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Abstract
Mathematical models of host-pathogen interactions are proposed and analyzed. Here
hosts are oyster population in a free-swimming larval stage and assumably live in the
closed homogeneous environment. In terms of an epidemic, they are classified into
two states, namely susceptible and infectious hosts. The epidemic model of oyster
hosts with seasonal forced transmission is firstly described by the SIS model where
the region of attraction, the existence of equilibrium points, their stability conditions,
and upper and lower bounds on the attack rate are investigated. Then free-living
pathogen is introduced in the oyster area. Numerical simulations are finally carried
out by making use of the various salinity-dependent transmissions in support of the
hypothesis that the lower the salinity level, the lower oyster’s immunity.

Keywords: Attack rate; Host-pathogen interaction; Oyster larvae; Time-varying
parameter; Salinity-dependent transmission

1 Introduction
Like other organisms, oysters require energy to maintain their structure and maturity.
They develop through various stages in their life cycle as shown in Fig. 1. The adult oys-
ters produce eggs or sperms before releasing them to fertilize in the water column in the
proper environment. The fertilized eggs drift along the current and develop into free-
swimming larvae, the so-called pre-settlement oyster. After 2–3 weeks, they start to attach
to a suitable hard substance, such as rock or shell. They are known as spat and become
adult oysters in 1–3 years [1].

There are a variety of approaches to understand a result of changing environmental con-
ditions, population dynamics, and a combination of both. The Princeton Ocean Model
(POM) is widely used to simulate marine circulation [2], and the dynamic energy budget
model (DEB) is developed for mechanistic studies [3–6]. Using DEB model, the authors
in [7–9] explored the relationship between environmental variables and bivalve sustain-
ability.

Mortality of bivalve species living in variable environmental conditions has been widely
studied due to their ecological and economic importance. Water runoff from the heavy
rain is considered a major cause of death in the oyster culture area, whereas salinity range
for oyster growth and development is about 10–25 ppt. After exposure to salinity changes,
oysters require more energy to maintain their internal salinity concentration at a desired
level. Lavaud et al. [10] proposed that salinity maintenance may be extracted from struc-
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Figure 1 Oyster’s life cycle. credit: Karen R. Swanson/COSEE SE/NSF

ture maintenance. However, Fuhrmann et al. [11] proposed that the increasing energetic
demand may divert resources from defense mechanisms against pathogens, which is a
process of maturity maintenance [3]. Another significant cause of mortality of larval oys-
ters was reported as a pathogen. Common pathogens of oyster include bacteria, viruses,
and parasites. Two examples of oyster’s pathogen are Ostreid herpersvirus 1 (OsHV-1)
spotted in France from the abnormal mortality crisis of C. gigas oyster, especially spat
and juvenile, and Perkinsus marinus, a parasite which causes Dermo disease. A variety of
host–pathogen models have been proposed in the literature [12–16].

In this paper, we are interested in host-pathogen interactions in which the seasonal salin-
ity is due to changes in transmission rate. Thus, we construct the mathematical model of
pre-settlement oyster population with SIS model in Sect. 2. The seasonal salinity is as-
sumed to affect oyster immune system with the hypothesis that the lower salinity, the
higher infection rate. In the study case of Bandon Bay, Thailand, the salinity can be con-
ferred to be a sinusoidal function over time [17]. Thus, the host-to-host disease transmis-
sion rate can be considered as a sinusoidal function or sinusoidal function with limited-
value. In Sect. 3, the model is modified into SISP model by including free-living pathogens.
Thus environment-to-host transmission rate is also taken into account. In Sect. 4, the nu-
merical simulations illustrate the result from each set of parameters. The upper and lower
of attack rates are also calculated.

2 The seasonally forced SIS model
2.1 Model formulation of unforced SIS model
Here, we consider the interaction between the susceptible and infectious populations liv-
ing in a closed homogeneous environment. In particular, we focus on a free-swimming
larval oyster. Let S(t) and I(t) be the number of susceptible and infectious hosts at time t,
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Figure 2 Conceptual diagram of SIS model.
Illustration of interaction between susceptible and
infectious hosts

Table 1 Parameters and their biological meanings

Parameter Biological meaning

Λ Host recruitment rate
β Host-to-host transmission rate
1/α Infectious period
μ Host settlement rate
m Disease-induced death rate

All parameters are positive.

respectively. S(t)+ I(t) = N(t) is the varying population size. The transition rates are homo-
geneously mixing. From the conceptual diagram in Fig. 2, SIS model can be constructed
by the following system of ordinary differential equations:

dS
dt

= Λ – βSI + αI – μS,

dI
dt

= βSI – αI – μI – mI,
(1)

where S(0) > 0 and I(0) > 0. All parameters are described in Table 1.
Throughout this work, R+ is the set of nonnegative real numbers, Rn is the Euclidean

n-space, and R
2
+ is the nonnegative quadrant. The validity of system (1) is guaranteed by

its uniform boundedness which can be proved by the following lemma.

