η4(1 + c)pn

]

= s0
(

sn+1

s0 –
sn

s0 + ln
sn

sn+1

)
+ η1(wn+1 – wn) + η2(zn+1 – zn)

+ η3(un+1 – un) + η4(1 + c)(pn+1 – pn),

where ηi, i = 1, 2, 3, 4 will be chosen below. Using inequality (18), we have


Ln ≤ sn+1 – sn + s0
(

sn

sn+1
– 1

)
+ η1(wn+1 – wn) + η2(zn+1 – zn)

+ η3(un+1 – un) + η4(1 + c)(pn+1 – pn)

=
(

1 –
s0

sn+1

)
(sn+1 – sn) + η1(wn+1 – wn) + η2(zn+1 – zn)

+ η3(un+1 – un) + η4(1 + c)(pn+1 – pn).

From Eqs. (6)–(10), we have


Ln ≤
(

1 –
s0

sn+1

)
(β – δsn+1 – ksn+1pn) + η1

(
k1sn+1pn – (α + m)wn+1

)

+ η2(k2sn+1pn + mwn+1 – dzn+1) + η3(k3sn+1pn – aun+1)

+ η4(Nzdzn+1 + Nuaun+1 – cpn+1) + η4c(pn+1 – pn).

Let ηi, i = 1, 2, 3, 4, be chosen so that

k1η1 + k2η2 + k3η3 = k, (α + m)η1 = mη2, η2 = Nzη4, η3 = Nuη4. (19)

The solution of system (19) is given by

η1 =
mNzk

(α + m)γ c
, η2 =

Nzk
γ c

, η3 =
Nuk
γ c

, η4 =
k
γ c

, (20)

and will be used throughout the paper. Then


Ln ≤
(

1 –
s0

sn+1

)
(β – δsn+1) + ks0pn – η4cpn

=
–δ

sn+1

(
sn+1 – s0)2 +

(
ks0 – η4c

)
pn

=
–δ

sn+1

(
sn+1 – s0)2 + η4c

(
kβ

δη4c
– 1

)
pn

=
–δ

sn+1

(
sn+1 – s0)2 + η4c(R0 – 1)pn. (21)
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Hence, for R0 ≤ 1, we have 
Ln ≤ 0 for all n ≥ 0, hence Ln is a non-increasing se-
quence. Then there exists a constant L̃ such that limn→∞ Ln = L̃ which implies that
limn→∞ 
Ln = limn→∞(Ln+1 – Ln) = 0. From equality (10) and limn→∞ 
Ln = 0 we have
limn→∞ sn = s0 and limn→∞(R0 –1)pn = 0. For the caseR0 < 1, we have limn→∞ sn+1 = s0 and
limn→∞ pn = 0. From Eqs. (7)–(10), we obtain limn→∞ wn = 0, limn→∞ zn = 0 and
limn→∞ un = 0. For the case R0 = 1, we have limn→∞ sn+1 = s0. From Eqs. (7)–(10), we
obtain limn→∞ pn = 0, limn→∞ un = 0, limn→∞ zn = 0 and limn→∞ wn = 0. Hence, in the
case R0 ≤ 1, the HIV-free equilibrium Q0 is globally asymptotically stable. �

Theorem 2 If R0 > 1, then Q∗ is globally asymptotically stable.

Proof Define

Un(sn, wn, zn, un, pn) = s∗G
(

sn

s∗

)
+ η1w∗G

(
wn

w∗

)
+ η2z∗G

(
zn

z∗

)

+ η3u∗G
(

un

u∗

)
+ (1 + c)η4p∗G

(
pn

p∗

)
,

where ηi, i = 1, 2, 3, 4 are given by Eq. (20).
Clearly, Un(sn, wn, zn, un, pn) > 0 for all sn, wn, zn, un, pn > 0 and Un(s∗, w∗, z∗, u∗, p∗) = 0.

Computing 
Un = Un+1 – Un:


Un = s∗G
(

sn+1

s∗

)
+ η1w∗G

(
wn+1

w∗

)
+ η2z∗G

(
zn+1

z∗

)
+ η3u∗G

(
un+1

u∗

)

+ (1 + c)η4p∗G
(

pn+1

p∗

)

–
[

s∗G
(

sn

s∗

)
+ η1w∗G

(
wn

w∗

)
+ η2z∗G

(
zn

z∗

)
+ η3u∗G

(
un

u∗

)

+ (1 + c)η4p∗G
(

pn

p∗

)]

= s∗
(

sn+1

s∗ –
sn

s∗ + ln
sn

sn+1

)
+ η1w∗

(
wn+1

w∗ –
wn

w∗ + ln
wn

wn+1

)

+ η2z∗
(

zn+1

z∗ –
zn

z∗ + ln
zn

zn+1

)

+ η3u∗
(

un+1

u∗ –
un

u∗ + ln
un

un+1

)
+ η4p∗

(
pn+1

p∗ –
pn

p∗ + ln
pn

pn+1

)

+ cη4p∗
[

G
(

pn+1

p∗

)
– G

(
pn

p∗

)]
.

Using inequality (18), we get


Un ≤ s∗
(

sn+1 – sn

s∗ +
sn

sn+1
– 1

)
+ η1w∗

(
wn+1 – wn

w∗ +
wn

wn+1
– 1

)

+ η2z∗
(

zn+1 – zn

z∗ +
zn

zn+1
– 1

)
+ η3u∗

(
un+1 – un

u∗ +
un

un+1
– 1

)

+ η4p∗
(

pn+1 – pn

p∗ +
pn

pn+1
– 1

)
+ cη4p∗

[
G

(
pn+1

p∗

)
– G

(
pn

p∗

)]
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=
(

1 –
s∗

sn+1

)
(sn+1 – sn) + η1

(
1 –

w∗

wn+1

)
(wn+1 – wn)

+ η2

(
1 –

z∗

zn+1

)
(zn+1 – zn) + η3

(
1 –

u∗

un+1

)
(un+1 – un)

+ η4

(
1 –

p∗

pn+1

)
(pn+1 – pn) + cη4p∗

[
G

(
pn+1

p∗

)
– G

(
pn

p∗

)]
.