Lemma 2.1

Γ1 =
{

(S, I) ∈R
2
+

∣∣∣S + I ≤ Λ

μ

}

is the region of attraction. Then all solutions of system (1) starting in R
2
+ are uniformly

bounded.

It is straightforward to obtain lim supt→∞ N(t) ≤ Λ
μ

. In other words, this lemma implies
that all solutions of system (1) in R

2
+ eventually enter the region Γ1.

We now discuss the existence of equilibrium points of system (1).

Lemma 2.2 System (1) has the following equilibrium points:
(a) The disease-free equilibrium point L0( Λ

μ
, 0) always exists;

(b) The endemic equilibrium point L1( Λ
μR0

, Λ
μ+m (1 – 1

R0
)) exists if R0 > 1, where

R0 = Λβ

μ(α+μ+m) .

The lemma is obtained by using a standard technique in mathematical modeling. Next,
we examine the stability conditions.



Sunthawanic et al. Advances in Difference Equations        (2019) 2019:409 Page 4 of 14

Theorem 2.3 The equilibrium points of system (1) satisfy the stability conditions as fol-
lows.

(a) The disease-free equilibrium point L0( Λ
μ

, 0) is asymptotically stable if R0 < 1 and
unstable if R0 > 1.

(b) The endemic equilibrium point L1( Λ
μR0

, Λ
μ+m (1 – 1

R0
)) is locally asymptotically stable

if R0 > 1, and unstable if R0 < 1.

The proof of the local asymptotic stability at an equilibrium point (S∗, I∗) can be com-
pleted by checking the eigenvalues of the Jacobian matrix at the equilibrium point, written
as

J
(
S∗, I∗) =

[
–βI∗ – μ –βS∗ + α

βI∗ βS∗ – α – μ – m

]
.

Lemma 2.4 System (1) has no closed orbit.

Proof According to system (1), f1 := Λ – βSI + αI – μS and f2 := βSI – αI – μI – mI are
continuous differentiable functions. Then we choose φ1 = 1

SI . Thus

∂φ1f1

∂S
+

∂φ1f2

∂I
= –

Λ + αI
S2I

< 0

neither changes sign nor is identically zero in the first quadrant. Hence system (1) has no
closed orbit by Dulac’s criteria. �

Consequently, unforced oscillations do not exist. However, there is a change of stability
at the bifurcation point β = μ(α + μ + m)/Λ. The bifurcation diagram is described in the
next section.

2.2 Forcing term
In nature, environmental conditions including salinity level change seasonally. Thus, the
seasonally forced SIS model should be considered. The approaches to studying a math-
ematical model with time-varying parameter are limited. Among them, the numerical
simulations are the most popular. Following [18], we can analyze theoretically in terms
of upper and lower bounds on attack rate.

Let β(t) be the seasonally-dependent transmission rate:

β(t + T) = β(t), β(t) ≥ 0,

where T is the seasonal period. The properties are

β(t) = β̄ + β0(t) where β̄ =
1
T

∫ T

0
β(t) dt and

∫ T

0
β0(t) dt = 0.

2.3 Attack rate
The attack rate in year n is defined by

An =
∫ (n+1)T

nT
β(t)S(t)I(t) dt,



Sunthawanic et al. Advances in Difference Equations        (2019) 2019:409 Page 5 of 14

where β(t)S(t)I(t) is the incidence of new infectious hosts. Under the assumption that
there exists a globally stable periodic solution Sp(t), Ip(t) with a T-period where

Sp(t + T) = Sp(t), Ip(t + T) = Ip(t), ∀t,

all solutions converge to the periodic solutions. Consequently, the seasonal attack rate is
given by

lim
n→∞ An = A =

∫ T

0
β(t)Sp(t)Ip(t) dt.

For the special case β(t) = β̄ when R0 = Λβ̄

μ(α+μ+m) > 1, system (1) has a globally stable
equilibrium point as follows:

S∗ =
Λ

μR0
, I∗ =

Λ

μ + m

(
1 –

1
R0

)
.