From Eqs. (6)–(10), we have


Un ≤
(

1 –
s∗

sn+1

)
(β – δsn+1 – ksn+1pn) + η1

(
1 –

w∗

wn+1

)(
k1sn+1pn – (α + m)wn+1

)

+ η2

(
1 –

z∗

zn+1

)
(k2sn+1pn + mwn+1 – dzn+1)

+ η3

(
1 –

u∗

un+1

)
(k3sn+1pn – aun+1)

+ η4

(
1 –

p∗

pn+1

)
(Nzdzn+1 + Nuaun+1 – cpn+1)

+ cη4p∗
[

G
(

pn+1

p∗

)
– G

(
pn

p∗

)]
.

Since β = δs∗ + ks∗p∗,


Un ≤
(

1 –
s∗

sn+1

)(
δs∗ + ks∗p∗ – δsn+1 – ksn+1pn

)

+ η1

(
1 –

w∗

wn+1

)(
k1sn+1pn – (α + m)wn+1

)

+ η2

(
1 –

z∗

zn+1

)
(k2sn+1pn + mwn+1 – dzn+1)

+ η3

(
1 –

u∗

un+1

)
(k3sn+1pn – aun+1)

+ η4

(
1 –

p∗

pn+1

)
(Nzdzn+1 + Nuaun+1 – cpn+1) + cη4p∗

[
pn+1

p∗ –
pn

p∗ + ln
pn

pn+1

]

=
(

1 –
s∗

sn+1

)(
δs∗ – δsn+1

)
+

(
1 –

s∗

sn+1

)
ks∗p∗

+ ks∗pn – η1
w∗

wn+1
k1sn+1pn + η1(α + m)w∗

– η2
z∗

zn+1
k2sn+1pn – η2mwn+1

z∗

zn+1
+ η2dz∗ – η3

u∗

un+1
k3sn+1pn + η3au∗

– η4
p∗

pn+1
(Nzdzn+1 + Nuaun+1) + cη4p∗ + cη4p∗

(
–

pn

p∗ + ln
pn

pn+1

)
.

Using the conditions of Q∗

k1s∗p∗ = (α + m)w∗,

k2s∗p∗ + mw∗ = dz∗,
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k3s∗p∗ = au∗,

Nzdz∗ + Nuau∗ = cp∗,

we get

ks∗p∗ = η2dz∗ + η3au∗ = η4cp∗,

(k1η1 + k2η2)s∗p∗ = η2dz∗,

and


Un ≤ –δ

sn+1

(
sn+1 – s∗)2 +

(
1 –

s∗

sn+1

)
ks∗p∗ – η1k1s∗p∗ sn+1pnw∗

s∗p∗wn+1
+ η1k1s∗p∗

– η2k2s∗p∗ sn+1pnz∗

s∗p∗zn+1
– η1k1s∗p∗ z∗wn+1

zn+1w∗ + η2dz∗ – η3k3s∗p∗ sn+1pnu∗

s∗p∗un+1
+ η3au∗

– η2dz∗ p∗zn+1

pn+1z∗ – η3au∗ p∗un+1

pn+1u∗ + cη4p∗ + cη4p∗ ln
pn

pn+1

=
–δ

sn+1

(
sn+1 – s∗)2 +

(
1 –

s∗

sn+1

)
(η1k1 + η2k2 + η3k3)s∗p∗

– η1k1s∗p∗ sn+1pnw∗

s∗p∗wn+1
+ η1k1s∗p∗ – η2k2s∗p∗ sn+1pnz∗

s∗p∗zn+1
– η1k1s∗p∗ z∗wn+1

zn+1w∗

+ η1k1s∗p∗ + η2k2s∗p∗ – η3k3s∗p∗ sn+1pnu∗

s∗p∗un+1
+ η3k3s∗p∗

– η1k1s∗p∗ p∗zn+1

pn+1z∗ – η2k2s∗p∗ p∗zn+1

pn+1z∗ – η3k3s∗p∗ p∗un+1

pn+1u∗ + η1k1s∗p∗

+ η2k2s∗p∗ + η3k3s∗p∗ +
(
η1k1s∗p∗ + η2k2s∗p∗ + η3k3s∗p∗) ln

pn

pn+1

=
–δ

sn+1

(
sn+1 – s∗)2

+ η1k1s∗p∗
(

4 –
s∗

sn+1
–

sn+1pnw∗

s∗p∗wn+1
–

z∗wn+1

zn+1w∗ –
p∗zn+1

pn+1z∗ + ln
pn

pn+1

)

+ η2k2s∗p∗
(

3 –
s∗

sn+1
–

sn+1pnz∗

s∗p∗zn+1
–

p∗zn+1

pn+1z∗ + ln
pn

pn+1

)

+ η3k3s∗p∗
(

3 –
s∗

sn+1
–

sn+1pnu∗

s∗p∗un+1
–

un+1p∗

u∗pn+1
+ ln

pn

pn+1

)

=
–δ

sn+1

(
sn+1 – s∗)2

– η1k1s∗p∗
(

G
(

s∗

sn+1

)
+ G

(
sn+1pnw∗

s∗p∗wn+1

)
+ G

(
wn+1z∗

w∗zn+1

)
+ G

(
zn+1p∗

z∗pn+1

))

– η2k2s∗p∗
(

G
(

s∗

sn+1

)
+ G

(
sn+1pnz∗

s∗p∗zn+1

)
+ G

(
zn+1p∗

z∗pn+1

))

– η3k3s∗p∗
(

G
(

s∗

sn+1

)
+ G

(
sn+1pnu∗

s∗p∗un+1

)
+ G

(
un+1p∗

u∗pn+1

))
.
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Thus, Un is a non-increasing sequence and there exists a constant Ũ such that limn→∞ Un =
Ũ . Therefore, limn→∞ 
Un = 0, which implies limn→∞ sn = s∗, limn→∞ wn = w∗,
limn→∞ zn = z∗, limn→∞ un = u∗ and limn→∞ pn = p∗. �

3 General model
In this section, we propose a general nonlinear HIV model:

ṡ = π (s) – kf (s, p), (22)

ẇ = k1f (s, p) – (α + m)g1(w), (23)

ż = k2f (s, p) + mg1(w) – dg2(z), (24)

u̇ = k3f (s, p) – ag3(u), (25)

ṗ = Nzdg2(z) + Nuag3(u) – cg4(p), (26)

where π , f and gi, i = 1, . . . , 4 are general functions and are assumed to satisfy the following
conditions [24]:

(A1) (i) there exists s0 such that π (s0) = 0, π (s) > 0 for s ∈ [0, s0),
(ii) π ′(s) < 0 for all s > 0,

(iii) there are b > 0 and b̄ > 0 such that π (s) ≤ b – b̄s for all s ≥ 0.
(A2) (i) f (s, p) > 0, and f (0, p) = f (s, 0) = 0 for all s > 0, p > 0,

(ii) ∂f (s,p)
∂s > 0, ∂f (s,p)

∂p > 0, ∂f (s,0)
∂p > 0 for all s > 0, p > 0,

(iii) d
ds ( ∂f (s,0)

∂p ) > 0 for all s > 0.
(A3) (i) gj(ρ) > 0 for ρ > 0, gj(0) = 0, j = 1, . . . , 4,

(ii) g ′
j (ρ) > 0 for ρ > 0, j = 1, 2, 3 and g ′

4(ρ) > 0 for ρ ≥ 0,
(iii) there are υj > 0, j = 1, . . . , 4 such that gj(ρ) ≥ υjρ for ρ ≥ 0.

(A4) f (s,p)
g4(p) is decreasing with respect to p for all p > 0.

Using the NSFD method we get

sn+1 – sn = π (sn+1) – kf (sn+1, pn), (27)

wn+1 – wn = k1f (sn+1, pn) – (α + m)g1(wn+1), (28)

zn+1 – zn = k2f (sn+1, pn) + mg1(wn+1) – dg2(zn+1), (29)

un+1 – un = k3f (sn+1, pn) – ag3(un+1), (30)

pn+1 – pn = Nzdg2(zn+1) + Nuag3(un+1) – cg4(pn+1). (31)

3.1 Preliminaries
Let us consider the region

Γ̄1 =
{

(s, w, z, u, p) : 0 < s, w, z, u < N̄1, 0 < p < N̄2
}

,

where N̄1 = b
σ

, N̄2 = (Nzdg2(N̄1)+Nuag3(N̄1))
cυ3

and σ = min{b̄,αυ1, dυ2, aυ3}.

Lemma 2 Any solution (sn, wn, zn, un, pn) of model (27)–(31) with initial conditions (11) is
positive and ultimately bounded.
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Proof When n = 0 we prove that (s1, w1, z1, u1, p1) exists and is positive. From Eq. (27) we
have

s1 – s0 – π (s1) + kf (s1, p0) = 0.

Let ϕ1(s) be defined by

ϕ1(s) = s – s0 – π (s) + kf (s, p0) = 0.

According to (A1)–(A2) ϕ1 is a strictly increasing function of s. In addition

ϕ1(0) = –s0 – π (0) < 0,

lim
s→∞ϕ1(s) = ∞.

Hence, there exists a unique s1 ∈ (0,∞) such that ϕ1(s1) = 0.
From Eqs. (28) we have

w1 + (α + m)g1(w1) – w0 – k1f (s1, p0) = 0.

Let ϕ2(w) be defined:

ϕ2(w) = w + (α + m)g1(w) – w0 – k1f (s1, p0) = 0.

Based on (A1)–(A3) ϕ2 is a strictly increasing function of w

ϕ2(0) = –w0 – k1f (s1, p0) < 0,

lim
w→∞ϕ2(w) = ∞.

Hence, there exists a unique w1 ∈ (0,∞) such that ϕ2(w1) = 0.
From Eqs. (29) we have

z1 + dg2(z1) – z0 – k2f (s1, p0) – mg1(w1) = 0.

Let ϕ3(z) be defined by

ϕ3(z) = z + dg2(z) – z0 – k2f (s1, p0) – mg1(w1) = 0.

Based on (A1)–(A3) ϕ3 is a strictly increasing function of z

ϕ3(0) = –z0 – k2f (s1, p0) – mg1(w1) < 0,

lim
w→∞ϕ3(z) = ∞.

Hence, there exists a unique z1 ∈ (0,∞) such that ϕ3(z1) = 0.
Similarly, one can easily show from Eqs. (30)–(31) that u1 ∈ (0,∞) and p1 ∈ (0,∞).
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Therefore, by using the induction, we obtain sn > 0, wn > 0, zn > 0, un > 0 and pn > 0 for
all n ≥ 0.

Define a sequence Mn:

Mn = sn + wn + zn + un.

Then

Mn+1 = Mn + π (sn+1) – αg1(wn+1) – dg2(zn+1) – ag3(un+1),

Mn+1 ≤ Mn + b – b̄sn+1 – αυ1wn+1 – dυ2zn+1 – aυ3un+1 ≤ Mn + b – σMn+1.

Hence

Mn+1 ≤ Mn

1 + σ
+

b
1 + σ

.

According Lemma 2.2 in [34] we obtain

Mn ≤
(

1
1 + σ

)n

M0 +
b
σ

[
1 –

(
1

1 + σ

)n]
.