It leads to the attack rate at equilibrium

A∗ = T β̄
Λ

μR0

Λ

μ + m

(
1 –

1
R0

)
.

Next, we drop the subscript p and analyze the upper and lower bounds on the attack
rate in terms of the parameters.

Lemma 2.5 For any T-periodic solution (S(t), I(t)) of system (1), we have the upper bound

A <
(

1 +
α

μ

)
ΛT .

Proof Assume (S(t), I(t)) is a T-periodic solutions of system (1). Obviously,

∫ T

0
S′(t) dt = S(T) – S(0) = 0.

Since S(t) > 0 and S(t) + I(t) ≤ Λ
μ

, we get

A =
∫ T

0

(
Λ + αI(t) – μS(t)

)
dt <

(
1 +

α

μ

)
ΛT . �

Lemma 2.6 If (S(t), I(t)) is a T-periodic solution of system (1), then

A
T

= (α + μ + m)Ī,

where Ī = 1
T

∫ T
0 I(t) dt.

Proof Obviously,

∫ T

0
I ′(t) dt = I(T) – I(0) = 0.
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Therefore, we get

A
T

=
1
T

∫ T

0
(α + μ + m)I(t) dt = (α + μ + m)Ī,

where Ī = 1
T

∫ T
0 I(t) dt. �

Lemma 2.7 If (S(t), I(t)) is a T-periodic solution of system (1), then

1
T

∫ T

0
β(t)S(t) dt = α + μ + m.

Proof Dividing both sides of I ′(t) by I(t), we get

[
log

(
I(t)

)]′ = β(t)S(t) – α – μ – m.

After integrating both sides over [0, T], the left-hand side vanishes because of periodicity.
Then the proof is complete. �

Theorem 2.8 For any T-periodic solution (S(t), I(t)) of system (1), we have the following
upper and lower bounds:

0 ≤ A ≤ T(α + μ + m)
(

Λ

μ
–

Λ

μR0

(
1

1 + η1

))
.

Proof First, we define

Ī =
1
T

∫ T

0
I(t) dt, S̄ =

1
T

∫ T

0
S(t) dt, N̄ = Ī + S̄ =

1
T

∫ T

0

(
S(t) + I(t)

)
dt,

η0 =
inft∈[0,T] β0(t)

β̄
, and η0 =

supt∈[0,T] β0(t)
β̄

.

In the non-seasonal case, η0 = η1 = 0. Using Lemma 2.7, we have

α + μ + m ≥ S̄ inf
t∈[0,T]

β(t) = S̄
(
β̄ + inf

t∈[0,T]
β0(t)

)
= S̄β̄(1 – η0).

Therefore, S̄ ≤ α+μ+m
β̄(1–η0) = Λ

μR0
( 1

1–η0
).

On the other hand,

α + μ + m ≤ S̄ sup
t∈[0,T]

β(t) = S̄
(
β̄ + sup

t∈[0,T]
β0(t)

)
= S̄β̄(1 + η1).

Then S̄ ≥ α+μ+m
β̄(1+η1) = Λ

μR0
( 1

1+η1
).

Next, using Lemma 2.6, we have

A = T(α + μ + m)Ī = T(α + μ + m)(N̄ – S̄).

Then

A = T(α + μ + m)(N̄ – S̄) ≥ T(α + μ + m)
(

0 –
Λ

μR0

(
1

1 – η0

))
,
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A = T(α + μ + m)(N̄ – S̄) ≤ T(α + μ + m)
(

Λ

μ
–

Λ

μR0

(
1

1 + η1

))
.

Since A ≥ 0, more precise upper and lower bounds become

0 ≤ A ≤ T(α + μ + m)
(

Λ

μ
–

Λ

μR0

(
1

1 + η1

))
. �

3 The seasonally forced SISP model
3.1 Model formulation of unforced SISP model
Bani-Yaghoub et al. [19] hypothesized the contaminated environment by disease-causing
germs as a transition, transition-reservoir, and reservoir, while our SISP scenario assumes
that susceptible hosts can be infected by both infectious hosts and pathogen shed by in-
fected host. Next we propose and analyze an extension of system (1), including free-living
pathogen (FLP) load at time t, P(t). The conceptual diagram is illustrated in Fig. 3. Then
SISP model can be written as follows:

dS
dt

= Λ – βSI – δSP + αI – μS,

dI
dt

= βSI + δSP – αI – μI – mI,

dP
dt

= bI + εmI – γ P,

(2)

where S(0) > 0, I(0) > 0, and P(0) > 0. The additional parameters are defined in Table 2.
Additionally, throughout this work, R3

+ is the nonnegative octant. The validity of sys-
tem (2) is guaranteed by its uniform boundedness which can be proved by the following
lemma.