Consequently, limn→∞ sup Mn ≤ N̄1, limn→∞ sup sn ≤ N̄1, limn→∞ sup wn ≤ N̄1,
limn→∞ sup zn ≤ N̄1, limn→∞ sup un ≤ N̄1. Moreover,

pn+1 – pn = Nzdg2(zn+1) + Nuag3(un+1) – cg4(pn+1)

≤ (
Nzdg2(N̄1) + Nuag3(N̄1)

)
– cυ3pn+1.

Hence

pn+1 ≤ pn

1 + cυ3
+

(Nzdg2(N̄1) + Nuag3(N̄1))
1 + cυ3

.

By induction we get

pn ≤
(

1
1 + cυ3

)n

p0 +
(Nzdg2(N̄1) + Nuag3(N̄1))

cυ3

[
1 –

(
1

1 + cυ3

)n]
.

Consequently, limn→∞ sup pn ≤ N̄2. Therefore, the solution (sn, wn, zn, un, pn) converges to
Γ̄1 as n → ∞. �

Lemma 3 For model (27)–(31) let (A1)–(A3) hold true, then there exists a threshold pa-
rameter R0 > 0 such that

(i) if R0 ≤ 1, then there exists only an HIV-free equilibrium Q0,
(ii) if R0 > 1, then there exist two equilibria, Q0 and a persistent HIV equilibrium Q∗.

Proof Let Q(s, w, z, u, p) be any equilibrium of model (27)–(31) satisfying

π (s) – kf (s, p) = 0, (32)

k1f (s, p) – (α + m)g1(w) = 0, (33)
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k2f (s, p) + mg1(w) – dg2(z) = 0, (34)

k3f (s, p) – ag3(u) = 0, (35)

Nzdg2(z) + Nuag3(u) – cg4(p) = 0. (36)

From Eqs. (32)–(36) we have

w = g–1
1

(
k1π (s)

k(α + m)

)
, z = g–1

2

(
π (s)(mk1 + (α + m)k2)

dk(α + m)

)
,

u = g–1
3

(
k3π (s)

ak

)
, p = g–1

4

(
γπ (s)

k

)
.

(37)

Let us define

w = θ (s), z = ψ(s), u = μ(s), p = �(s). (38)

Obviously, θ (s), ψ(s), μ(s), �(s) > 0 for s ∈ [0, s0) and θ (s0) = ψ(s0) = μ(s0) = �(s0) = 0. From
Eqs. (32), (37) and (38) we obtain

γ f
(
s,�(s)

)
– g4

(
�(s)

)
= 0.

Equation (38) admits a solution s = s0 which yields the HIV-free equilibrium Q0(s0, 0, 0,
0, 0). Let

Ψ (s) = γ f
(
s,�(s)

)
– g4

(
�(s)

)
= 0.

From Assumptions (A2) and (A3) Ψ (0) = –g4(�(0)) < 0 and Ψ (s0) = 0. Moreover,

Ψ ′(s0) = γ

[
∂f (s0, 0)

∂s
+ �′(s0)∂f (s0, 0)

∂p

]
– g ′

4(0)�′(s0).

We note from Assumption (A2) that ∂f (s0,0)
∂s = 0. Then

Ψ ′(s0) = �′(s0)g ′
4(0)

(
γ

g ′
4(0)

∂f (s0, 0)
∂p

– 1
)

.

From Eq. (38), we get

Ψ ′(s0) =
γπ ′(s0)

k

(
γ

g ′
4(0)

∂f (s0, 0)
∂p

– 1
)

.

Therefore, from Assumption (A1), we have π ′(s0) < 0. Therefore, if γ

g′
4(0)

∂f (s0,0)
∂p > 1, then

Ψ ′(s0) < 0 and there exists s∗ ∈ (0, s0) such that Ψ (s∗) = 0. Assumptions (A1)–(A3) imply
that

w∗ = θ
(
s∗) > 0, z∗ = ψ

(
s∗) > 0, u∗ = μ

(
s∗) > 0, p∗ = �

(
s∗) > 0. (39)
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It means that a persistent-HIV equilibrium Q∗(s∗, w∗, z∗, u∗, p∗) exists when γ

g′
4(0) ×

∂f (s0,0)
∂p > 1.
Hence, we can define the basic reproduction number of system (27)–(31):

R0 =
γ

g ′
4(0)

∂f (s0, 0)
∂p

.

This shows that if R0 > 1, then there exists a persistent-HIV equilibrium Q∗(s∗, w∗, z∗,
u∗, p∗). �

3.2 Global stability
Theorem 3 Suppose that R0 ≤ 1, then Q0 of system (27)–(31) is globally asymptotically
stable.

Proof Define

Ln = sn – s0 –
∫ sn

s0
lim

p→0+

f (s0, p)
f (τ , p)

dτ + η1wn + η2zn + η3un + η4pn + η4cg4(pn).

Hence, Ln > 0 for all sn, wn, zn, un, pn > 0 and Ln = 0 if and only if sn = s0, wn = 0, zn = 0,
un = 0 and pn = 0. Computing the difference 
Ln = Ln+1 – Ln:


Ln = sn+1 – s0 –
∫ sn+1

s0
lim

p→0+

f (s0, p)
f (τ , p)

dτ + η1wn+1 + η2zn+1 + η3un+1

+ η4pn+1 + η4cg4(pn+1)

–
[

sn – s0 –
∫ sn

s0
lim

p→0+

f (s0, p)
f (τ , p)

dτ + η1wn + η2zn + η3un + η4pn + η4cg4(pn)
]

= sn+1 – sn –
∫ sn+1

sn

lim
p→0+

f (s0, p)
f (τ , p)

dτ + η1(wn+1 – wn) + η2(zn+1 – zn) + η3(un+1 – un)

+ η4(pn+1 – pn) + η4c
(
g4(pn+1) – g4(pn)

)
.

Using Lemma 2.1 [35], we get

lim
p→0+

f (s0, p)
f (sn+1, p)

(sn+1 – sn) ≤
∫ sn+1

sn

lim
p→0+

f (s0, p)
f (τ , p)

dτ ≤ lim
p→0+

f (s0, p)
f (sn, p)

(sn+1 – sn).

Hence


Ln ≤
(

1 – lim
p→0+

f (s0, p)
f (sn+1, p)

)
(sn+1 – sn) + η1(wn+1 – wn) + η2(zn+1 – zn) + η3(un+1 – un)

+ η4(pn+1 – pn) + η4c
(
g4(pn+1) – g4(pn)

)
.

From Eqs. (27)–(31), we have


Ln ≤
(

1 – lim
p→0+

f (s0, p)
f (sn+1, p)

)(
π (sn+1) – kf (sn+1, pn)

)

+ η1
(
k1f (sn+1, pn) – (α + m)g1(wn+1)

)
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+ η2
(
k2f (sn+1, pn) + mg1(wn+1) – dg2(zn+1)

)
+ η3

(
k3f (sn+1, pn) – ag3(un+1)

)

+ η4
(
Nzdg2(zn+1) + Nuag3(un+1) – cg4(pn+1)

)
+ η4c

(
g4(pn+1) – g4(pn)

)

=
(

1 – lim
p→0+

f (s0, p)
f (sn+1, p)

)
π (sn+1) + lim

p→0+

f (s0, p)
f (sn+1, p)

kf (sn+1, pn) – η4cg4(pn).

Using π (s0) = 0, we obtain


Ln ≤ (
π (sn+1) – π

(
s0))

(
1 –

∂f (s0, 0)/∂p
∂f (sn+1, 0)/∂p

)

+
∂f (s0, 0)/∂p

∂f (sn+1, 0)/∂p
kf (sn+1, pn) – η4cg4(pn)

=
(
π (sn+1) – π

(
s0))

(
1 –

∂f (s0, 0)/∂p
∂f (sn+1, 0)/∂p

)

+
(

∂f (s0, 0)/∂p
∂f (sn+1, 0)/∂p

kf (sn+1, pn)
g4(pn)

– η4c
)

g4(pn).

From Assumption (A4) we have

f (sn+1, pn)
g4(pn)

≤ lim
p→0+

f (sn+1, p)
g4(p)

=
∂f (sn+1, 0)/∂p

g ′
4(0)

.

Then we get


Ln ≤ (
π (sn+1) – π

(
s0))

(
1 –

∂f (s0, 0)/∂p
∂f (sn+1, 0)/∂p

)
+

(
k
∂f (s0, 0)/∂p

g ′
4(0)

– η4c
)

g4(pn)

=
(
π (sn+1) – π

(
s0))

(
1 –

∂f (s0, 0)/∂p
∂f (sn+1, 0)/∂p

)
+ η4c

(
γ

g ′
4(0)

∂f (s0, 0)
∂p

– 1
)

g4(pn)

=
(
π (sn+1) – π

(
s0))

(
1 –

∂f (s0, 0)/∂p
∂f (sn+1, 0)/∂p

)
+ η4c(R0 – 1)g4(pn).

From Assumptions (A1) and (A2) we have

(
π (sn+1) – π

(
s0))

(
1 –

∂f (s0, 0)/∂p
∂f (sn+1, 0)/∂p

)
≤ 0.

Hence, for R0 ≤ 1, we have 
Ln ≤ 0 for all n ≥ 0, hence Ln is a non-increasing sequence.
Then there exists a constant L̃ such that limn→∞ Ln = L̃, and then limn→∞ 
Ln = 0 which
implies that limn→∞ sn = s0 and limn→∞(R0 – 1)pn = 0. We discuss two cases:

• If R0 < 1, then limn→∞ pn = 0, then we get from Eqs. (28)–(30) limn→∞ wn = 0,
limn→∞ zn = 0 and limn→∞ un = 0.

• If R0 = 1. By using limn→∞ sn = s0 and from Eq. (27), we obtain f (s0, pn) = 0. Because
s0 > 0, we have f (s0, pn) > f (0, pn) = 0 (use Assumption (A1)). Thus, limn→∞ pn = 0.

By the aforementioned discussion, we deduce that the largest compact invariant set in
{(sn, wn, zn, un, pn)|(
Ln) = 0} is the just the singleton Q0.

Therefore, Q0 is globally asymptotically stable by the LaSalle invariance principle [57,
58]. �
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Remark 1 Assumptions (A2)–(A4) imply that

(
f (s, p)
g4(p)

–
f (s, p∗)
g4(p∗)

)(
f (s, p) – f

(
s, p∗)) ≤ 0,

which yields

(
f (s, p)
f (s, p∗)

–
g4(p)
g4(p∗)

)(
1 –

f (s, p∗)
f (s, p)

)
≤ 0. (40)

Theorem 4 Suppose that R0 > 1, then Q∗ of system (27)–(31) is globally asymptotically
stable.

Proof Consider

Un(sn, wn, zn, un, pn)

= sn – s∗ –
∫ sn

s∗

f (s∗, p∗)
f (τ , p∗)

dτ + η1

(
wn – w∗ –

∫ wn

w∗

g1(w∗)
g1(τ )

dτ

)

+ η2

(
zn – z∗ –

∫ zn

z∗

g2(z∗)
g2(τ )

dτ

)
+ η3

(
un – u∗ –

∫ un

u∗

g3(u∗)
g3(τ )

dτ

)

+ η4

(
pn – p∗ –

∫ pn

p∗

g4(p∗)
g4(τ )

dτ

)
+ η4cg4

(
p∗)G

(
g4(pn)
g4(p∗)

)
.