Figure 3 Conceptual diagram of SISP model.
Illustration of interaction between susceptible host,
infectious host, and free-living pathogen

Table 2 Additional parameters and their biological meanings

Parameter Biological meaning

δ Environment-to-host transmission rate
γ The rate at which FLP decay
ε FLP burst released upon death of I
b Pathogen releasing rate from host body surface

All parameters are positive.
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Lemma 3.1

Γ2 =
{

(S, I, P) ∈R
3
+

∣∣∣S + I ≤ Λ

μ
, P ≤ M

}

is the region of attraction. Then all solutions of system (2) starting in R
3
+ are uniformly

bounded.

Proof It is easy to prove that S + I ≤ Λ
μ

since dS
dt + dI

dt from system (1) and system (2) are
identical. As a consequence, the third equation of system (2) yields

dP
dt

≤ (b + εm)
Λ

μ
– γ P.

Thus, there exists M > 0 such that lim supt→∞ P(t) ≤ M. This lemma also implies that all
solutions of system (2) in R

3
+ eventually enter the region Γ2. �

We now discuss the existence of equilibrium points of system (2).

Lemma 3.2 System (2) has the following equilibrium points:
(a) The disease-free equilibrium point L0( Λ

μ
, 0, 0) always exists;

(b) The endemic equilibrium point L1( 1
RP

0
, μ

μ+m ( Λ
μ

– 1
RP

0
), μ(b+εm)

γ (μ+m) ( Λ
μ

– 1
RP

0
)) exists if RP

0 > μ

Λ
,

where RP
0 = βγ +δ(b+εm)

(α+μ+m)γ .

By straightforward calculation, this lemma can be proven easily. To prevent the negative
solution of endemic equilibrium point, the condition RP

0 > μ

Λ
must be satisfied. Then we

examine the local asymptotic stability at an equilibrium point.

Theorem 3.3 The equilibrium points of system (2) satisfy the stability conditions as fol-
lows:

(a) The disease-free equilibrium point L0( Λ
μ

, 0, 0) is asymptotically stable if RP
0 < μ

Λ
and

unstable if RP
0 > μ

Λ
.

(b) The endemic equilibrium point L1( 1
RP

0
, μ

μ+m ( Λ
μ

– 1
RP

0
), μ(b+εm)

γ (μ+m) ( Λ
μ

– 1
RP

0
)) is locally

asymptotically stable if RP
0 > μ

Λ
, and unstable if RP

0 < μ

Λ
.

This theorem is proven by using Jacobian matrix at the equilibrium point (S∗, I∗, P∗) of
linearized system (2) and Routh–Hurwitz conditions [20].

J
(
S∗, I∗, P∗) =

⎡
⎢⎣

–βI∗ – δP∗ – μ –βS∗ + α –δS∗

βI∗ + δP∗ βS∗ – α – μ – m δS∗

0 b + εm –γ

⎤
⎥⎦ .

Before examining the bifurcation of system (2), we consider the nonexistence of limit
cycle behavior first.

Lemma 3.4 System (2) has no closed orbit.

This lemma is proven by following the method used in Lemma 2.4 with Dulac’s function
φ2 = 1/SIP. Therefore, Hopf bifurcation cannot occur.
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Figure 4 Bifurcation diagram of unforced SISP model. (a) The bifurcation diagram of susceptible host with
bifurcation parameter β . (b) The two-parameter bifurcation diagram for β and δ illustrating the stability
regions

Next β and δ are chosen as bifurcation parameters. The bifurcation diagram of forced
SISP model obtained numerically is shown in the numerical simulations section. Fig-
ure 4(a) illustrates an occurrence of local bifurcation after the values of β change. Solid
line and dotted line indicate the stable and unstable solutions respectively. The disease-
free equilibrium is illustrated as a straight line S = Λ/μ, while a curved line represents the
endemic equilibrium. At the bifurcation point β = μ

Λ
(α + μ + m) – δ

γ
(b + εm), the disease-

free equilibrium point is no longer stable, whereas the stable endemic equilibrium point
exists as transmission rate β is increased. The bifurcation diagram of system (1) is shown
in Fig. 4(a) when δ = 0.