Clearly, Un(sn, wn, zn, un, pn) > 0 for all sn, wn, zn, un, pn > 0 and Un(s∗, w∗, z∗, u∗, p∗) = 0.
Computing 
Un = Un+1 – Un:


Un = sn+1 – s∗ –
∫ sn+1

s∗

f (s∗, p∗)
f (τ , p∗)

dτ + η1

(
wn+1 – w∗ –

∫ wn+1

w∗

g1(w∗)
g1(τ )

dτ

)

+ η2

(
zn+1 – z∗ –

∫ zn+1

z∗

g2(z∗)
g2(τ )

dτ

)
+ η3

(
un+1 – u∗ –

∫ un+1

u∗

g3(u∗)
g3(τ )

dτ

)

+ η4

(
pn+1 – p∗ –

∫ pn+1

p∗

g4(p∗)
g4(τ )

dτ

)
+ η4cg4

(
p∗)G

(
g4(pn+1)
g4(p∗)

)

–
[

sn – s∗ –
∫ sn

s∗

f (s∗, p∗)
f (τ , p∗)

dτ + η1

(
wn – w∗ –

∫ wn

w∗

g1(w∗)
g1(τ )

dτ

)

+ η2

(
zn – z∗ –

∫ zn

z∗

g2(z∗)
g2(τ )

dτ

)
+ η3

(
un – u∗ –

∫ un

u∗

g3(u∗)
g3(τ )

dτ

)

+ η4

(
pn – p∗ –

∫ pn

p∗

g4(p∗)
g4(τ )

dτ

)
+ η4cg4

(
p∗)G

(
g4(pn)
g4(p∗)

)]

= sn+1 – sn –
∫ sn+1

sn

f (s∗, p∗)
f (τ , p∗)

dτ + η1

(
wn+1 – wn –

∫ wn+1

wn

g1(w∗)
g1(τ )

dτ

)

+ η2

(
zn+1 – zn –

∫ zn+1

zn

g2(z∗)
g2(τ )

dτ

)
+ η3

(
un+1 – un –

∫ un+1

un

g3(u∗)
g3(τ )

dτ

)

+ η4

(
pn+1 – pn –

∫ pn+1

pn

g4(p∗)
g4(τ )

dτ

)
+ η4cg4

(
p∗)

(
G

(
g4(pn+1)
g4(p∗)

)
–

(
g4(pn)
g4(p∗)

))
.
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From Lemma 2.1 [35], we have

(
1 –

f (s∗, p∗)
f (sn, p∗)

)
(sn+1 – sn) ≤ sn+1 – sn –

∫ sn+1

sn

f (s∗, p∗)
f (τ , p∗)

dτ

≤
(

1 –
f (s∗, p∗)

f (sn+1, p∗)

)
(sn+1 – sn),

(
1 –

gi(ρ∗)
gi(ρn)

)
(ρn+1 – ρn) ≤ ρn+1 – ρn –

∫ ρn+1

ρn

gi(ρ∗)
gi(τ )

dτ ≤
(

1 –
gi(ρ∗)

gi(ρn+1)

)
(ρn+1 – ρn).

Then


Un ≤
(

1 –
f (s∗, p∗)

f (sn+1, p∗)

)
(sn+1 – sn) + η1

(
1 –

g1(w∗)
g1(wn+1)

)
(wn+1 – wn)

+ η2

(
1 –

g2(z∗)
g2(zn+1)

)
(zn+1 – zn)

+ η3

(
1 –

g3(u∗)
g3(un+1)

)
(un+1 – un) + η4

(
1 –

g4(p∗)
g4(pn+1)

)
(pn+1 – pn)

+ η4cg4
(
p∗)

(
g4(pn+1)
g4(p∗)

–
g4(pn)
g4(p∗)

+ ln
g4(pn)

g4(pn+1)

)
.

From Eqs. (27)–(31), we have


Un ≤
(

1 –
f (s∗, p∗)

f (sn+1, p∗)

)(
π (sn+1) – kf (sn+1, pn)

)

+ η1

(
1 –

g1(w∗)
g1(wn+1)

)(
k1f (sn+1, pn) – (α + m)g1(wn+1)

)

+ η2

(
1 –

g2(z∗)
g2(zn+1)

)(
k2f (sn+1, pn) + mg1(wn+1) – dg2(zn+1)

)

+ η3

(
1 –

g3(u∗)
g3(un+1)

)(
k3f (sn+1, pn) – ag3(un+1)

)

+ η4

(
1 –

g4(p∗)
g4(pn+1)

)(
Nzdg2(zn+1) + Nuag3(un+1) – cg4(pn+1)

)

+ η4c
(

g4(pn+1) – g4(pn) + g4
(
p∗) ln

g4(pn)
g4(pn+1)

)

=
(

1 –
f (s∗, p∗)

f (sn+1, p∗)

)(
π (sn+1) – π

(
s∗)) + π

(
s∗)

(
1 –

f (s∗, p∗)
f (sn+1, p∗)

)

+
kf (s∗, p∗)
f (sn+1, p∗)

f (sn+1, pn) – η1
g1(w∗)

g1(wn+1)
k1f (sn+1, pn) + η1(α + m)g1

(
w∗)

– η2
g2(z∗)

g2(zn+1)
k2f (sn+1, pn) – η2m

g2(z∗)
g2(zn+1)

g1(wn+1) + η2dg2
(
z∗)

– η3
g3(u∗)

g3(un+1)
k3f (sn+1, pn) + η3ag3

(
u∗) – η4

g4(p∗)
g4(pn+1)

Nzdg2(zn+1)

– η4
g4(p∗)

g4(pn+1)
Nuag3(un+1) + η4cg4

(
p∗) – η4cg4(pn) + η4cg4

(
p∗) ln

g4(pn)
g4(pn+1)