Figure 4(b) shows the stability regions of β – δ bifurcation diagram. As a conclusion, the
lower transmission rates β and δ, the higher the number of susceptible host.

3.2 Forcing term
Next we consider the seasonally forced SISP model. δ(t) is a new seasonally-dependent
transmission rate:

δ(t + T) = δ(t), δ(t) ≥ 0,

where T is the seasonal period, and the properties are

δ(t) = δ̄ + δ0(t) where δ̄ =
1
T

∫ T

0
δ(t) dt and

∫ T

0
δ0(t) dt = 0.

3.3 Attack rate
In addition to environment-to-host transmissions, the attack rate in year n becomes

An =
∫ (n+1)T

nT

(
β(t)S(t)I(t) + δ(t)S(t)P(t)

)
dt.

Like SIS model, the globally stable periodic solution assumably exists, and all solutions
converge to the periodic solutions. Then the seasonal attack rate becomes

lim
n→∞ An = A =

∫ T

0

(
β(t)S(t)I(t) + δ(t)S(t)P(t)

)
dt.
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For the special case β(t) = β̄ and δ(t) = δ̄, when RP
0 = β̄γ +δ̄(b+εm)

(α+μ+m)γ > μ

Λ
, system (2) has the

globally stable equilibrium point as follows:

S∗ =
1

RP
0

, I∗ =
μ

μ + m

(
Λ

μ
–

1
RP

0

)
, P∗ =

μ(b + εm)
γ (μ + m)

(
Λ

μ
–

1
RP

0

)
.

Then the attack rate at equilibrium is given by

A = T
(

β̄γ (α + μ + m)
β̄γ + δ(b + εm)

μ

(μ + m)

(
Λ

μ
–

1
RP

0

)
+

δ̄γ (α + μ + m)μ(b + εm)
β̄γ + δ(b + εm)γ (μ + m)

(
Λ

μ
–

1
RP

0

)
T

)
.

Again, we can analyze the upper and lower bounds on the attack rate in terms of the
parameters.

Lemma 3.5 For any T-periodic solution (S(t), I(t), P(t)) of system (2), we have the upper
bound

A <
(

1 +
α

μ

)
ΛT .

Proof Assume (S(t), I(t), P(t)) is a T-periodic solution of system (2). Then we obtain

A =
∫ T

0

(
Λ + αI(t) – μS(t)

)
dt <

(
1 +

α

μ

)
ΛT

when S(t) > 0 and S(t) + I(t) ≤ Λ
μ

. �

Lemma 3.6 If (S(t), I(t), P(t)) is a T-periodic solution of system (2), then

A
T

= (α + μ + m)Ī,

where Ī = 1
T

∫ T
0 I(t) dt.

Proof Obviously,

∫ T

0
I ′(t) dt = I(t) – I(0) = 0.

Therefore, we get

A
T

=
1
T

∫ T

0
(α + μ + m)I(t) dt = (α + μ + m)Ī,

where Ī = 1
T

∫ T
0 I(t) dt. �

Theorem 3.7 For any T-periodic solution (S(t), I(t), P(t)) of system (2), we have

0 < A < T(α + μ + m)
Λ

μ
.
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Proof Hence,

0 < Ī =
1
T

∫ T

0
I(t) dt <

Λ

μ
.

Using Lemma 3.6, the upper and lower bounds are obtained. �

In the next section, we represent the numerical verification comparing to the theoretical
results and generate numerical bifurcation diagram.

4 Numerical simulations
We use a Runge–Kutta 4th order method to investigate the numerical results starting from
the initial point (S(0), I(0), P(0)) = (50, 10, 1), with Λ = 5.00, β = 0.01, δ = 0.001, α = 0.20,
μ = 0.05, m = 0.20, b = 0.10, ε = 0.05, and γ = 0.80. Figures 5 and 6 show dynamic behav-
iors of unforced SIS and SISP models, respectively.