.
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Using the conditions of Q∗

π
(
s∗) = kf

(
s∗, p∗),

k1f
(
s∗, p∗) = (α + m)g1

(
w∗),

k2f
(
s∗, p∗) + mg1

(
w∗) = dg2

(
z∗),

k3f
(
s∗, p∗) = ag3

(
u∗),

Nzdg2
(
z∗) + Nuag3

(
u∗) = cg4

(
p∗),

we get

kf
(
s∗, p∗) = η2dg2

(
z∗) + η3ag3

(
u∗) = η4cg4

(
p∗),

(η1k1 + η2k2)f
(
s∗, p∗) = η2dg2

(
z∗),

and


Un ≤
(

1 –
f (s∗, p∗)

f (sn+1, p∗)

)(
π (sn+1) – π

(
s∗)) + kf

(
s∗, p∗)

(
1 –

f (s∗, p∗)
f (sn+1, p∗)

)

+ kf
(
s∗, p∗) f (sn+1, pn)

f (sn+1, p∗)

– η1k1f
(
s∗, p∗) f (sn+1, pn)g1(w∗)

f (s∗, p∗)g1(wn+1)
+ η1k1f

(
s∗, p∗)

– η2k2f
(
s∗, p∗) f (sn+1, pn)g2(z∗)

f (s∗, p∗)g2(zn+1)

– η1k1f
(
s∗, p∗)g2(z∗)g1(wn+1)

g2(zn+1)g1(w∗)
+ (η1k1 + η2k2)f

(
s∗, p∗)

– η3k3f
(
s∗, p∗) f (sn+1, pn)g3(u∗)

f (s∗, p∗)g3(un+1)

+ η3k3f
(
s∗, p∗) – (η1k1 + η2k2)f

(
s∗, p∗) g4(p∗)g2(zn+1)

g4(pn+1)g2(z∗)

– η3k3f
(
s∗, p∗)g3(un+1)g4(p∗)

g3(u∗)g4(pn+1)

+ kf
(
s∗, p∗) – kf

(
s∗, p∗)g4(pn)

g4(p∗)
+ kf

(
s∗, p∗) ln

g4(pn)
g4(pn+1)

=
(

1 –
f (s∗, p∗)

f (sn+1, p∗)

)(
π (sn+1) – π

(
s∗))

+ η1k1f
(
s∗, p∗)

[
5 –

f (s∗, p∗)
f (sn+1, p∗)

–
f (sn+1, pn)g1(w∗)
f (s∗, p∗)g1(wn+1)

–
g2(z∗)g1(wn+1)
g2(zn+1)g1(w∗)

–
g4(p∗)g2(zn+1)
g4(pn+1)g2(z∗)

–
g4(pn)f (sn+1, p∗)
g4(p∗)f (sn+1, pn)

+ ln
g4(pn)

g4(pn+1)

]

+ η2k2f
(
s∗, p∗)

[
4 –

f (s∗, p∗)
f (sn+1, p∗)

–
f (sn+1, pn)g2(z∗)
f (s∗, p∗)g2(zn+1)

–
g4(p∗)g2(zn+1)
g4(pn+1)g2(z∗)

–
g4(pn)f (sn+1, p∗)
g4(p∗)f (sn+1, pn)
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+ ln
g4(pn)

g4(pn+1)

]
+ η3k3f

(
s∗, p∗)

[
4 –

f (s∗, p∗)
f (sn+1, p∗)

–
f (sn+1, pn)g3(u∗)
f (s∗, p∗)g3(un+1)

–
g3(un+1)g4(p∗)
g3(u∗)g4(pn+1)

–
g4(pn)f (sn+1, p∗)
g4(p∗)f (sn+1, pn)

+ ln
g4(pn)

g4(pn+1)

]

+ kf
(
s∗, p∗)

[
–1 +

g4(pn)f (sn+1, p∗)
g4(p∗)f (sn+1, pn)

+
f (sn+1, pn)
f (sn+1, p∗)

–
g4(pn)
g4(p∗)

]

=
(

1 –
f (s∗, p∗)

f (sn+1, p∗)

)(
π (sn+1) – π

(
s∗)) – η1k1f

(
s∗, p∗)

[
G

(
f (s∗, p∗)

f (sn+1, p∗)

)

+ G
(

f (sn+1, pn)g1(w∗)
f (s∗, p∗)g1(wn+1)

)
+ G

(
g2(z∗)g1(wn+1)
g2(zn+1)g1(w∗)

)
+ G

(
g4(p∗)g2(zn+1)
g4(pn+1)g2(z∗)

)

+ G
(

g4(pn)f (sn+1, p∗)
g4(p∗)f (sn+1, pn)

)]

– η2k2f
(
s∗, p∗)

[
G

(
f (s∗, p∗)

f (sn+1, p∗)

)
+ G

(
f (sn+1, pn)g2(z∗)
f (s∗, p∗)g2(zn+1)

)

+ G
(

g4(p∗)g2(zn+1)
g4(pn+1)g2(z∗)

)
+ G

(
g4(pn)f (sn+1, p∗)
g4(p∗)f (sn+1, pn)

)]

– η3k3f
(
s∗, p∗)

[
G

(
f (s∗, p∗)

f (sn+1, p∗)

)

+ G
(

f (sn+1, pn)g3(u∗)
f (s∗, p∗)g3(un+1)

)
+ G

(
g3(un+1)g4(p∗)
g3(u∗)g4(pn+1)

)
+ G

(
g4(pn)f (sn+1, p∗)
g4(p∗)f (sn+1, pn)

)]

+ kf
(
s∗, p∗)

[
–1 +

g4(pn)f (sn+1, p∗)
g4(p∗)f (sn+1, pn)

+
f (sn+1, pn)
f (sn+1, p∗)

–
g4(pn)
g4(p∗)

]
.