In order to illustrate the impact of the salinity on both transmissions, namely host-to-
host and environment-to-host transmissions, the salinity function is defined as a sinu-
soidal function with 1-year period. Assume that the transmission rate β(t) and salinity
function are inversely proportional. By assuming βmin as a minimum transmission rate,

Figure 5 Numerical results in unforced SIS model. The time-series of the solution to unforced SIS model. All
state variables tend toward their steady states. (a) We set α = 0.80 and obtain R0 = 0.95 < 1, which leads to the
disease-free equilibrium. (b) Parameters are set as common values, and we obtain R0 = 2.22 > 1, which leads
to the endemic equilibrium

Figure 6 Numerical results in unforced SISP model. The time-series of the solution to unforced SISP model.
All state variables tend toward their steady states. (a) We set α = 0.80 and obtain ΛRP0/μ = 0.97 < 1, which
leads to the disease-free equilibrium. (b) We set b = 0.20 and obtain ΛRP0/μ = 2.28 > 1, which leads to the
endemic equilibrium
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we obtain

β(t) = βmin

(
1 + ω

(1 + cos 2π t)
2

)

when ω > 0 is an additional proportion effect of salinity. For simplicity, transmission rates
δ(t) are described by the same function as β(t) which is δ(t) = δmin(1 + ω(1 + cos 2π t)/2).
The chosen functions satisfy the form of seasonally forcing term, namely β(t) = β̄ + β0(t),
where β̄ = (1 + ω/2)βmin.

ω is a bifurcation parameter. The time-series plots in Fig. 7(a), (c), (e) and phase plane
plots in Fig. 7(b), (d), (f ) illustrate the behavior of system (2) with different values of ω.
Furthermore, the visualization of bifurcation diagram of forced SISP model is shown in
Fig. 8, while the sets of parameters used in Figs. 7 and 8 have the same values.

For ω = 0.05, the trajectory is attracted by the disease-free equilibrium point L0 and be-
comes stationary, as shown in Fig. 7(b). For ω = 0.30, L0 still remains the stable equilibrium
point, but there are small oscillations before the trajectory reaches the equilibrium point
(Fig. 7(d)). At last, for ω = 0.55, the trajectory becomes periodic with 1-year period, as
shown in Fig. 7(d), (f ). These results coincide with the bifurcation diagram in Fig. 8.

Figure 7 Numerical results in forced SISP model. Figures (a), (c), (e) are time-series plots, while (b,d,f ) are
phase plane plots of system (2). The forced parameters ω of (a), (b), (c), (d), and (e), (f) are 0.05, 0.30, and 0.55,
respectively. The model’s parameters are as follows: βmin = 0.01, δmin = 0.02, α = 0.40, μ = 0.13,m = 0.10, and
γ = 0.50
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Figure 8 Numerical bifurcation diagram of forced
SISP model. Graph for displaying the relationship
between bifurcation parameter ω and max-min
values of susceptible host

Table 3 Numerical calculation of annual attack rates (A) and max-min of S by varying ω

ω A Smin Smax

0.0 4099 38.73 38.73
0.2 4327 32.27 38.75
0.4 4503 27.65 38.77
0.6 4646 24.19 38.80
0.8 4764 21.51 38.82
1.0 4864 19.36 38.84

Finally, the attack rates and the number of susceptible host are also calculated in Table 3,
while parameters are as follows: βmin = 0.01, δmin = 0.02, α = 0.40, m = 0.10, and γ = 0.50.
Additionally, the attack rates from Table 3, which are between 4099 to 4864, coincide with
the upper bound of attack rate from theoretical result, which is 9125.

5 Discussion and conclusion
This model is an approximation to the realistic behaviors on the spread of diseases. Host-
pathogen interactions are studied in two situations, namely unforced and forced models.
Indeed, we carried out a theoretical analysis and compared the results with numerical sim-
ulation. We found that the basic reproduction number (R0 and RP

0 ) acts as a major factor
on the existence of the equilibrium points and their asymptotic stability. In particular, we
examined the upper and lower bounds of attack rate.

Then we considered the seasonal force in terms of sinusoidal function with 1-year pe-
riod. The additional proportion effect of salinity (ω) represents the effect of salinity to the
host’s immunity or salinity fluctuation in the culture site. We can conclude that if the effect
of salinity is small enough, the infectious host and FLP will be extinct eventually. When
the effect of salinity is increased, the infectious host and FLP survive for some time but
eventually also die. Finally, if the effect of salinity is large enough, the susceptible host, the
infectious host, and FLP coexist.

The value of attack rate (A) shows the occurrence of an infectious incident. As a conclu-
sion, the higher effect of salinity causes higher attack rate. It implies the higher infectious
incident.

These results coincide with our hypothesis that the lower salinity, the lower oyster’s
immunity.

However, the contents described in this study are conducted by the authors of the paper.
Research and Researchers for Industries Scholarship, Thailand Research Fund, does not
necessarily agree or reflect the opinions of the research output.
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