Assumptions (A1), (A2) and (A4) imply that

(
1 –

f (s∗, p∗)
f (sn+1, p∗)

)(
π (sn+1) – π

(
s∗)) ≤ 0.

Based on the Remark 1, we have

–1 +
g4(pn)f (sn+1, p∗)
g4(p∗)f (sn+1, pn)

+
f (sn+1, pn)
f (sn+1, p∗)

–
g4(pn)
g4(p∗)

=
(

1 –
f (sn+1, p∗)
f (sn+1, pn)

)(
f (sn+1, pn)
f (sn+1, p∗)

–
g4(pn)
g4(p∗)

)

≤ 0.

Thus, Un is a non-increasing sequence and there exists a constant Ũ such that
limn→∞ Un = Ũ . Therefore, limn→∞ 
Un = 0, which implies limn→∞ sn = s∗,
limn→∞ wn = w∗, limn→∞ zn = z∗, limn→∞ un = u∗ and limn→∞ pn = p∗. �

3.3 Numerical simulations
We perform our simulation by choosing the functions

π (s) = β – δs, f (s, p) =
sp

1 + λs + θp
, gj(ρ) = ρ, j = 1, . . . , 4,
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where λ > 0 and θ > 0. Therefore, system (27)–(31) becomes

sn+1 – sn = β – δsn+1 –
ksn+1pn

1 + λsn+1 + θpn
, (41)

wn+1 – wn =
k1sn+1pn

1 + λsn+1 + θpn
– (α + m)wn+1, (42)

zn+1 – zn =
k2sn+1pn

1 + λsn+1 + θpn
+ mwn+1 – dzn+1, (43)

un+1 – un =
k3sn+1pn

1 + λsn+1 + θpn
– aun+1, (44)

pn+1 – pn = Nzdzn+1 + Nuaun+1 – cpn+1. (45)

For this system, the basic reproduction number is given by

R0 =
γ s0

1 + λs0 =
γβ

δ + λβ
.

We verify the assumptions (A1)–(A4). Clearly, π (0) = β > 0, π (s0) = 0 and π ′(s) = –δ < 0. It
follows that, π (s) > 0 for all s ∈ [0, s0). Moreover, (A1)(iii) is satisfied with b = β and b̄ = δ.
Thus, (A1) is satisfied. We also have

f (s, p) =
sp

1 + λs + θp
> 0, and f (0, p) = f (s, 0) = 0 for all s > 0, p > 0,

∂f (s, p)
∂s

=
(1 + θp)p

(1 + λs + θp)2 > 0 for all s > 0, and p > 0,

∂f (s, p)
∂p

=
(1 + λs)s

(1 + λs + θp)2 > 0 for all s > 0, and p > 0,

∂f (s, 0)
∂p

=
s

1 + λs
> 0, for all s > 0,

d
ds

(
∂f (s, 0)

∂p

)
=

1
(1 + λs)2 > 0, for all s > 0.

Therefore, Assumption (A2) is satisfied. Moreover, we have gj(ρ) = ρ > 0 for all ρ > 0 and
gj(0) = 0, j = 1, . . . , 4. We also have, g ′

j (ρ) = 1 > 0, j = 1, 2, 3 for all ρ > 0 and g ′
4(ρ) = 1 > 0 for

ρ ≥ 0.
Then Assumption (A3) is satisfied, where υj = 1, j = 1, 2, 3. Finally, we have

∂

∂p

(
f (s, p)
g4(p)

)
=

–θs
(1 + λs + θp)2 < 0, for all s > 0, and p > 0.

Therefore, Assumption (A4) holds true and hence Theorems 3 and 4 are applicable.
The numerical simulations for system (41)–(45) will be conducted using the following

data: β = 10, δ = 0.01, α = 0.1, m = 0.2, d = 0.2, a = 0.1, c = 6, λ = 1, θ = 1 and k̄i = 0.02
(i = 1, 2, 3). The other parameters will be chosen below.

Let us consider the initial values
IV1: s(0) = 900, w(0) = 7, z(0) = 15, u(0) = 20, p(0) = 60,
IV2: s(0) = 700, w(0) = 4, z(0) = 10, u(0) = 12, p(0) = 45,
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Figure 1 The simulation of trajectories of system (41)–(45) for Case (1)

IV3: s(0) = 500, w(0) = 2, z(0) = 5, u(0) = 6, p(0) = 30.
Case (1) Effect of Nz, Nu of stability of equilibria:
We choose ε = 0 and Nz, Nu are varied:
(i) Nz = 100, Nu = 50. This yields R0 = 0.7215 < 1. Figure 1 shows that, the

concentration of uninfected cells increases and tends to the value s0 = 1000. In
addition, the concentrations of latent infected cells, long-lived infected cells,
short-lived infected cells and free HIV particles decrease and tend to zero for the
initial values IV1–IV3. This shows that Q0 is globally asymptotically stable and
Theorem 3 is valid.

(ii) Nz = 200, Nu = 100. With these values we obtain R0 = 1.4430 > 1. Figure 1 shows
that for the initial values IV1–IV3, the solutions of the system tend to the
equilibrium Q∗ = (352.8108, 7.1910, 17.9775, 21.5730, 155.8047). Therefore, Q∗

exists and it is globally asymptotically stable. This validates the result of Theorem 4.
Case(2) Effect of the drug efficacy ε on the HIV dynamics:
For this case, we take IV2 and choose the values Nz = 200, Nu = 100 and ε is varied.

Figure 2 shows the effect of drug efficacy ε on the stability of the system. We observe
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Figure 2 The simulation of trajectories of system (41)–(45) for Case (2)

that, as ε is increased, the infection rate is decreased, and then, the concentration of the
uninfected cells are increased, while the concentrations of the latent infected cells, long-
lived infected cells, short-lived infected cells and free HIV particles are decreased.
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